Handbook of intelligent scaffolds for tissue engineering and regenerative medicine:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Singapore
Pan Stanford Publ.
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | XXX, 972, 32 S. Ill., graph. Darst. |
ISBN: | 9789814267854 9814267856 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039162103 | ||
003 | DE-604 | ||
005 | 20130426 | ||
007 | t | ||
008 | 110727s2012 ad|| |||| 00||| eng d | ||
020 | |a 9789814267854 |9 978-981-4267-85-4 | ||
020 | |a 9814267856 |9 981-4267-85-6 | ||
035 | |a (OCoLC)745530186 | ||
035 | |a (DE-599)BVBBV039162103 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
084 | |a WX 6600 |0 (DE-625)152214:13423 |2 rvk | ||
245 | 1 | 0 | |a Handbook of intelligent scaffolds for tissue engineering and regenerative medicine |c ed. by Gilson Khang |
246 | 1 | 3 | |a Intelligent scaffolds for tissue engineering and regenerative medicine |
264 | 1 | |a Singapore |b Pan Stanford Publ. |c 2012 | |
300 | |a XXX, 972, 32 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Regenerative Medizin |0 (DE-588)7652075-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tissue Engineering |0 (DE-588)4646061-5 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Regenerative Medizin |0 (DE-588)7652075-4 |D s |
689 | 0 | 1 | |a Tissue Engineering |0 (DE-588)4646061-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Khang, Gilson |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-981-4267-86-1 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-024179567 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804148011306057728 |
---|---|
adam_text | Contents
Preface
xxix
1.
INTRODUCTION
1
Biomaterials
and Manufacturing Methods for Scaffold
in Regenerative Medicine
3
(¡ilson Khumj
1.1
Introduction
4
1.2
Biomaterials
tor Regenerative Medicine and Tissue
Engineering
6
1.2.1
Importance of Scaffold Matrices in
Regenerative Medicine and Tissue Engineering
6
1.2.2
Bioceramic Scaffolds
9
1.2.2.1
Calcium phosphate
10
1.2.2.2
Tricalcium phosphate
10
1.2.2.3
Hydroxyapatite
11
1.2.2.4
Bioglass
11
1.2.2.5
Demineralized bone particle
11
1.2.3
Synthetic Polymers
13
1.2.3.1
Poly(or-hydroxy ester)s
14
1.2.3.2
Polyanhydride
16
1.2.3.3
Polypropylene fumarate)
16
1.2.3.4
PEO
and its derivatives
17
1.2.3.5
Polyvinylalcohol
18
1.2.3.6
Oxalate-based polyesters
(polyoxalate)
19
1.2.3.7
Polyphosphazene
19
1.2.3.8
Biodegradable polyurethane
20
1.2.3.9
Other synthetic polymers
20
viii
I Contents
1.3
1.2.4
Natural Polymers
21
1.2.4.1
Fibrin
21
1.2.4.2
Collagen
22
1.2.4.3
Alginate
23
1.2.4.4
Small intestine
submucosa
25
1.2.4.5
Silk
25
1.2.4.6
Hyaluronan
26
1.2.4.7
Chitosan
27
1.2.4.8
Agarose
28
1.2.4.9
Acellular
dermis
28
1.2.4.10
Polyhydroxyalkanoates
29
1.2.4.11
Other natural polymers
29
1.2.5
Bioactive Molecules Release System for
the Regenerative Medicine and Tissue
Engineering
30
Scaffold Fabrication and Characterization
32
1.3.1
Fabrication Methods of Scaffolds
32
1.3.1.1
Electrospinning method
32
1.3.1.2
PGA nonwoven sheet
33
1.3.1.3
Porogen-leaching methods
33
1.3.1.4
Gas-foaming method
34
1.3.1.5
Phase separation method
34
1.3.1.6
Rapid prototyping
35
1.3.1.7
Injectable gel
method
37
1.3.2
Physicochemical Characterization of Scaffolds
37
1.3.3
Sterilization Method for Scaffolds
39
Conclusions
40
1.4
II. CERAMIC AND METAL SCAFFOLD
Innovative Bioinspired SIC Ceramics from Vegetable
Resources
51
M.
López-Álvarez,
P.
González,].
Serra, A. de
Carlos,
S. Chiussi, and B.
León
2.1
Introduction
52
2.2
Bioinspired SiC
Ceramics
54
2.3
Biocompatibility Studies
60
2.4
Conclusions and Outlook
64
Contents
¡χ
3
Production
of Three-Dimensional Hierarchical
Nano
Ti-Based Metals Scaffolds for Bone Tissue Grafts
69
Shuilin Wu, Xiangmei Liu, Paul K.
Chu,
Tao
Ни,
Kelvin W. K. Yeung, Jonathan C. Y. Chung, andZushun Xu
3.1
Introduction
70
3.2
Fabrication and Characteristics of
Macroporeus
Ti-Based Alloys
73
3.3
Natural Growth and Characterization of
ID
Nano Titanates
75
3.4
Conclusions and Outlook
80
4
Bioceramic Scaffold—Bone Tissue Engineering
83
Willi
Paul and Chandra P. Sharma
4.1
Introduction
84
4.2
Bioceramics
85
4.3
Bone Tissue Engineering
86
4.4
Research Perspective
87
4.5
Basic Questions in Bone Tissue Engineering
90
4.6
Conclusion
91
HI. INTELLIGENT HYDROGEL
5
Induction of Soft-Tissue Regeneration Using
Hydrogels
Optimized for Inflammatory Response
99
Nicholas P. Rhodes and John A. Hunt
5.1
Introduction
100
5.2
Hyaluronan as a Base Polymer for Regenerative
Therapies
101
5.2.1
Experience with Esterified Hyaluronan
102
5.2.2
Strategies for Controlling Inflammation
103
5.2.3
Amidated Hyaluronan
Biomaterials
104
5.3
Results of Implantation of Amidated Gels
106
5.4
Conclusions and Outlook
108
6
Enzymatically Triggered in situ Gel-Forming
Biomaterials
for Regenerative Medicine 111
Yoon Kijoung, Kyung
Min
Park, and Ki Dong Park
6.1
Introduction
112
χ Ι
Contents
6.2
¡η
situ-Formed
Hydrogels as Injectable
Scaffolds
113
6.3
Enzyme-Triggered
Hydrogels
114
6.3.1
HRP-Catalyzed Systems
115
6.3.2
TGase-Catalyzed Systems
120
6.3.3
Other Enzyme-Catalyzed Systems
121
6.4
Conclusions and Outlook
122
7
Thermo-Sensitive
Injectable
Scaffolds for
Regenerative Medicine
127
Moon
Suk
Kim, Jae Ho Kim,
Gilson
Khang, and
Hai Bang
Lee
7.1
Introduction
128
7.2
In
s/tu-Forming
Hydrogels
Formed by Electrostatic
Interactions
129
7.2.1
In situ-Forming Chitosan Hydrogel Scaffolds
129
7.2.2
In
s/tu-Forming
Alginate Hydrogel Scaffolds
132
7.3
In s/tu-Forming
Hydrogels
Formed by
Hydrophobie
Interactions
132
7.3.1
PEG-PPG Block Copolymers as in s/tu-
Forming Hydrogel Scaffolds
134
7.3.2
PEG-Other Degradable Polyesters as
in s/tu-Forming Hydrogel Scaffolds
135
7.3.3
Other Polymers as in situ-Forming Hydrogel
Scaffolds
136
7.4
Conclusions and Outlook
137
8
Photocurable
Hydrogel for Tissue Regeneration
143
Min Soo
Вае
and II
Keun
Kwon
8.1
Introduction
143
8.2
Photopolymerization of
Hydrogels
146
8.2.1 Photoinitiators
of
Photocurable Hydrogel
147
8.3
Photopolymerizable Materials
147
8.3.1
Photocurable Hydrogel
from Natural Polymers
149
8.3.1.1
Photo-cross-linkable collagen and
gelatin
149
8.3.1.2
Photo-cross-linkable hyaluronic acid
151
8.3.1.3
Photo-cross-linkable chitosan
151
8.3.2
Photocurable
Hydrogel from Synthetic
Polymers
152
8.3.2.1
Photo-cross-linkable polyethylene
glycol)
153
Contents xi
8.3.2.2 Transition in
theoretical work
155
8.3.2.3
Photo-cross-linkable polyfhydroxyl
esters)
156
8.4
Summary and Outlook
157
9
Hyaluronan-Based Hydrogel Scaffolds
165
Insup
Noh
9.1
Introduction
165
9.2
Characteristics of Hyaluronic Acid in
Biomedical
Engineering
167
9.3
HA Derivatives
169
9.3.1
Ester Derivatives
169
9.3.2
CarbodiimidefRiN^C^NRz)
169
9.3.3
Sulfydrylation (HA-SH)
170
9.3.4 Sulfation
171
9.3.5
Acrylates
172
9.4
Fabrication of Hyaluronic Acid
Hydrogels
172
9.4.1
Hydrogel Formation by Direct Cross-Linking
Methods
173
9.4.1.1
Diepoxy cross-linking method
173
9.4.1.2
Bifunctional
amine
cross-linkers
173
9.4.1.3
Divinyl sulfone
176
9.4.1.4
In situ HA
hydrogels
177
9.4.1.5
HA-aldehyde
hydrogels
184
9.4.1.6
Azaide
187
9.5
Hyaluronic Acid-Based Hybrid
Hydrogels
188
9.5.1
HA-Collagen/Oligopeptide
Hydrogels
188
9.5.2
HA-Natural Polymer Hybrid
Hydrogels
190
9.5.3
HA-Synthetic Polymer Hybrid
Hydrogels
191
9.6
Conclusions and Outlook
192
IV. ELECTROSPINNING NANOFIBER
10
Guidance of Cell Adhesion, Alignment, Infiltration,
and Differentiation on Electrospun Nanofibrous
Scaffolds
201
Sang Jin Lee and James J. Yoo
10.1
Introduction
202
10.2
Electrospinning Technology
203
xii
I Contents
10.3
Cellular Interactions with Electrospun Fibrous
Scaffolds
204
10.3.1
Cell Adhesion
205
10.3.2
Cell Alignment
206
10.3.3
Cell Infiltration
210
10.3.4
Cellular Differentiation
211
10.4
Summary
212
11
Fabrication of Tissue Engineering Scaffolds by
Electrospinning Techniques
219
Jiang Chang, Wenguo
Cui,
Yue Zhou, and Lei Chen
11.1
Introduction
220
11.2
Electrospun Nanofibers
222
11.3
One-Dimensional Electrospun Fibrous Bundle
224
11.4
Two-Dimensional Electrospun Fibrous
Membranes
225
11.5
Three-Dimensional Electrospun Fibrous
Scaffolds
227
11.6
Conclusions and Outlook
229
12
Biodegradable Tunable Nanofibrous Matrix for
Regenerative Medicine
233
Shanta Raj Bhattarai, Madhab
Prasad
Bajgai,
and
Hak Yong
Kim
12.1
Introduction
234
12.2
Electrospun Nanofiber Matrices
237
12.3
Electrospun Nanofiber Matrices as Tissue
Regenerative Matrices
239
12.3.1
Skin Grafts
240
12.3.2
Blood Vessel (Vascular and Cardiac) Grafts
241
12.3.3
Ligament Grafts
244
12.3.4
Nerve Grafts
245
12.3.5
Skeletal Muscle Grafts
247
12.3.6
Bone Tissue Grafts
248
12.3.7
Articular Cartilage Tissue Grafts
249
12.3.8
Drug,
DNA,
Protein, and Enzyme
Delivery
250
12.4
Conclusions
252
Contents
I
xiü
13 PHBV/Proteins
Composite Nanofibrous Scaffolds for
Tissue Engineering
257
K. M. Kamruzzaman
Selim,
Zhi-Cai Xing, and lnn-Kyu Kang
13.1
Introduction
258
13.2
Electrospinning Technique
259
13.3
Nanocomposite Preparation
260
13.3.1
Principle of the Blending Method
260
13.4
Typical PHBV/Protein Nanocomposite Preparation
261
13.4.1
Electrospun PHBV/Collagen Composite
Nanofibrous Scaffolds
261
13.4.2
Electrospun PHBV/Gelatin Composite
Nanofibrous Scaffolds
263
13.5
Interaction of As-Prepared Nanocomposites with
Cells and Results Obtained Thereby
265
13.5.1
PHBV-Col Nanocomposites
265
13.5.2
PHBV/Gelatin Nanocomposites
266
13.6
Conclusions
269
14
Nanofibrous Scaffolding for Bone Tissue Engineering
273
Hae-Won Kim
14.1
Introduction
273
14.2
Nanofiber Production Tools and Electrospinning
274
14.2.1
Phase Separation
275
14.2.2
Self-Assembly
275
14.2.3
Electrospinning
276
14.3
Nanofibrous Materials for Bone Tissue Engineering
277
14.3.1
Biodegradable Polymers
277
14.3.2
Bioactive Inorganics
279
14.3.3
Composite Nanofibers
282
14.4
Functionalization of Nanofibers for Bone Tissue
Engineering
284
14.4.1
Surface Modifications
284
14.4.2
Incorporation of Biomolecules
286
14.5
Concluding Remarks
287
15
Strategies to Engineer Electrospun Scaffold
Architecture and Function
291
Aaron S. Goldstein, Christopher A. Bashur, and Joel Berry
15.1
Overview
291
xiv
I Contents
15.2
Design of Fiber Topography to Affect Cell Function
292
15.2.1
Effect of Electrospun Fiber Alignment on
Cell Morphology
293
15.2.2
Effect of Fiber Diameter on Cell
Morphology
294
15.2.3
Effect of Fiber Roughness
295
15.3
Creation of Larger Pores to Facilitate Cell Entry
into Scaffolds
296
15.3.1
Co-Electrospinning of a Sacrificial Polymer
296
15.3.2
Incorporation of Extruded Fibers
296
15.3.3
Incorporation of
Porogens
into Electospun
Meshes
298
15.3.4
Chemotaxis and other Considerations
Regarding Cell Infiltration into Electrospun
Meshes
298
15.3.5
Electrospraying or Electrospinning of Cells
299
15.4
Creation of Three-Dimensional Architectures for
Tissue-Specific Applications
299
15.4.1
Processing Techniques for Tube- and
Cord-Shaped Structures
300
15.4.2
Variations on the Tube Structure for Blood
Vessel and Annulus Fibrosis Applications
300
15.5
Composite Scaffolds and the Spatial
Heterogeneity
301
15.6
Mechanics of Scaffold Deformation and Failure
Under Strain
302
15.7
Conclusions
304
V. NOVEL
BIOMATERIALS
FOR SCAFFOLD
16
Synthetic/Natural Hybrid Scaffold for Tissue
Regeneration
311
Gilson
Khang, Soon
Нее
Kim,
Su
Hyunjung,
and Yun Sun Yang
16.1
Introduction
312
16.2
Fibrin/PLGA Hybrid Scaffolds
313
16.2.1
Fibrin/PLGA Hybrid Scaffolds for Cartilage
Regeneration
m vivo
and in vitro
313
Contents
I
xv
16.2.2
Fibrin/PLGA Hybrid Scaffolds for IVD
in vitro
318
16.3
The Effect of DBPs on the Reduction of
Inflammatory Reaction of the PLGA/DBP Hybrid
Scaffold
323
16.3.1
Cell Viability
324
16.3.2
Inflammatory Cytokine Expression
325
16.3.3
In vivo Tissue Response
326
16.4
The Effect of SIS on the Host Tissue Response to
PLGA/SIS Hybrid Scaffolds
330
16.5
Conclusions and Outlook
333
17
Artificial Binding Growth Factors
337
Takashi Kitajima and Yoshihiro
Ito
17.1
Introduction
337
17.2
Diffusible and Nondiffusible Actions of Growth
Factors
338
17.3
Gene-Engineered Binding Growth Factors
340
17.3.1
Collagen-Binding Growth Factors
341
17.3.2
Fibrin-Binding Growth Factors
344
17.3.3
Cell-Binding Fusion Proteins
345
17.3.4
Other Binding Growth Factors
346
17.4
Application of Engineered Binding Growth Factors
346
17.4.1
Skin Wound Repair
347
17.4.2
Repair of Cardiovascular Tissues
347
17.4.2.1
Materials that induce
angiogenesis
348
17.4.2.2
Artificial blood vessel and heart
valve
348
17.4.3
Nerve Regeneration
349
17
A A Bone Regeneration
349
17.5
Concluding Remarks
350
18
Porous
Poly(Lactic-Co-GIycolic Acid)
Microsphere as
Cell Culture Substrate and Cell Transplantation
Vehicle
355
Byung-Soo Kim
18.1
Introduction
356
xvi
I Contents
18.2
Fabrication of Macroporous PLGA Microspheres
357
18.3
Macroporous PLGA Microsphere as an ASC Culture
Substrate
358
18.4
Macroporous PLGA Microsphere as an ASC
Transplantation Vehicle
361
18.5
Concluding Remarks
363
19
Suppression of Inflammatory Reactions on
MPC
Polymer Surfaces
365
Yasuhiko Iwasaki and Kazuhiko Ishihara
19.1
Introduction
365
19.2
Molecular Design and Fundamental Property of
MPC
Polymers
367
19.3
Secretion of
HSP mRNA
from Adherent Cells on
MPC Copolymers
369
19.4
Reduction of
m
vivo Host Responses to
MPC
Polymer
Hydrogels
373
19.5
Newly Extracellular Matrices Generated from
MPC
Polymers
376
19.6
Conclusion
380
2 0
Extracellular Matrix-Based Scaffolds from Scratch
385
Willeke
F
Daamen, Kaeuis A. Faraj, Martin
].
W. Koens,
Gerwen
Lammers,
Katrien M.
Brouwer,
Peter). E.
Uijtdewilligen,
Suzan
T. M.
Nillesen, Luc
A. Roelofs,
Jody
E.
Nuininga, Paul
J.
Geutjes, Wouter
F. J.
Feitz,
and Toin
H.
van Kuppeveit
20.1
Introduction
386
20.2
Scaffolds with a Specific Three-Dimensional
Structure
387
20.2.1
Flat Films
387
20.2.2
Porous Scaffolds
388
20.2.2.1
Unidirectional scaffolds
389
20.2.3
Tubular Porous Scaffolds
389
20.3
Scaffolds with Defined Molecular Composition
391
20.3.1
Purification of Scaffold Components
391
20.3.2
Cross-Linking and Covalent Attachment of
Glycosaminoglycans
392
20.3.3
Binding of Growth Factors
392
Contents xvii
20.4 Acellular
Scaffolds for
in vivo
Tissue Regeneration
393
20.5
Future Outlook
395
21
Design of Biomimetic Scaffolds for Liver Tissue
Engineering
399
Chong-Su Cho,
Ни
-Lin
Jiang, Takashi Hoshiba,
and Toshihiro
Akaiké
21.1
Introduction
400
21.2
Specific Interaction between
Galactose
Residue
andASGPR
401
21.3
Bulk Modification of
Biomaterials
401
21.4
Surface Modification of
Biomaterials
404
21.5
Criteria to Design Biomimetic Scaffolds for Liver
Tissue Engineering
404
21.5.1
Topology of the ECM
404
21.5.2
Coculture
407
21.5.3
Cell Sources
409
21.6
Summary
411
22
Hybrid Porous Scaffolds of Biodegradable Synthetic
Polymers and Collagen for Tissue Engineering
417
Guoping Chen, Naoki Kawazoe, and Tetsuya Tateishi
22.1
Introduction
418
22.2
PLGA-Collagen Hybrid
419
22.3
PLGA-Collagen Hybrid Mesh
422
22.4
PLLA-Collagen Hybrid Braid
427
22.5
Biphasic Hybrid Porous Scaffold
428
22.6
Leak-Proof Hybrid Scaffolds
430
22.7
Conclusions
432
23 Chitin
and Chitosan for Tissue Engineering
Application
435
Sang
Jun
Park and Chun-Ho Kim
23.1
Introduction
435
23.2 Chitin
and Chitosan
436
23.3
Chitosan Sponge Scaffolds
439
23.3.1
Preparation of Chitosan Sponge Scaffolds
439
23.3.2
Cell Culture on Chitosan Sponge Scaffolds
441
23.4
Chitosan Bead Scaffolds
442
xviii
I Contents
23.4.1
Preparation ofChitosan Bead Scaffolds
443
23.4.2
Cell Culture on Chitosan Bead Scaffolds
446
23.5
Chitosan
Hydrogels
447
23.5.1
Preparation of Chitosan
Hydrogels
448
23.5.2
Cell Culture on Chitosan
Hydrogels
449
23.6
Conclusions and Outlook
450
VI. NOVEL FABRICATION METHODS FOR SCAFFOLD
24
Controlling a Cellular Niche in Scaffold Designs for
Epithelial Tissue Engineering
455
Zhilian Yue, Yan-Ru Lou,
Nur
Aida
Abdul Rahim,
and Hanry Yu
24.1
Introduction
456
24.2
Native Extracellular
Microenvironment
for
Epithelial Cells
458
24.2.1
Extracellular Matrix and Growth Factors
459
24.2.2
Epithelial Polarity, Differentiation,
and Function
461
24.2.3
Other Physical Factors: Biomechanics and
Microfluidics
462
24.3
Engineering an Extracellular
Microenvironment
for Epithelial Cells
464
24.3.1
The State of Art
464
24.3.1.1
2D plastic substrata
464
24.3.1.2 3D
polymeric scaffolds
466
24.3.2
Spatial and Temporal Presentation of
Extracellular Cues in Scaffolds for Liver
Tissue Engineering
468
24.3.3
Biomechanical Issues
470
24.3.4
Fluid Dynamics and Mass Transfer
472
24.4
Applications and Outlook
473
25
Biological Implications of Polymeric Scaffolds for
Bone Tissue Engineering Developed via Solid
Freeform Fabrication
483
Andrew B. Yeatts and John P. Fisher
25.1
Introduction
484
25.1.1
The Need for Bone Tissue Engineering
484
Contents xix
25.1.2
Benefits of Scaffolds Developed via Solid
Freeform Fabrication
485
25.2
Stereolithography
486
25.2.1
Scaffold-Manufacturing Process
486
25.2.2
Biological Implications
488
25.3
Three-Dimensional Printing
490
25.3.1
Scaffold-Manufacturing Process
490
25.3.2
Biological Implications
491
25.4
Selective Laser Sintering
494
25.4.1
Scaffold-Manufacturing Process
494
25.4.2
Biological Implications
496
25.5
Fused Deposition Modeling
498
25.5.1
Scaffold-Manufacturing Process
498
25.5.2
Biological Implications
499
25.6
Conclusions
502
26
Considerations on the Structure of
Biomaterials
for
Soft- and Hard-Tissue Engineering
509
Hideaki Kagami, Hideki
Agata,
Makoto Satake,
and Yuji Narita
26.1
Introduction
510
26.2
Material Design for Soft-Tissue Engineering:
Small-Caliber Vascular Grafts
512
26.2.1
Tissue Engineering for Cardiovascular
Surgery
512
26.2.2
Decellularized Tissue Scaffolds for
Tissue-Engineered Small-Caliber Vascular
Grafts: Methodology, Biocompatibility, and
Mechanical Properties
513
26.2.3
Biodegradable Synthetic Polymer Scaffolds
for Tissue-Engineered Small-Caliber
Vascular Grafts
515
26.2.4
How to Create Scaffolds for
Tissue-Engineered Small-Diameter
Vascular Grafts Using Electrospun
Nanofibers
516
26.2.5
Biocompatibility and Mechanical
Properties of Electrospun Synthetic
Scaffolds
518
xx
I Contents
26.2.6
Prospects of Designing a Scaffold for
Cardiovascular Tissue Engineering
521
26.3
Scaffold Design for Hard-Tissue Engineering:
Alveolar Bone
521
26.3.1
Bone Reconstruction/Regeneration in
Orthopedic and Oral Applications
521
26.3.2
Ideal Ceramic Scaffolds for Bone Tissue
Engineering from a Clinical Point of View
523
26.3.3
Fate of Transplanted Scaffolds in the
Human Body: A Clinical Study of Alveolar
Bone Tissue Engineering Using Bone
Marrow Stromal Cells and
jß-TCP 525
26.3.4
Considerations for Designing Scaffolds for
Clinical Bone Tissue Engineering
527
26.3.5
Prospective Novel
Biomaterials
for
Hard-Tissue Engineering
530
26.3.5.1
Composite and combined
materials
530
26.3.5.2
Growth factor incorporation into
scaffolds
531
26.4
Conclusions and Outlook
531
27
Mechano-Active Scaffolds
537
Sang-Heon Kim, Youngmee Jung, Young Ha Kim,
and
Soo
Hyun Kim
27.1
Introduction
538
27.2
Mechano-Active Scaffolds
539
27.2.1
Elastic Biodegradable PLCL Copolymer
539
27.2.2
Tubular PLCL Scaffold
541
27.2.3
Seamless Double-Layered Scaffold
542
27.2.4
Sheet-Form PLCL Scaffold
545
27.3
Mechano-Active Tissue Engineering
545
27.3.1
Vascular Tissue Engineering
545
27.3.2
Cartilage Tissue Engineering
550
27.4
Conclusions and Outlook
555
28
Reinforced Scaffold for Tissue Engineering
561
Young-Kwon
Seo
and Jung-Keug Park
28.1
Introduction
562
Contents xxi
28.2 Biocompatibility
of Reinforced Composite
Scaffolds
564
28.3
Reinforced Composite Scaffold for Bioartificial
Tissue
565
28.3.1
Bioartificial Ligament and Tendon
566
28.3.2
Bioartificial Bone
568
28.3.3
Bioartificial Vessel
569
28.3.4
Bioartificial Tracheae
570
28.3.5
Bioartificial Skin
571
28.4
Conclusion and Outlook
574
29
Three-Dimensional Shape Control of Implant Devices
579
Ung-il Chung, Hideto Saijoh, Kazuyo Igawa, Yuki Kanno,
Yoshiyuki Mori, and Tsuyoshi
Takáto
29.1
Introduction
580
29.2
Current Status of Artificial Bones
581
29.3 3D
Fabrication Technologies and Their
Comparison
583
29.4
InkJet Printing Technology
584
29.5
Conclusions and Outlook
586
30
Novel Fabrication and Characterization of Pore-Size-
Gradient Scaffolds by a Centrifugation Technique
589
Se
Heang Oh and Jin Ho Lee
30.1
Introduction
590
30.2
Fabrication of Pore-Size-Gradient Scaffolds
592
30.2.1
Materials
592
30.2.2
Pore-Size-Gradient Alginate Scaffolds
593
30.2.3
Pore-Size-Gradient Chitosan Scaffolds
594
30.2.4
Pore-Size-Gradient
PCL
Scaffolds
594
30.3
Characterization of Pore-Size-Gradient
Scaffolds
595
30.3.1
Measurements of Pore Sizes and Porosity
595
30.3.2
Measurements of Mechanical Properties
597
30.3.3
Evaluation of Wettability
600
30.3.4
in vitro Cell Interactions
600
30.3.5
In vivo Tissue Interactions
603
30.4
Conclusions
606
xxii Contents
31 Solid Freeform
Fabrication
Method
Applied
to
Tissue Scaffolds
609
Dong-Woo Chojin Woo Lee, Jong Young Kim,
and Tae-Yun Kang
31.1
Introduction
610
31.2
SFF Methods Applied to Scaffolds
610
31.2.1
Stereolithography
610
31.2.1.1 Photopolymer
scaffold
611
31.2.1.2 Biopolymer
scaffold
615
31.2.2
Fused Deposition Modeling
616
31.2.3 3D
Printing
621
31.2.4
Selective Laser Sintering
623
31.3
Summary
628
32
Novel Microspheres for Prolonged Cell Survival
633
Sing
Muk
Ngjeung
Soo
Huh, Syed lzhar Haider Abdi,
andjeong Ok
Lim
32.1
Introduction
634
32.2
Current Status and Development in Supplying
Oxygen for Tissue Engineering
636
32.2.1
The Use of Artificial Oxygen Carriers
637
32.2.2
Induction and Enhancement of
Vascularization
638
32.2.3
The Utilization of Oxygen-Generating
Biomaterials
639
32.3
Oxygen-Releasing Microspheres (ORMs)
640
32.3.1
The State of the Art
640
32.3.2
Materials as Building Blocks of
Microspheres
643
32.3.3
Techniques for Producing ORMs
647
32.3.3.1
Double-emulsion and solvent
evaporation technique
647
32.3.3.2
Functionalization of matrices
selected as building blocks
650
32.3.3.3
Instrumentations for the
preparation of microspheres
652
32.3.4
Evaluation of the Oxygen-Releasing Profile
653
32.3.4.1
Direct observation
653
Contents xxiii
32.3.4.2 Quantitative
analytical approach
654
32.3.4.3
Biologically related study
656
32.4
ORMs in Applications for Efficient Cell Survival
657
32.4.1
Direct Integration in Scaffolds
657
32.4.2
Oxygen-Generating Reservoir
659
32.4.3
Medicine to Oxygenate Tissues
659
32.5
Conclusion
660
33
Emulsion Templating
665
Elizabeth Cosgriff-Hernandez
33.1
Introduction
665
33.2
Bone Tissue Engineering
667
33.3
Scaffold Fabrication
668
33.4
PolyHIPEs as Bone Scaffolds
671
33.4.1
Nondegradable: Styrene-Based PolyHIPEs
671
33.4.2
Semidegradable: Polyester-Based
PolyHIPEs
672
33.4.3
Fully Degradable: Fumarate-Based
PolyHIPEs
674
33.5
New Synthesis Routes
675
33.6
Conclusions and Outlook
676
VII.
SCAFFOLD FOR TARGET ORGAN
34
PGA Fiber for Soft Tissue Engineering
681
Wei Liu and Yilin
Cao
34.1
Introduction
681
34.2
PGA Fibers for Tendon Engineering
683
34.3
PGA Scaffold for Cartilage Engineering
689
34.4
PGA Fibers for Skin Engineering
694
34.5
PGA Fibers for
Corneal
Stroma
Engineering
698
34.6
PGA Fibers for Blood Vessel Engineering
701
34.7
PGA Fibers for Engineering Peripheral Nerve
Tissue
705
34.8
Conclusion
707
35
Tissue Engineering and
Anti
-Aging
711
Minoru U
eda
35.1
Introduction
711
xxiv Contents
35.2 Materials
and Method
713
35.2.1
Tissue Preparation
714
35.2.2
Cell Culture
714
35.2.3
Medium and Autologous Serum
Preparation
716
35.2.4
Preparation of Cell Suspension and HA
Admixture
716
35.2.5
Safety Tests
717
35.2.6
Clinical Assessment of Aesthetic
Improvement
718
35.2.7
Skin Replica and Analysis
718
35.3
Result
719
35.3.1
Single-Case Report
724
35.4
Discussion
726
35.4.1
Fibroblast
and HA for Skin Rejuvenation
726
35.4.2
Wrinkle Treatment in Dentistry
728
35.5
Conclusion
730
36
Matrices for Zonal Cartilage Tissue Engineering
733
Daisy Irawan,
Dietmar Hutmacher,
and Travis Klein
36.1
Introduction
734
36.2
Carbohydrate-Based Matrices
736
36.2.1
Alginate
737
36.2.2
Agarose
739
36.3
Protein-Based Matrices
741
36.3.1
Collagen or Gelatin
741
36.3.2
Fibrin
742
36.4
Synthetic and Semisynthetic Matrices
744
36.4.1
Polyethylene
Glycol]
744
36.4.2
Extracel
747
36.5
Conclusions and Outlook
748
37
Collagen-Based Scaffold for Bone Tissue
Regeneration
757
Fu-Zhai
Cui,
long-Gang Chen, and Xue Xia
37.1
Introduction
758
37.2
Compositional and Structural Characteristics of
Natural Bone
759
Contents
I
xxv
37.2.1
Composition of the Natural
Bone
Matrix 759
37.2.2
Hierarchical Structure of the Natural Bone
Matrix by Self-Assembly
759
37.3
Biomimetic Fabrication with Self-Assembled
Collagen Mineralization
760
37.3.1
Mineralization Mechanism of
Hydroxyapatite Crystals on Collagen Fibers
761
37.3.2
Assembly of the Nano-Fibril of Mineralized
Collagen
763
37.4
Synthesis and Application of Collagen-Based
Scaffolds in Bone Tissue Regeneration
767
37.4.1
Synthesis of Nano-HA/Collagen-Based
Scaffolds
767
37.4.2
Applications and Development of
Nano-HA/Collagen Scaffolds for Bone
Tissue Engineering
769
37.5
Conclusions and Outlook
772
38
Scaffold Considerations for Osteochondral Tissue
Engineering
779
Eric Farrell, FergalJ. O Brien, and GerjoJ. V. M. van Osch
38.1
Introduction
780
38.1.1
Tissue Engineering of the Bone
Cartilage Interface
780
38.2
Joint Homeostasis
780
38.3
Current and Recent Approaches to the Field of
Osteochondral Tissue Engineering
782
38.4
Functional Properties of Bone and Cartilage and
the Important Differences Between Them
783
38.5
Vascularization and its Absence in Cartilage
786
38.6
Scaffold Considerations for Osteochondral
Tissue Engineering
787
38.7
Endochondral Ossification, a More Logical
Approach for Osteochondral Tissue Engineering
793
39
Application of Scaffolds for Artificial Skin in
Regenerative Medicine
803
Hyunju
Lim
and Ho Yun Chung
39.1
Introduction
804
xxvi Contents
39.2
Scaffolds:
Biomaterials
as One of Important Factors
for Regeneration of Skin Tissue
806
39.3
Clinical Applications of Tissue-Engineered Skin
Products
808
39.4
Conclusions and Outlook
813
40
Biodegradable Scaffolds for Bone Regeneration
817
Yoichi Yamada
40.1
Introduction
818
40.2
Biodegradable Scaffolds
819
40.2.1
Biodegradable Ceramic Composite
fjß-TCP) 819
40.2.2
Nanofibers Hydrogel
Peptide
821
40.2.3
Injectable
Tissue-Engineered Bone
824
40.3
Clinical Application
827
40.3.1
Preparation and Clinical Application of
MSCs, PRP, and
Injectable TEB
827
40.4
Conclusions and Outlook
830
41
An Efficient ex vivo Expansion of Adult Mesenchymal
Stem Cells in Scaffolds
833
Eui Kyun Park, Hong-In Shin, and Shin-Yoon Kim
41.1
Introduction
834
41.2
The Use of Growth Factors and Glucocorticoids for
the Propagation of Adult MSCs
836
41.2.1
Growth Factors
836
41.2.1.1
Fibroblast
growth factors
837
41.2.1.2
Epidermal growth factor
837
41.2.1.3
Platelet-derived growth factor
839
41.2.1.4
Other growth factors
840
41.2.2
Glucocorticoids
840
41.2.3
Combination of Growth Factors and
Steroids
841
41.3
Growth of MSCs in Scaffolds
843
41.4
Conclusions and Outlook
846
42
Nanoparticles for Bioimaging in Regenerative
Medicine
855
Dongwon Lee, John M. Rhee, and
Gilson
Khang
42.1
Introduction
856
Contents
I
xxvii
42.2
Fluorescent Probes for Imaging of Hydrogen
Peroxide
858
42.3
Luminescent Probes for Imaging of Hydrogen
Peroxide
861
42.4
Fluorescent Probes for Other
ROS
866
42.5
Conclusions and Outlook
868
43
Effect of Scaffolds with Bone Growth Factors on
New Bone Formation
871
Hae-Ryong Song, Swee-Hin Teohjun-Ho Wang,
Hak-Jun Kim, Ji-Hoon
Вае,
Sung Eun Kim, jerry Chan,
Zhi-Yong Zhang, and Chang-Wug Oh
43.1
Introduction
872
43.2
Bone Lengthening in Preclinical Animal Studies
873
43.2.1
Calcium
Sulfate
in
Tibial
Lengthening
873
43.2.2
Cord Blood Stem Cells and rhBMP-2 in
Tibial
Lengthening
877
43.3
Growth Factor/Stem Cells-Mediated Scaffolds for
Bone Tissue Engineering
881
43.3.1
Use of Fibrin and Stem Cells for Bone
Defect Healing in Rabbits
881
43.3.2
Use of Bioreactors, Human Fetal Stem
Cells, and
3D
Scaffolds for Bone Tissue
Engineering
888
43.3.3
The Use of Scaffolds with or without
Growth Factors and Cells for Clinical Trials
896
44
Temperature-Responsive Culture Surfaces for
Regenerative Medicine
903
Yoshikazu Kumashiro, Yoshikatsu Akiyama,
Masayuki Yamato, and Teruo Okano
44.1
Introduction
903
44.2
The Basic Mechanism of Cell Attachment to
and Detachment
905
44.3
Temperature-Responsive Cell Culture Surfaces
that Enable Affinity Control
908
44.4
Applications of Cell Sheet Technology
912
44.5
Corneal
Surface Reconstruction
913
xxviii
I Contents
44.6
Periodontal Ligament Cell Sheets
916
44.7
Endoscopie
Esophageal Epithelial Transplantation
918
44.8
Sealing of Lung air Leaks
920
45
Customized Nanocomposite Scaffolds Fabricated via
Selective Laser Sintering for Bone Tissue Engineering
925
Bin Duan and
Min Wang
45.1
Introduction
926
45.2
Application of Rapid Prototyping Technologies to
Scaffold Fabrication
930
45.3
Design of Scaffolds and the Nanocomposite
Strategy
934
45.4
Fabrication of Nanocomposite Scaffolds via SLS
and Characteristics of the Scaffolds
938
45.5
Nanocomposite Scaffolds as Delivery Vehicles
for Biomolecules
941
45.6
Conclusions
949
Index
955
Dr. Qifîon
Khartg was editor in chief of the Journal of Tmuv Engineering and
Regenerative
Medicine from
2004
to
2009.
He is of has been on the editorial board
of many reputed scientific journals, including the Journal of tissue
Engineering
and
Regenerative Medicine, International Journal of Stem Cells,
Пѕше
Engineering,
Therapeutic Delivery, Wartti Journal of Stern Cells, Regenerative Research,
Macmmokcular Research, and
Biomaterials
Ие%тгсћ.
Dr. Khang has co-authored
or edited
S
books and published more than
400
origina!
research papers and
100
editoriais,
reviews, or chapters in books. His major scientific contribution has been
to appreciate and analyze the importance of natural/synthetic hybrid scaffolds to
reduce the host inflammation reaction as well as !he commercialuatiort of tissue-
engineered products.
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV039162103 |
classification_rvk | WX 6600 |
ctrlnum | (OCoLC)745530186 (DE-599)BVBBV039162103 |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01967nam a2200409 c 4500</leader><controlfield tag="001">BV039162103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130426 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110727s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814267854</subfield><subfield code="9">978-981-4267-85-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814267856</subfield><subfield code="9">981-4267-85-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)745530186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039162103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WX 6600</subfield><subfield code="0">(DE-625)152214:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of intelligent scaffolds for tissue engineering and regenerative medicine</subfield><subfield code="c">ed. by Gilson Khang</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Intelligent scaffolds for tissue engineering and regenerative medicine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">Pan Stanford Publ.</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 972, 32 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regenerative Medizin</subfield><subfield code="0">(DE-588)7652075-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tissue Engineering</subfield><subfield code="0">(DE-588)4646061-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Regenerative Medizin</subfield><subfield code="0">(DE-588)7652075-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tissue Engineering</subfield><subfield code="0">(DE-588)4646061-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khang, Gilson</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-981-4267-86-1</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-024179567</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV039162103 |
illustrated | Illustrated |
indexdate | 2024-07-10T00:00:21Z |
institution | BVB |
isbn | 9789814267854 9814267856 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-024179567 |
oclc_num | 745530186 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | XXX, 972, 32 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Pan Stanford Publ. |
record_format | marc |
spelling | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine ed. by Gilson Khang Intelligent scaffolds for tissue engineering and regenerative medicine Singapore Pan Stanford Publ. 2012 XXX, 972, 32 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Regenerative Medizin (DE-588)7652075-4 gnd rswk-swf Tissue Engineering (DE-588)4646061-5 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Regenerative Medizin (DE-588)7652075-4 s Tissue Engineering (DE-588)4646061-5 s DE-604 Khang, Gilson Sonstige oth Erscheint auch als Online-Ausgabe 978-981-4267-86-1 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine Regenerative Medizin (DE-588)7652075-4 gnd Tissue Engineering (DE-588)4646061-5 gnd |
subject_GND | (DE-588)7652075-4 (DE-588)4646061-5 (DE-588)4143413-4 |
title | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine |
title_alt | Intelligent scaffolds for tissue engineering and regenerative medicine |
title_auth | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine |
title_exact_search | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine |
title_full | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine ed. by Gilson Khang |
title_fullStr | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine ed. by Gilson Khang |
title_full_unstemmed | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine ed. by Gilson Khang |
title_short | Handbook of intelligent scaffolds for tissue engineering and regenerative medicine |
title_sort | handbook of intelligent scaffolds for tissue engineering and regenerative medicine |
topic | Regenerative Medizin (DE-588)7652075-4 gnd Tissue Engineering (DE-588)4646061-5 gnd |
topic_facet | Regenerative Medizin Tissue Engineering Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=024179567&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT khanggilson handbookofintelligentscaffoldsfortissueengineeringandregenerativemedicine AT khanggilson intelligentscaffoldsfortissueengineeringandregenerativemedicine |