Computational frameworks for the fast fourier transform:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Philadelphia, Pa.
Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)
1992
|
Schriftenreihe: | Frontiers in applied mathematics
10 |
Schlagworte: | |
Online-Zugang: | TUM01 UBW01 UBY01 UER01 Volltext |
Beschreibung: | Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 259-267) and index Chapter 1. The radix-2 frameworks. Matrix notation and algorithms; The FFT idea; The Cooley-Tukey factorization; Weight and butterfly computations; Bit reversal and transposition; The Cooley-Tukey framework; The Stockham autosort frameworks; The Pease framework; Decimation in frequency and inverse FFTs -- Chapter 2. General radix frameworks. The general radix ideas; Index reversal and transposition; Mixed-radix factorizations; Radix-4 and radix-8 frameworks; The split-radix frameworks -- Chapter 3. High performance frameworks. The multiple DFT problem; Matrix transposition; The large single-vector FFT problem; Multi-dimensional FFT problem; Distributed memory FFTs; Shared memory FFTs -- Chapter 4. Selected topics. Prime factor FFTs; Convolution; FFTs of real data; Cosine and sine transforms; Fast Poisson solvers -- Bibliography -- Index The most comprehensive treatment of FFTs to date. Van Loan captures the interplay between mathematics and the design of effective numerical algorithms--a critical connection as more advanced machines become available. A stylized Matlab notation, which is familiar to those engaged in high-performance computing, is used. The Fast Fourier Transform (FFT) family of algorithms has revolutionized many areas of scientific computation. The FFT is one of the most widely used algorithms in science and engineering, with applications in almost every discipline. This volume is essential for professionals interested in linear algebra as well as those working with numerical methods. The FFT is also a great vehicle for teaching key aspects of scientific computing |
Beschreibung: | 1 Online-Ressource (xiii, 273 Seiten) |
ISBN: | 0898712858 9780898712858 |
DOI: | 10.1137/1.9781611970999 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV039747368 | ||
003 | DE-604 | ||
005 | 20210408 | ||
007 | cr|uuu---uuuuu | ||
008 | 111207s1992 sz |||| o||u| ||||||eng d | ||
010 | |a 92004450 | ||
020 | |a 0898712858 |c pbk. |9 0898712858 | ||
020 | |a 9780898712858 |c pbk. |9 9780898712858 | ||
024 | 7 | |a 10.1137/1.9781611970999 |2 doi | |
035 | |a (OCoLC)775728977 | ||
035 | |a (DE-599)BVBBV039747368 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a sz |c XA-CH | ||
049 | |a DE-91 |a DE-29 |a DE-706 |a DE-83 |a DE-20 | ||
084 | |a QH 140 |0 (DE-625)141533: |2 rvk | ||
084 | |a SK 905 |0 (DE-625)143269: |2 rvk | ||
100 | 1 | |a Van Loan, Charles F. |e Verfasser |0 (DE-588)172431484 |4 aut | |
245 | 1 | 0 | |a Computational frameworks for the fast fourier transform |c Charles van Loan |
264 | 1 | |a Philadelphia, Pa. |b Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |c 1992 | |
300 | |a 1 Online-Ressource (xiii, 273 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Frontiers in applied mathematics |v 10 | |
500 | |a Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader | ||
500 | |a Includes bibliographical references (s. 259-267) and index | ||
500 | |a Chapter 1. The radix-2 frameworks. Matrix notation and algorithms; The FFT idea; The Cooley-Tukey factorization; Weight and butterfly computations; Bit reversal and transposition; The Cooley-Tukey framework; The Stockham autosort frameworks; The Pease framework; Decimation in frequency and inverse FFTs -- Chapter 2. General radix frameworks. The general radix ideas; Index reversal and transposition; Mixed-radix factorizations; Radix-4 and radix-8 frameworks; The split-radix frameworks -- Chapter 3. High performance frameworks. The multiple DFT problem; Matrix transposition; The large single-vector FFT problem; Multi-dimensional FFT problem; Distributed memory FFTs; Shared memory FFTs -- Chapter 4. Selected topics. Prime factor FFTs; Convolution; FFTs of real data; Cosine and sine transforms; Fast Poisson solvers -- Bibliography -- Index | ||
500 | |a The most comprehensive treatment of FFTs to date. Van Loan captures the interplay between mathematics and the design of effective numerical algorithms--a critical connection as more advanced machines become available. A stylized Matlab notation, which is familiar to those engaged in high-performance computing, is used. The Fast Fourier Transform (FFT) family of algorithms has revolutionized many areas of scientific computation. The FFT is one of the most widely used algorithms in science and engineering, with applications in almost every discipline. This volume is essential for professionals interested in linear algebra as well as those working with numerical methods. The FFT is also a great vehicle for teaching key aspects of scientific computing | ||
650 | 4 | |a Fourier transformations | |
650 | 0 | 7 | |a Schnelle Fourier-Transformation |0 (DE-588)4136070-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fourier-Transformation |0 (DE-588)4018014-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fourier-Transformation |0 (DE-588)4018014-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Schnelle Fourier-Transformation |0 (DE-588)4136070-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 0898712858 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Paperback |z 9780898712858 |
830 | 0 | |a Frontiers in applied mathematics |v 10 |w (DE-604)BV047220606 |9 10 | |
856 | 4 | 0 | |u https://doi.org/10.1137/1.9781611970999 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-72-SIA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-024594899 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1137/1.9781611970999 |l TUM01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970999 |l UBW01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970999 |l UBY01 |p ZDB-72-SIA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1137/1.9781611970999 |l UER01 |p ZDB-72-SIA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804148637701242880 |
---|---|
any_adam_object | |
author | Van Loan, Charles F. |
author_GND | (DE-588)172431484 |
author_facet | Van Loan, Charles F. |
author_role | aut |
author_sort | Van Loan, Charles F. |
author_variant | l c f v lcf lcfv |
building | Verbundindex |
bvnumber | BV039747368 |
classification_rvk | QH 140 SK 905 |
collection | ZDB-72-SIA |
ctrlnum | (OCoLC)775728977 (DE-599)BVBBV039747368 |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1137/1.9781611970999 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04197nmm a2200589zcb4500</leader><controlfield tag="001">BV039747368</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210408 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">111207s1992 sz |||| o||u| ||||||eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">92004450</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0898712858</subfield><subfield code="c">pbk.</subfield><subfield code="9">0898712858</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780898712858</subfield><subfield code="c">pbk.</subfield><subfield code="9">9780898712858</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1137/1.9781611970999</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)775728977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039747368</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">sz</subfield><subfield code="c">XA-CH</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 140</subfield><subfield code="0">(DE-625)141533:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 905</subfield><subfield code="0">(DE-625)143269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Van Loan, Charles F.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172431484</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computational frameworks for the fast fourier transform</subfield><subfield code="c">Charles van Loan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, Pa.</subfield><subfield code="b">Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104)</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 273 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers in applied mathematics</subfield><subfield code="v">10</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (s. 259-267) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Chapter 1. The radix-2 frameworks. Matrix notation and algorithms; The FFT idea; The Cooley-Tukey factorization; Weight and butterfly computations; Bit reversal and transposition; The Cooley-Tukey framework; The Stockham autosort frameworks; The Pease framework; Decimation in frequency and inverse FFTs -- Chapter 2. General radix frameworks. The general radix ideas; Index reversal and transposition; Mixed-radix factorizations; Radix-4 and radix-8 frameworks; The split-radix frameworks -- Chapter 3. High performance frameworks. The multiple DFT problem; Matrix transposition; The large single-vector FFT problem; Multi-dimensional FFT problem; Distributed memory FFTs; Shared memory FFTs -- Chapter 4. Selected topics. Prime factor FFTs; Convolution; FFTs of real data; Cosine and sine transforms; Fast Poisson solvers -- Bibliography -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The most comprehensive treatment of FFTs to date. Van Loan captures the interplay between mathematics and the design of effective numerical algorithms--a critical connection as more advanced machines become available. A stylized Matlab notation, which is familiar to those engaged in high-performance computing, is used. The Fast Fourier Transform (FFT) family of algorithms has revolutionized many areas of scientific computation. The FFT is one of the most widely used algorithms in science and engineering, with applications in almost every discipline. This volume is essential for professionals interested in linear algebra as well as those working with numerical methods. The FFT is also a great vehicle for teaching key aspects of scientific computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier transformations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnelle Fourier-Transformation</subfield><subfield code="0">(DE-588)4136070-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fourier-Transformation</subfield><subfield code="0">(DE-588)4018014-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schnelle Fourier-Transformation</subfield><subfield code="0">(DE-588)4136070-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">0898712858</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">9780898712858</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Frontiers in applied mathematics</subfield><subfield code="v">10</subfield><subfield code="w">(DE-604)BV047220606</subfield><subfield code="9">10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1137/1.9781611970999</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-72-SIA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024594899</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970999</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970999</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970999</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1137/1.9781611970999</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-72-SIA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV039747368 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T00:10:18Z |
institution | BVB |
isbn | 0898712858 9780898712858 |
language | English |
lccn | 92004450 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024594899 |
oclc_num | 775728977 |
open_access_boolean | |
owner | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
owner_facet | DE-91 DE-BY-TUM DE-29 DE-706 DE-83 DE-20 |
physical | 1 Online-Ressource (xiii, 273 Seiten) |
psigel | ZDB-72-SIA |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) |
record_format | marc |
series | Frontiers in applied mathematics |
series2 | Frontiers in applied mathematics |
spelling | Van Loan, Charles F. Verfasser (DE-588)172431484 aut Computational frameworks for the fast fourier transform Charles van Loan Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104) 1992 1 Online-Ressource (xiii, 273 Seiten) txt rdacontent c rdamedia cr rdacarrier Frontiers in applied mathematics 10 Mode of access: World Wide Web. - System requirements: Adobe Acrobat Reader Includes bibliographical references (s. 259-267) and index Chapter 1. The radix-2 frameworks. Matrix notation and algorithms; The FFT idea; The Cooley-Tukey factorization; Weight and butterfly computations; Bit reversal and transposition; The Cooley-Tukey framework; The Stockham autosort frameworks; The Pease framework; Decimation in frequency and inverse FFTs -- Chapter 2. General radix frameworks. The general radix ideas; Index reversal and transposition; Mixed-radix factorizations; Radix-4 and radix-8 frameworks; The split-radix frameworks -- Chapter 3. High performance frameworks. The multiple DFT problem; Matrix transposition; The large single-vector FFT problem; Multi-dimensional FFT problem; Distributed memory FFTs; Shared memory FFTs -- Chapter 4. Selected topics. Prime factor FFTs; Convolution; FFTs of real data; Cosine and sine transforms; Fast Poisson solvers -- Bibliography -- Index The most comprehensive treatment of FFTs to date. Van Loan captures the interplay between mathematics and the design of effective numerical algorithms--a critical connection as more advanced machines become available. A stylized Matlab notation, which is familiar to those engaged in high-performance computing, is used. The Fast Fourier Transform (FFT) family of algorithms has revolutionized many areas of scientific computation. The FFT is one of the most widely used algorithms in science and engineering, with applications in almost every discipline. This volume is essential for professionals interested in linear algebra as well as those working with numerical methods. The FFT is also a great vehicle for teaching key aspects of scientific computing Fourier transformations Schnelle Fourier-Transformation (DE-588)4136070-9 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 gnd rswk-swf Fourier-Transformation (DE-588)4018014-1 s DE-604 Schnelle Fourier-Transformation (DE-588)4136070-9 s 1\p DE-604 Erscheint auch als Druck-Ausgabe, Paperback 0898712858 Erscheint auch als Druck-Ausgabe, Paperback 9780898712858 Frontiers in applied mathematics 10 (DE-604)BV047220606 10 https://doi.org/10.1137/1.9781611970999 Verlag URL des Erstveröffentlichers Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Van Loan, Charles F. Computational frameworks for the fast fourier transform Frontiers in applied mathematics Fourier transformations Schnelle Fourier-Transformation (DE-588)4136070-9 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
subject_GND | (DE-588)4136070-9 (DE-588)4018014-1 |
title | Computational frameworks for the fast fourier transform |
title_auth | Computational frameworks for the fast fourier transform |
title_exact_search | Computational frameworks for the fast fourier transform |
title_full | Computational frameworks for the fast fourier transform Charles van Loan |
title_fullStr | Computational frameworks for the fast fourier transform Charles van Loan |
title_full_unstemmed | Computational frameworks for the fast fourier transform Charles van Loan |
title_short | Computational frameworks for the fast fourier transform |
title_sort | computational frameworks for the fast fourier transform |
topic | Fourier transformations Schnelle Fourier-Transformation (DE-588)4136070-9 gnd Fourier-Transformation (DE-588)4018014-1 gnd |
topic_facet | Fourier transformations Schnelle Fourier-Transformation Fourier-Transformation |
url | https://doi.org/10.1137/1.9781611970999 |
volume_link | (DE-604)BV047220606 |
work_keys_str_mv | AT vanloancharlesf computationalframeworksforthefastfouriertransform |