Understanding high-dimensional spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
2012
|
Schriftenreihe: | SpringerBriefs in computer science
|
Schlagworte: | |
Online-Zugang: | BTU01 FHA01 FHM01 FHN01 FKE01 UBA01 UBG01 UBM01 UBR01 UBT01 UBW01 UBY01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (IX, 108 S.) graph. Darst. 235 mm x 155 mm |
ISBN: | 9783642333989 |
DOI: | 10.1007/978-3-642-33398-9 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV040503503 | ||
003 | DE-604 | ||
005 | 20140205 | ||
007 | cr|uuu---uuuuu | ||
008 | 121025s2012 |||| o||u| ||||||eng d | ||
015 | |a 12N34 |2 dnb | ||
020 | |a 9783642333989 |c Online |9 978-3-642-33398-9 | ||
024 | 7 | |a 10.1007/978-3-642-33398-9 |2 doi | |
035 | |a (OCoLC)858076278 | ||
035 | |a (DE-599)BVBBV040503503 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-M347 |a DE-20 |a DE-703 |a DE-19 |a DE-Aug4 |a DE-92 |a DE-384 |a DE-355 |a DE-859 |a DE-634 |a DE-739 |a DE-706 | ||
082 | 0 | |a 006.312 |2 22//ger | |
084 | |a ST 265 |0 (DE-625)143634: |2 rvk | ||
100 | 1 | |a Skillicorn, David B. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Understanding high-dimensional spaces |c David B. Skillicorn |
264 | 1 | |a Berlin |b Springer |c 2012 | |
300 | |a 1 Online-Ressource (IX, 108 S.) |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a SpringerBriefs in computer science | |
650 | 0 | 7 | |a Dichtebasiertes Clusterverfahren |0 (DE-588)4808371-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hochdimensionale Daten |0 (DE-588)7862975-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Merkmalsraum |0 (DE-588)4808421-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Mining |0 (DE-588)4428654-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cluster |g Datenanalyse |0 (DE-588)4808358-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissensextraktion |0 (DE-588)4546354-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hochdimensionale Daten |0 (DE-588)7862975-5 |D s |
689 | 0 | 1 | |a Merkmalsraum |0 (DE-588)4808421-9 |D s |
689 | 0 | 2 | |a Dichtebasiertes Clusterverfahren |0 (DE-588)4808371-9 |D s |
689 | 0 | 3 | |a Cluster |g Datenanalyse |0 (DE-588)4808358-6 |D s |
689 | 0 | 4 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 5 | |a Data Mining |0 (DE-588)4428654-5 |D s |
689 | 0 | 6 | |a Wissensextraktion |0 (DE-588)4546354-2 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druckausgabe |z 978-3-642-33397-2 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-33398-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SCS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-025350212 | ||
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l BTU01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l FHA01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l FHM01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l FHN01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l FKE01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBA01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBG01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBM01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBR01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBT01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBW01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UBY01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-3-642-33398-9 |l UPA01 |p ZDB-2-SCS |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804149577835610113 |
---|---|
any_adam_object | |
author | Skillicorn, David B. |
author_facet | Skillicorn, David B. |
author_role | aut |
author_sort | Skillicorn, David B. |
author_variant | d b s db dbs |
building | Verbundindex |
bvnumber | BV040503503 |
classification_rvk | ST 265 |
collection | ZDB-2-SCS |
ctrlnum | (OCoLC)858076278 (DE-599)BVBBV040503503 |
dewey-full | 006.312 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.312 |
dewey-search | 006.312 |
dewey-sort | 16.312 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
doi_str_mv | 10.1007/978-3-642-33398-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03386nmm a2200685 c 4500</leader><controlfield tag="001">BV040503503</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140205 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">121025s2012 |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">12N34</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642333989</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-33398-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-33398-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858076278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV040503503</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.312</subfield><subfield code="2">22//ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 265</subfield><subfield code="0">(DE-625)143634:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Skillicorn, David B.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding high-dimensional spaces</subfield><subfield code="c">David B. Skillicorn</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 108 S.)</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">SpringerBriefs in computer science</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dichtebasiertes Clusterverfahren</subfield><subfield code="0">(DE-588)4808371-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochdimensionale Daten</subfield><subfield code="0">(DE-588)7862975-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Merkmalsraum</subfield><subfield code="0">(DE-588)4808421-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cluster</subfield><subfield code="g">Datenanalyse</subfield><subfield code="0">(DE-588)4808358-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochdimensionale Daten</subfield><subfield code="0">(DE-588)7862975-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Merkmalsraum</subfield><subfield code="0">(DE-588)4808421-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Dichtebasiertes Clusterverfahren</subfield><subfield code="0">(DE-588)4808371-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Cluster</subfield><subfield code="g">Datenanalyse</subfield><subfield code="0">(DE-588)4808358-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Data Mining</subfield><subfield code="0">(DE-588)4428654-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="6"><subfield code="a">Wissensextraktion</subfield><subfield code="0">(DE-588)4546354-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-3-642-33397-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-025350212</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-3-642-33398-9</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV040503503 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:25:15Z |
institution | BVB |
isbn | 9783642333989 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-025350212 |
oclc_num | 858076278 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-M347 DE-20 DE-703 DE-19 DE-BY-UBM DE-Aug4 DE-92 DE-384 DE-355 DE-BY-UBR DE-859 DE-634 DE-739 DE-706 |
owner_facet | DE-473 DE-BY-UBG DE-M347 DE-20 DE-703 DE-19 DE-BY-UBM DE-Aug4 DE-92 DE-384 DE-355 DE-BY-UBR DE-859 DE-634 DE-739 DE-706 |
physical | 1 Online-Ressource (IX, 108 S.) graph. Darst. 235 mm x 155 mm |
psigel | ZDB-2-SCS |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Springer |
record_format | marc |
series2 | SpringerBriefs in computer science |
spelling | Skillicorn, David B. Verfasser aut Understanding high-dimensional spaces David B. Skillicorn Berlin Springer 2012 1 Online-Ressource (IX, 108 S.) graph. Darst. 235 mm x 155 mm txt rdacontent c rdamedia cr rdacarrier SpringerBriefs in computer science Dichtebasiertes Clusterverfahren (DE-588)4808371-9 gnd rswk-swf Hochdimensionale Daten (DE-588)7862975-5 gnd rswk-swf Merkmalsraum (DE-588)4808421-9 gnd rswk-swf Data Mining (DE-588)4428654-5 gnd rswk-swf Cluster Datenanalyse (DE-588)4808358-6 gnd rswk-swf Wissensextraktion (DE-588)4546354-2 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Hochdimensionale Daten (DE-588)7862975-5 s Merkmalsraum (DE-588)4808421-9 s Dichtebasiertes Clusterverfahren (DE-588)4808371-9 s Cluster Datenanalyse (DE-588)4808358-6 s Maschinelles Lernen (DE-588)4193754-5 s Data Mining (DE-588)4428654-5 s Wissensextraktion (DE-588)4546354-2 s DE-604 Erscheint auch als Druckausgabe 978-3-642-33397-2 https://doi.org/10.1007/978-3-642-33398-9 Verlag Volltext |
spellingShingle | Skillicorn, David B. Understanding high-dimensional spaces Dichtebasiertes Clusterverfahren (DE-588)4808371-9 gnd Hochdimensionale Daten (DE-588)7862975-5 gnd Merkmalsraum (DE-588)4808421-9 gnd Data Mining (DE-588)4428654-5 gnd Cluster Datenanalyse (DE-588)4808358-6 gnd Wissensextraktion (DE-588)4546354-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4808371-9 (DE-588)7862975-5 (DE-588)4808421-9 (DE-588)4428654-5 (DE-588)4808358-6 (DE-588)4546354-2 (DE-588)4193754-5 |
title | Understanding high-dimensional spaces |
title_auth | Understanding high-dimensional spaces |
title_exact_search | Understanding high-dimensional spaces |
title_full | Understanding high-dimensional spaces David B. Skillicorn |
title_fullStr | Understanding high-dimensional spaces David B. Skillicorn |
title_full_unstemmed | Understanding high-dimensional spaces David B. Skillicorn |
title_short | Understanding high-dimensional spaces |
title_sort | understanding high dimensional spaces |
topic | Dichtebasiertes Clusterverfahren (DE-588)4808371-9 gnd Hochdimensionale Daten (DE-588)7862975-5 gnd Merkmalsraum (DE-588)4808421-9 gnd Data Mining (DE-588)4428654-5 gnd Cluster Datenanalyse (DE-588)4808358-6 gnd Wissensextraktion (DE-588)4546354-2 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Dichtebasiertes Clusterverfahren Hochdimensionale Daten Merkmalsraum Data Mining Cluster Datenanalyse Wissensextraktion Maschinelles Lernen |
url | https://doi.org/10.1007/978-3-642-33398-9 |
work_keys_str_mv | AT skillicorndavidb understandinghighdimensionalspaces |