Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
2011
|
Schlagworte: | |
Online-Zugang: | kostenfrei https://nbn-resolving.org/urn:nbn:de:bvb:384-opus-18135 |
Beschreibung: | 52 S. Ill., graph. Darst. |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039882944 | ||
003 | DE-604 | ||
005 | 20120214 | ||
007 | t | ||
008 | 120213s2011 ad|| m||| 00||| eng d | ||
035 | |a (OCoLC)780115746 | ||
035 | |a (DE-599)BVBBV039882944 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 | ||
084 | |a SK 880 |0 (DE-625)143266: |2 rvk | ||
084 | |a SK 920 |0 (DE-625)143272: |2 rvk | ||
100 | 1 | |a Qi, Meiyu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations |c von Meiyu Qi |
264 | 1 | |c 2011 | |
300 | |a 52 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |a Augsburg, Univ., Diss., 2011 | ||
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a A-posteriori-Abschätzung |0 (DE-588)4346907-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fehlerabschätzung |0 (DE-588)4228085-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Elliptisches Randwertproblem |0 (DE-588)4193399-0 |D s |
689 | 0 | 1 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | 2 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 0 | 3 | |a Finite-Elemente-Methode |0 (DE-588)4017233-8 |D s |
689 | 0 | 4 | |a Fehlerabschätzung |0 (DE-588)4228085-0 |D s |
689 | 0 | 5 | |a A-posteriori-Abschätzung |0 (DE-588)4346907-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:384-opus-18135 |
856 | 4 | 1 | |u http://opus.bibliothek.uni-augsburg.de/volltexte/2012/1813/ |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | |u https://nbn-resolving.org/urn:nbn:de:bvb:384-opus-18135 |x Resolving-System | |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024742127 |
Datensatz im Suchindex
_version_ | 1804148828466577408 |
---|---|
any_adam_object | |
author | Qi, Meiyu |
author_facet | Qi, Meiyu |
author_role | aut |
author_sort | Qi, Meiyu |
author_variant | m q mq |
building | Verbundindex |
bvnumber | BV039882944 |
classification_rvk | SK 880 SK 920 |
collection | ebook |
ctrlnum | (OCoLC)780115746 (DE-599)BVBBV039882944 |
discipline | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02202nam a2200493 c 4500</leader><controlfield tag="001">BV039882944</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120214 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">120213s2011 ad|| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)780115746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039882944</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 880</subfield><subfield code="0">(DE-625)143266:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 920</subfield><subfield code="0">(DE-625)143272:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Qi, Meiyu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations</subfield><subfield code="c">von Meiyu Qi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">52 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Augsburg, Univ., Diss., 2011</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="0">(DE-588)4346907-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fehlerabschätzung</subfield><subfield code="0">(DE-588)4228085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptisches Randwertproblem</subfield><subfield code="0">(DE-588)4193399-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Finite-Elemente-Methode</subfield><subfield code="0">(DE-588)4017233-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Fehlerabschätzung</subfield><subfield code="0">(DE-588)4228085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">A-posteriori-Abschätzung</subfield><subfield code="0">(DE-588)4346907-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:384-opus-18135</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">http://opus.bibliothek.uni-augsburg.de/volltexte/2012/1813/</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:384-opus-18135</subfield><subfield code="x">Resolving-System</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024742127</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV039882944 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:13:20Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024742127 |
oclc_num | 780115746 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 |
physical | 52 S. Ill., graph. Darst. |
psigel | ebook |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
record_format | marc |
spelling | Qi, Meiyu Verfasser aut Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations von Meiyu Qi 2011 52 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Augsburg, Univ., Diss., 2011 Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Elliptisches Randwertproblem (DE-588)4193399-0 gnd rswk-swf A-posteriori-Abschätzung (DE-588)4346907-3 gnd rswk-swf Fehlerabschätzung (DE-588)4228085-0 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Finite-Elemente-Methode (DE-588)4017233-8 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Elliptisches Randwertproblem (DE-588)4193399-0 s Elliptische Differentialgleichung (DE-588)4014485-9 s Optimale Kontrolle (DE-588)4121428-6 s Finite-Elemente-Methode (DE-588)4017233-8 s Fehlerabschätzung (DE-588)4228085-0 s A-posteriori-Abschätzung (DE-588)4346907-3 s DE-604 Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:384-opus-18135 http://opus.bibliothek.uni-augsburg.de/volltexte/2012/1813/ Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:384-opus-18135 Resolving-System |
spellingShingle | Qi, Meiyu Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations Optimale Kontrolle (DE-588)4121428-6 gnd Elliptisches Randwertproblem (DE-588)4193399-0 gnd A-posteriori-Abschätzung (DE-588)4346907-3 gnd Fehlerabschätzung (DE-588)4228085-0 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
subject_GND | (DE-588)4121428-6 (DE-588)4193399-0 (DE-588)4346907-3 (DE-588)4228085-0 (DE-588)4014485-9 (DE-588)4017233-8 (DE-588)4113937-9 |
title | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations |
title_auth | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations |
title_exact_search | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations |
title_full | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations von Meiyu Qi |
title_fullStr | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations von Meiyu Qi |
title_full_unstemmed | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations von Meiyu Qi |
title_short | Adaptive Mixed Finite Element Approximations of Distributed Optimal Control Problems for Elliptic Partial Differential Equations |
title_sort | adaptive mixed finite element approximations of distributed optimal control problems for elliptic partial differential equations |
topic | Optimale Kontrolle (DE-588)4121428-6 gnd Elliptisches Randwertproblem (DE-588)4193399-0 gnd A-posteriori-Abschätzung (DE-588)4346907-3 gnd Fehlerabschätzung (DE-588)4228085-0 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd Finite-Elemente-Methode (DE-588)4017233-8 gnd |
topic_facet | Optimale Kontrolle Elliptisches Randwertproblem A-posteriori-Abschätzung Fehlerabschätzung Elliptische Differentialgleichung Finite-Elemente-Methode Hochschulschrift |
url | http://opus.bibliothek.uni-augsburg.de/volltexte/2012/1813/ https://nbn-resolving.org/urn:nbn:de:bvb:384-opus-18135 |
work_keys_str_mv | AT qimeiyu adaptivemixedfiniteelementapproximationsofdistributedoptimalcontrolproblemsforellipticpartialdifferentialequations |