Emerging paradigms in machine learning:
<p>This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is a...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2013
|
Schriftenreihe: | Smart innovation, systems and technologies
13 |
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHI01 FHN01 FHR01 FKE01 FWS01 UBY01 Volltext |
Zusammenfassung: | <p>This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book. </p> |
Beschreibung: | From the content: Emerging Paradigms in Machine Learning: An Introduction -- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization -- Optimised information abstraction in granular Min/Max clustering -- Mining Incomplete Data—A Rough Set Approach -- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation |
Beschreibung: | 1 Online-Ressource (XXII, 498 p. 167 illus) |
ISBN: | 9783642286995 |
DOI: | 10.1007/978-3-642-28699-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV040800328 | ||
003 | DE-604 | ||
005 | 20180727 | ||
007 | cr|uuu---uuuuu | ||
008 | 130306s2013 |||| o||u| ||||||eng d | ||
020 | |a 9783642286995 |c Online |9 978-3-642-28699-5 | ||
035 | |a (OCoLC)812578862 | ||
035 | |a (DE-599)BVBBV040800328 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-898 |a DE-634 |a DE-573 |a DE-92 |a DE-Aug4 |a DE-859 |a DE-706 |a DE-863 | ||
082 | 0 | |a 006.3 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
245 | 1 | 0 | |a Emerging paradigms in machine learning |c Sheela Ramanna ..., eds. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2013 | |
300 | |a 1 Online-Ressource (XXII, 498 p. 167 illus) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Smart innovation, systems and technologies |v 13 | |
500 | |a From the content: Emerging Paradigms in Machine Learning: An Introduction -- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization -- Optimised information abstraction in granular Min/Max clustering -- Mining Incomplete Data—A Rough Set Approach -- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation | ||
520 | |a <p>This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book. </p> | ||
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Künstliche Intelligenz | |
650 | 4 | |a Engineering | |
650 | 4 | |a Artificial intelligence | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Ramanna, Sheela |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-642-28698-8 |
830 | 0 | |a Smart innovation, systems and technologies |v 13 |w (DE-604)BV044857729 |9 13 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-28699-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-ENG | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025780446 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l BTU01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l FHA01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l FHI01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l FHN01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l FHR01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l FKE01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l FWS01 |p ZDB-2-ENG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-28699-5 |l UBY01 |p ZDB-2-ENG |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 922874 |
---|---|
_version_ | 1806194901559279616 |
any_adam_object | |
author2 | Ramanna, Sheela |
author2_role | edt |
author2_variant | s r sr |
author_facet | Ramanna, Sheela |
building | Verbundindex |
bvnumber | BV040800328 |
classification_rvk | ST 300 ST 302 |
collection | ZDB-2-ENG |
ctrlnum | (OCoLC)812578862 (DE-599)BVBBV040800328 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-642-28699-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04006nmm a2200589zcb4500</leader><controlfield tag="001">BV040800328</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180727 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">130306s2013 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642286995</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-28699-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)812578862</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040800328</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-898</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Emerging paradigms in machine learning</subfield><subfield code="c">Sheela Ramanna ..., eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXII, 498 p. 167 illus)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Smart innovation, systems and technologies</subfield><subfield code="v">13</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From the content: Emerging Paradigms in Machine Learning: An Introduction -- Extensions of Dynamic Programming as a New Tool for Decision Tree Optimization -- Optimised information abstraction in granular Min/Max clustering -- Mining Incomplete Data—A Rough Set Approach -- Roles Played by Bayesian Networks in Machine Learning: An Empirical Investigation</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a"><p>This book presents fundamental topics and algorithms that form the core of machine learning (ML) research, as well as emerging paradigms in intelligent system design. The multidisciplinary nature of machine learning makes it a very fascinating and popular area for research. The book is aiming at students, practitioners and researchers and captures the diversity and richness of the field of machine learning and intelligent systems. Several chapters are devoted to computational learning models such as granular computing, rough sets and fuzzy sets An account of applications of well-known learning methods in biometrics, computational stylistics, multi-agent systems, spam classification including an extremely well-written survey on Bayesian networks shed light on the strengths and weaknesses of the methods. Practical studies yielding insight into challenging problems such as learning from incomplete and imbalanced data, pattern recognition of stochastic episodic events and on-line mining of non-stationary data streams are a key part of this book. </p></subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Künstliche Intelligenz</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramanna, Sheela</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-642-28698-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Smart innovation, systems and technologies</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV044857729</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-ENG</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025780446</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-28699-5</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-ENG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV040800328 |
illustrated | Not Illustrated |
indexdate | 2024-08-01T16:14:46Z |
institution | BVB |
isbn | 9783642286995 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025780446 |
oclc_num | 812578862 |
open_access_boolean | |
owner | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
owner_facet | DE-898 DE-BY-UBR DE-634 DE-573 DE-92 DE-Aug4 DE-859 DE-706 DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (XXII, 498 p. 167 illus) |
psigel | ZDB-2-ENG |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | Springer |
record_format | marc |
series | Smart innovation, systems and technologies |
series2 | Smart innovation, systems and technologies |
spellingShingle | Emerging paradigms in machine learning Smart innovation, systems and technologies Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4143413-4 |
title | Emerging paradigms in machine learning |
title_auth | Emerging paradigms in machine learning |
title_exact_search | Emerging paradigms in machine learning |
title_full | Emerging paradigms in machine learning Sheela Ramanna ..., eds. |
title_fullStr | Emerging paradigms in machine learning Sheela Ramanna ..., eds. |
title_full_unstemmed | Emerging paradigms in machine learning Sheela Ramanna ..., eds. |
title_short | Emerging paradigms in machine learning |
title_sort | emerging paradigms in machine learning |
topic | Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Ingenieurwissenschaften Künstliche Intelligenz Engineering Artificial intelligence Maschinelles Lernen Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-642-28699-5 |
volume_link | (DE-604)BV044857729 |
work_keys_str_mv | AT ramannasheela emergingparadigmsinmachinelearning |