The elements of statistical learning: data mining, inference, and prediction
"During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in th...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2011
|
Ausgabe: | 2. ed., corrected at 5. print. |
Schriftenreihe: | Springer series in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Zusammenfassung: | "During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics."--BOOK JACKET. |
Beschreibung: | XXII, 745 S. Ill., graph. Darst. |
ISBN: | 9780387848570 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV039100089 | ||
003 | DE-604 | ||
005 | 20120808 | ||
007 | t | ||
008 | 110624s2011 ad|| |||| 00||| eng d | ||
020 | |a 9780387848570 |c hbk |9 978-0-387-84857-0 | ||
035 | |a (OCoLC)734092176 | ||
035 | |a (DE-599)BVBBV039100089 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-634 |a DE-91 |a DE-703 |a DE-Aug4 |a DE-19 |a DE-739 |a DE-188 |a DE-824 |a DE-523 |a DE-522 | ||
050 | 0 | |a Q325.75 | |
082 | 0 | |a 006.3'1 22 |2 22 | |
084 | |a CM 4000 |0 (DE-625)18951: |2 rvk | ||
084 | |a QH 231 |0 (DE-625)141546: |2 rvk | ||
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a SK 840 |0 (DE-625)143261: |2 rvk | ||
084 | |a ST 530 |0 (DE-625)143679: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
084 | |a MAT 620f |2 stub | ||
100 | 1 | |a Hastie, Trevor |d 1953- |e Verfasser |0 (DE-588)172128242 |4 aut | |
245 | 1 | 0 | |a The elements of statistical learning |b data mining, inference, and prediction |c Trevor Hastie ; Robert Tibshirani ; Jerome Friedman |
250 | |a 2. ed., corrected at 5. print. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2011 | |
300 | |a XXII, 745 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in statistics | |
520 | 1 | |a "During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics."--BOOK JACKET. | |
650 | 7 | |a Estatística computacional |2 larpcal | |
650 | 7 | |a Estatística |2 larpcal | |
650 | 7 | |a Inferência estatística |2 larpcal | |
650 | 7 | |a Mineração de dados |2 larpcal | |
650 | 4 | |a Supervised learning (Machine learning) | |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anwendung |0 (DE-588)4196864-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4056995-0 |a Statistik |2 gnd-content | |
655 | 7 | |0 (DE-588)4056995-0 |a Statistik |2 gnd-content | |
689 | 0 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 0 | 1 | |a Anwendung |0 (DE-588)4196864-5 |D s |
689 | 0 | 2 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 1 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Tibshirani, Robert |d 1956- |e Verfasser |0 (DE-588)172417740 |4 aut | |
700 | 1 | |a Friedman, Jerome H. |d 1939- |e Verfasser |0 (DE-588)134071484 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-0-387-84858-7 |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-022644044 |
Datensatz im Suchindex
_version_ | 1804145808822501376 |
---|---|
adam_text | Contents
Preface
to the Second Edition
vii
Preface to the First Edition
xi
1
Introduction
1
2
Overview of Supervised Learning
9
2.1
Introduction
......................... 9
2.2
Variable Types and Terminology
.............. 9
2.3
Two Simple Approaches to Prediction:
Least Squares and Nearest Neighbors
........... 11
2.3.1
Linear Models and Least Squares
........ 11
2.3.2
Nearest-Neighbor Methods
............ 14
2.3.3
From Least Squares to Nearest Neighbors
.... 16
2.4
Statistical Decision Theory
................. 18
2.5
Local Methods in High Dimensions
............. 22
2.6
Statistical Models, Supervised Learning
and Function Approximation
................ 28
2.6.1
A Statistical Model
for the Joint Distribution Pr(X, Y)
....... 28
2.6.2
Supervised Learning
................ 29
2.6.3
Function Approximation
............. 29
2.7
Structured Regression Models
............... 32
2.7.1
Difficulty of the Problem
............. 32
Contents
2.8
Classes
of Restricted Estimators
.............. 33
2.8.1
Roughness Penalty and Bayesian Methods
... 34
2.8.2
Kernel Methods and Local Regression
...... 34
2.8.3
Basis Functions and Dictionary Methods
.... 35
2.9
Model Selection and the Bias Variance Tradeoff
..... 37
Bibliographic Notes
......................... 39
Exercises
............................... 39
Linear Methods for Regression
43
3.1
Introduction
......................... 43
3.2
Linear Regression Models and Least Squares
....... 44
3.2.1
Example: Prostate Cancer
............ 49
3.2.2
The Gauss-Markov Theorem
........... 51
3.2.3
Multiple Regression
from Simple Univariate Regression
........ 52
3.2.4
Multiple Outputs
................. 56
3.3
Subset Selection
....................... 57
3.3.1
Best-Subset Selection
............... 57
3.3.2
Forward- and Backward-Stepwise Selection
... 58
3.3.3
Forward-Stagewise Regression
.......... 60
3.3.4
Prostate Cancer Data Example (Continued)
. . 61
3.4
Shrinkage Methods
...................... 61
3.4.1
Ridge Regression
................. 61
3.4.2
The Lasso
..................... 68
3.4.3
Discussion: Subset Selection. Ridge Regression
and the Lasso
................... 69
3.4.4
Least Angle Regression
.............. 73
3.5
Methods Using Derived Input Directions
......... 79
3.5.1
Principal Components Regression
........ 79
3.5.2
Partial Least Squares
............... 80
3.6
Discussion: A Comparison of the Selection
and Shrinkage Methods
................... 82
3.7
Multiple Outcome Shrinkage and Selection
........ 84
3.8
More on the Lasso and Related Path Algorithms
..... 86
3.8.1
Incremental Forward Stagewise Regression
... 86
3.8.2
Piecewise-Linear Path Algorithms
........ 89
3.8.3
The Dantzig Selector
............... 89
3.8.4
The Grouped Lasso
................ 90
3.8.5
Further Properties of the Lasso
.......... 91
3.8.6
Pathwise Coordinate Optimization
........ 92
3.9
Computational Considerations
............... 93
Bibliographic Notes
......................... 94
Exercises
............................... 94
Contents xv
Linear
Methods for Classification
101
4.1
Introduction
......................... 101
4.2
Linear Regression of an Indicator Matrix
......... 103
4.3
Linear Discriminant Analysis
................ 106
4.3.1
Regularized Discriminant Analysis
........ 112
4.3.2
Computations for LDA
.............. 113
4.3.3
Reduced-Rank Linear Discriminant Analysis
. . 113
4.4
Logistic Regression
...................... 119
4.4.1
Fitting Logistic Regression Models
........ 120
4.4.2
Example: South African Heart Disease
..... 122
4.4.3
Quadratic Approximations and Inference
.... 124
4.4.4
L
ι
Regularized Logistic Regression
........ 125
4.4.5
Logistic Regression or LDA?
........... 127
4.5
Separating Hypcrplanes
................... 129
4.5.1
Rosenblatt s Perceptron Learning Algorithm
. . 130
4.5.2
Optimal Separating
Hyperplanes......... 132
Bibliographic Notes
......................... 135
Exercises
............................... 135
Basis Expansions and
Regularizat
ion
139
5.1
Introduction
......................... 139
5.2
Piecewise Polynomials and Splines
............. 141
5.2.1
Natural Cubic Splines
............... 144
5.2.2
Example: South African Heart Disease (Continued)
146
5.2.3
Example: Phoneme Recognition
......... 148
5.3
Filtering and Feature Extraction
.............. 150
5.4
Smoothing Splines
...................... 151
5.4.1
Degrees of Freedom and Smoother Matrices
. . . 153
5.5
Automatic Selection of the Smoothing Parameters
.... 156
5.5.1
Fixing the Degrees of Freedom
.......... 158
5.5.2
The Bias- Variance Tradeoff
............ 158
5.6
Nonparametric Logistic Regression
............. 161
5.7
Multidimensional Splines
.................. 162
5.8
Regularization and Reproducing Kernel Hubert Spaces
. 167
5.8.1
Spaces of Functions Generated by Kernels
. . . 168
5.8.2
Examples of RKHS
................ 170
5.9
Wavelet Smoothing
..................... 174
5.9.1
Wavelet Bases and the Wavelet Transform
... 176
5.9.2
Adaptive Wavelet Filtering
............ 179
Bibliographic Notes
......................... 181
Exercises
............................... 181
Appendix: Computational Considerations for Splines
...... 186
Appendix:
ß-splines..................... 186
Appendix: Computations for Smoothing Splines
..... 189
Contents
Kernel
Smoothing Methods
191
6.1
One-Dimensional Kernel Smoothers
............ 192
6.1.1
Local Linear Regression
.............. 194
6.1.2
Local Polynomial Regression
........... 197
6.2
Selecting the Width of the Kernel
............. 198
6.3
Local Regression in IRP
................... 200
6.4
Structured Local Regression Models in Rp
........ 201
6.4.1
Structured Kernels
................. 203
6.4.2
Structured Regression Functions
......... 203
6.5
Local Likelihood and Other Models
............ 205
6.6
Kernel Density Estimation and Classification
....... 208
6.6.1
Kernel Density Estimation
............ 208
6.6.2
Kernel Density Classification
........... 210
6.6.3
The Naive
Bayes
Classifier
............ 210
6.7
Radial Basis Functions and Kernels
............ 212
6.8
Mixture Models for Density Estimation and Classification
214
6.9
Computational Considerations
............... 216
Bibliographic Notes
......................... 216
Exercises
............................... 216
Model Assessment and Selection
219
7.1
Introduction
......................... 219
7.2
Bias. Variance and Model Complexity
........... 219
7.3
The Bias -Variance Decomposition
............. 223
7.3.1
Example: Bias-Variance Tradeoff
........ 226
7.4
Optimism of the Training Error Rate
........... 228
7.5
Estimates of In-Sample Prediction Error
.......... 230
7.6
The Effective Number of Parameters
............ 232
7.7
The Bayesian Approach and
BIC
.............. 233
7.8
Minimum Description Length
................ 235
7.9
Vapnik-Chervonenkis Dimension
.............. 237
7.9.1
Example (Continued)
............... 239
7.10
Cross-Validation
....................... 241
7.10.1
K-Foid Cross-Validation
............. 241
7.10.2
The Wrong and Right Way
to Do Cross-validation
............... 245
7.10.3
Does Cross-Validation Really Work?
....... 247
7.11
Bootstrap Methods
..................... 249
7.11.1
Example (Continued)
............... 252
7.12
Conditional or Expected Test Error?
............ 254
Bibliographic Notes
......................... 257
Exercises
............................... 257
Model Inference and Averaging
261
8.1
Introduction
......................... 261
Contents xvii
8.2
The Bootstrap and Maximum Likelihood Methods
.... 261
8.2.1
A Smoothing Example
.............. 261
8.2.2
Maximum Likelihood Inference
.......... 265
8.2.3
Bootstrap versus Maximum Likelihood
..... 267
8.3
Bayesian Methods
...................... 267
8.4
Relationship Between the Bootstrap
and Bayesian Inference
................... 271
8.5
The EM Algorithm
..................... 272
8.5.1
Two-Component Mixture Model
......... 272
8.5.2
The EM Algorithm in General
.......... 276
8.5.3
EM as a Maximization Maximization Procedure
277
8.6
MCMC for Sampling from the Posterior
.......... 279
8.7
Bagging
............................ 282
8.7.1
Example: Trees with Simulated Data
...... 283
8.8
Model Averaging and Stacking
............... 288
8.9
Stochastic Search: Bumping
................. 290
Bibliographic Notes
......................... 292
Exercises
............................... 293
9
Additive Models, Trees, and Related Methods
295
9.1
Generalized Additive Models
................ 295
9.1.1
Fitting Additive Models
.............. 297
9.1.2
Example: Additive Logistic Regression
..... 299
9.1.3
Summary
...................... 304
9.2
Tree-Based Methods
..................... 305
9.2.1
Background
.................... 305
9.2.2
Regression Trees
.................. 307
9.2.3
Classification Trees
................ 308
9.2.4
Other Issues
.................... 310
9.2.5
Spam Example (Continued)
........... 313
9.3
PRIM: Bump Hunting
.................... 317
9.3.1
Spam Example (Continued)
........... 320
9.4
MARS: Multivariate Adaptive Regression Splines
..... 321
9.4.1
Spam Example (Continued)
........... 326
9.4.2
Example (Simulated Data)
............ 327
9.4.3
Other Issues
.................... 328
9.5
Hierarchical Mixtures of Experts
.............. 329
9.6
Missing Data
......................... 332
9.7
Computational Considerations
............... 334
Bibliographic Notes
......................... 334
Exercises
............................... 335
10
Boosting and Additive Trees
337
10.1
Boosting Methods
...................... 337
10.1.1
Outline of This Chapter
.............. 340
xviii Contents
10.2
Boosting Fits an Additive Model
.............. 341
10.3
Forward Stagewise Additive Modeling
........... 342
10.4
Exponential Loss and AdaBoost
.............. 343
10.5
Why Exponential Loss?
................... 345
10.6
Loss Functions and Robustness
............... 346
10.7
Off-the-Shelf Procedures for Data Mining
........ 350
10.8
Example: Spam Data
.................... 352
10.9
Boosting Trees
........................ 353
10.10
Numerical Optimization via Gradient Boosting
...... 358
10.10.1
Steepest Descent
.................. 358
10.10.2
Gradient Boosting
................. 359
10.10.3
Implementations of Gradient Boosting
...... 360
10.11
Right-Sized Trees for Boosting
............... 361
10.12
Regularizaron
........................ 364
10.12.1
Shrinkage
...................... 364
10.12.2
Subsampling
.................... 365
10.13
Interpretation
........................ 367
10.13.1
Relative Importance of Predictor Variables
. . . 367
10.13.2
Partial Dependence Plots
............. 369
10.14
Illustrations
.......................... 371
10.14.1
California Housing
................. 371
10.14.2
New Zealand Fish
................. 375
10.14.3
Demographics Data
................ 379
Bibliographic Notes
......................... 380
Exercises
............................... 384
11
Neural Networks
389
11.1
Introduction
......................... 389
11.2
Projection Pursuit Regression
............... 389
11.3
Neural Networks
....................... 392
11.4
Fitting Neural Networks
................... 395
11.5
Some Issues in Training Neural Networks
......... 397
11.5.1
Starting Values
................... 397
11.5.2
Overfitting
..................... 398
11.5.3
Scaling of the Inputs
............... 398
11.5.4
Number of Hidden Units and Layers
....... 400
11.5.5
Multiple Minima
.................. 400
11.6
Example: Simulated Data
.................. 401
11.7
Example: ZIP Code Data
.................. 404
11.8
Discussion
.......................... 408
11.9
Bayesian Neural Nets and the NIPS
2003
Challenge
... 409
11.9.1
Bayes.
Boosting and Bagging
........... 410
11.9.2
Performance Comparisons
............ 412
11.10
Computational Considerations
............... 414
Bibliographic Notes
......................... 415
Contents xix
Exercises
............................... 415
12 Support
Vector
Machines
and
Flexible
Discriminants
417
12.1
Introduction
......................... 417
12.2
The Support Vector Classifier
................ 417
12.2.1
Computing the Support Vector Classifier
.... 420
12.2.2
Mixture Example (Continued)
.......... 421
12.3
Support Vector Machines and Kernels
........... 423
12.3.1
Computing the SVM for Classification
...... 423
12.3.2
The SVM as a Penalization Method
....... 426
12.3.3
Function Estimation and Reproducing Kernels
. 428
12.3.4
SVMs and the Curse of Dimensionality
..... 431
12.3.5
A Path Algorithm for the SVM Classifier
.... 432
12.3.6
Support Vector Machines for Regression
..... 434
12.3.7
Regression and Kernels
.............. 436
12.3.8
Discussion
..................... 438
12.4
Generalizing Linear Discriminant Analysis
........ 438
12.5
Flexible Discriminant Analysis
............... 440
12.5.1
Computing the FDA Estimates
.......... 444
12.6
Penalized Discriminant Analysis
.............. 446
12.7
Mixture Discriminant Analysis
............... 449
12.7.1
Example: Waveform Data
............. 451
Bibliographic Notes
......................... 455
Exercises
............................... 455
13
Prototype Methods and Nearest-Neighbors
459
13.1
Introduction
......................... 459
13.2
Prototype Methods
..................... 459
13.2.1
K-means Clustering
................ 460
13.2.2
Learning Vector Quantization
.......... 462
13.2.3
Gaussian Mixtures
................. 463
13.3
fc-Nearest-Neighbor Classifiers
............... 463
13.3.1
Example: A Comparative Study
......... 468
13.3.2
Example: fc-Nearest-Neighbors
and Image Scene Classification
.......... 470
13.3.3
Invariant Metrics and Tangent Distance
..... 471
13.4
Adaptive Nearest-Neighbor Methods
............ 475
13.4.1
Example
...................... 478
13.4.2
Global Dimension Reduction
for Nearest-Neighbors
............... 479
13.5
Computational Considerations
............... 480
Bibliographic Notes
......................... 481
Exercises
............................... 481
xx Contents
14 Unsupervised
Learning
485
14.1
Introduction
......................... 485
14.2
Association Rules
...................... 487
14.2.1
Market Basket Analysis
.............. 488
14.2.2
The
Apriori
Algorithm
.............. 489
14.2.3
Example: Market Basket Analysis
........ 492
14.2.4
Unsupervised as Supervised Learning
...... 495
14.2.5
Generalized Association Rules
.......... 497
14.2.6
Choice of Supervised Learning Method
..... 499
14.2.7
Example: Market Basket Analysis (Continued)
. 499
14.3
Cluster Analysis
....................... 501
14.3.1
Proximity Matrices
................ 503
14.3.2
Dissimilarities Based on Attributes
....... 503
14.3.3
Object Dissimilarity
................ 505
14.3.4
Clustering Algorithms
............... 507
14.3.5
Combinatorial Algorithms
............ 507
14.3.6
K-means
...................... 509
14.3.7
Gaussian Mixtures as Soft K-means Clustering
. 510
14.3.8
Example: Human Tumor Microarray Data
. . . 512
14.3.9
Vector Quantization
................ 514
14.3.10
AT-medoids
..................... 515
14.3.11
Practical Issues
.................. 518
14.3.12
Hierarchical Clustering
.............. 520
14.4
Self-Organizing Maps
.................... 528
14.5
Principal Components, Curves and Surfaces
........ 534
14.5.1
Principal Components
............... 534
14.5.2
Principal Curves and Surfaces
.......... 541
14.5.3
Spectral Clustering
................ 544
14.5.4
Kernel Principal Components
........... 547
14.5.5
Sparse Principal Components
........... 550
14.6
Non-negative Matrix Factorization
............. 553
14.6.1
Archetypal Analysis
................ 554
14.7
Independent Component Analysis
and Exploratory Projection Pursuit
............ 557
14.7.1
Latent Variables and Factor Analysis
...... 558
14.7.2
Independent Component Analysis
........ 560
14.7.3
Exploratory Projection Pursuit
.......... 565
14.7.4
A Direct Approach to
ICA
............ 565
14.8
Multidimensional Scaling
.................. 570
14.9
Nonlinear Dimension Reduction
and Local Multidimensional Scaling
............ 572
14.10
The Google PageRank Algorithm
............. 576
Bibliographic Notes
......................... 578
Exercises
............................... 579
Contents xxi
15
Random Forests
587
15.1
Introduction
......................... 587
15.2
Definition of Random Forests
................ 587
15.3
Details of Random Forests
................. 592
15.3.1
Out of Bag Samples
................ 592
15.3.2
Variable Importance
................ 593
15.3.3
Proximity Plots
.................. 595
15.3.4
Random Forests and Overfitting
......... 596
15.4
Analysis of Random Forests
................. 597
15.4.1
Variance and the De-Correlation Effect
..... 597
15.4.2
Bias
......................... 600
15.4.3
Adaptive Nearest Neighbors
........... 601
Bibliographic Notes
......................... 602
Exercises
............................... 603
16
Ensemble Learning
605
16.1
Introduction
......................... 605
16.2
Boosting and
Regularizat
ion Paths
............. 607
16.2.1
Penalized Regression
............... 607
16.2.2
The Bet on Sparsity Principle
......... 610
16.2.3
Regularization Paths, Over-fitting and Margins
. 613
16.3
Learning Ensembles
..................... 616
16.3.1
Learning a Good Ensemble
............ 617
16.3.2
Rule Ensembles
.................. 622
Bibliographic Notes
......................... 623
Exercises
............................... 624
17
Undirected Graphical Models
625
17.1
Introduction
......................... 625
17.2
Markov Graphs and Their Properties
........... 627
17.3
Undirected Graphical Models for Continuous Variables
. 630
17.3.1
Estimation of the Parameters
when the Graph Structure is Known
....... 631
17.3.2
Estimation of the Graph Structure
........ 635
17.4
Undirected Graphical Models for Discrete Variables
. . . 638
17.4.1
Estimation of the Parameters
when the Graph Structure is Known
....... 639
17.4.2
Hidden Nodes
................... 641
17.4.3
Estimation of the Graph Structure
........ 642
17.4.4
Restricted Boltzmann Machines
......... 643
Exercises
............................... 645
18
High-Dimensional Problems:
ρ
> N 649
18.1
When
ρ
is Much Bigger than
N .............. 649
xxii Contents
18.2 Diagonal Linear
Discriminant
Analysis
and Nearest Shrunken Centroids
.............. 651
18.3
Linear Classifiers with Quadratic
Regularizat
ion
..... 654
18.3.1
Regularized Discriminant Analysis
........ 656
18.3.2
Logistic Regression
with Quadratic
Regularizat
ion
.......... 657
18.3.3
The Support Vector Classifier
.......... 657
18.3.4
Feature Selection
.................. 658
18.3.5
Computational Shortcuts When
ρ
»
Лг.....
659
18.4
Linear Classifiers with L Regularization
......... 661
18.4.1
Application of Lasso
to Protein Mass Spectroscopy
.......... 664
18.4.2
The Fused Lasso for Functional Data
...... 666
18.5
Classification When Features are Unavailable
....... 668
18.5.1
Example: String Kernels
and Protein Classification
............. 668
18.5.2
Classification and Other Models Using
Inner-Product Kernels and Pairwise Distances
. 670
18.5.3
Example: Abstracts Classification
........ 672
18.6
High-Dimensional Regression:
Supervised Principal Components
............. 674
18.6.1
Connection to Latent-Variable Modeling
.... 678
18.6.2
Relationship with Partial Least Squares
..... 680
18.6.3
Pre-Conditioning for Feature Selection
..... 681
18.7
Feature Assessment and the Multiple-Testing Problem
. . 683
18.7.1
The False Discovery Rate
............. 687
18.7.2
Asymmetric Cutpoints and the SAM Procedure
690
18.7.3
A Bayesian Interpretation of the FDR
...... 692
18.8
Bibliographic Notes
..................... 693
Exercises
............................... 694
References
699
Author Index
729
Index
737
Springer Series
in Statistics
Trevor
Hastie
·
Robert Tibshirani
·
Jerome Friedman
The Elements of Statistical Learning
During the past decade there has been an explosion in computation and information tech-
nologv. With it have come vast amounts of data in a variety of fields such as medicine, biolo¬
gy, finance, and marketing. The challenge of understanding these data has led to the devel¬
opment of new tools in the field of statistics, and spawned new areas such as data mining,
machine learning, and biomformarics. Many
ai ¡hese
tools have common underpinnings but
are often expressed with different terminology. This book describes the important ideas in
these areas in a common conceptual framework. While the approach is statistical, the
emphasis is on concepts rather than mathematics. Many examples are given, with a liberal
use of color graphics. It should be a valuable resource for statisticians and anyone interested
in data mining in science or industry. The book s coverage is broad, from supervised learning
(prediction
і
to unsupervised learning. The many topics include neural networks, support
vector machines, classification trees and boosting
—
the first comprehensive treatment of this
topic in any book.
This major new edition features manv topics not covered in the original, including graphical
models, random forests, ensemble methods, ¡east angle regression and path algorithms for the
lasso, non-negative matrix factorization, and spectral clustering. There is also a chapter on
methods for wide data (p bigger than
я),
including multiple testing and false discovery rates.
Trevor
Hastie,
Robert Tibshirani, and Jerome Friedman are professors of statistics
al
Stanford University. They are prominent researchers in this area:
Hastie
and Tibshirani
developed generalized additive models and wrote a popular book of that title.
Hastie
co-
developed much of the statistical modeling software and environment in R/S-PLUS and
invented principal curves and surfaces. Tibshirani proposed the lasso and is co-author of the
very successful
Ли
Introduction to ¡he Bootstrap. Friedman is the co-inventor of many data-
mining tools including
(
.Mil , MARS, projection pursuit and gradient boosting.
STATISTICS
>
springer.*
|
any_adam_object | 1 |
author | Hastie, Trevor 1953- Tibshirani, Robert 1956- Friedman, Jerome H. 1939- |
author_GND | (DE-588)172128242 (DE-588)172417740 (DE-588)134071484 |
author_facet | Hastie, Trevor 1953- Tibshirani, Robert 1956- Friedman, Jerome H. 1939- |
author_role | aut aut aut |
author_sort | Hastie, Trevor 1953- |
author_variant | t h th r t rt j h f jh jhf |
building | Verbundindex |
bvnumber | BV039100089 |
callnumber-first | Q - Science |
callnumber-label | Q325 |
callnumber-raw | Q325.75 |
callnumber-search | Q325.75 |
callnumber-sort | Q 3325.75 |
callnumber-subject | Q - General Science |
classification_rvk | CM 4000 QH 231 SK 830 SK 840 ST 530 |
classification_tum | DAT 708f MAT 620f |
ctrlnum | (OCoLC)734092176 (DE-599)BVBBV039100089 |
dewey-full | 006.3'122 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3'1 22 |
dewey-search | 006.3'1 22 |
dewey-sort | 16.3 11 222 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Psychologie Mathematik Wirtschaftswissenschaften |
edition | 2. ed., corrected at 5. print. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03751nam a2200673 c 4500</leader><controlfield tag="001">BV039100089</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120808 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110624s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387848570</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-387-84857-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)734092176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV039100089</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-522</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">Q325.75</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3'1 22</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CM 4000</subfield><subfield code="0">(DE-625)18951:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 231</subfield><subfield code="0">(DE-625)141546:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 840</subfield><subfield code="0">(DE-625)143261:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 530</subfield><subfield code="0">(DE-625)143679:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 620f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hastie, Trevor</subfield><subfield code="d">1953-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172128242</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The elements of statistical learning</subfield><subfield code="b">data mining, inference, and prediction</subfield><subfield code="c">Trevor Hastie ; Robert Tibshirani ; Jerome Friedman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., corrected at 5. print.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 745 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in statistics</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estatística computacional</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Estatística</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Inferência estatística</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mineração de dados</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Supervised learning (Machine learning)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4056995-0</subfield><subfield code="a">Statistik</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4056995-0</subfield><subfield code="a">Statistik</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anwendung</subfield><subfield code="0">(DE-588)4196864-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tibshirani, Robert</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172417740</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friedman, Jerome H.</subfield><subfield code="d">1939-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)134071484</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-0-387-84858-7</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-022644044</subfield></datafield></record></collection> |
genre | (DE-588)4056995-0 Statistik gnd-content |
genre_facet | Statistik |
id | DE-604.BV039100089 |
illustrated | Illustrated |
indexdate | 2024-07-09T23:25:20Z |
institution | BVB |
isbn | 9780387848570 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-022644044 |
oclc_num | 734092176 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-634 DE-91 DE-BY-TUM DE-703 DE-Aug4 DE-19 DE-BY-UBM DE-739 DE-188 DE-824 DE-523 DE-522 |
owner_facet | DE-91G DE-BY-TUM DE-634 DE-91 DE-BY-TUM DE-703 DE-Aug4 DE-19 DE-BY-UBM DE-739 DE-188 DE-824 DE-523 DE-522 |
physical | XXII, 745 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Springer |
record_format | marc |
series2 | Springer series in statistics |
spelling | Hastie, Trevor 1953- Verfasser (DE-588)172128242 aut The elements of statistical learning data mining, inference, and prediction Trevor Hastie ; Robert Tibshirani ; Jerome Friedman 2. ed., corrected at 5. print. New York [u.a.] Springer 2011 XXII, 745 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in statistics "During the past decade there has been an explosion in computation and information technology. With it have come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics."--BOOK JACKET. Estatística computacional larpcal Estatística larpcal Inferência estatística larpcal Mineração de dados larpcal Supervised learning (Machine learning) Datenanalyse (DE-588)4123037-1 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Statistik (DE-588)4056995-0 gnd rswk-swf Anwendung (DE-588)4196864-5 gnd rswk-swf (DE-588)4056995-0 Statistik gnd-content Statistik (DE-588)4056995-0 s Anwendung (DE-588)4196864-5 s Datenanalyse (DE-588)4123037-1 s DE-604 Maschinelles Lernen (DE-588)4193754-5 s Tibshirani, Robert 1956- Verfasser (DE-588)172417740 aut Friedman, Jerome H. 1939- Verfasser (DE-588)134071484 aut Erscheint auch als Online-Ausgabe 978-0-387-84858-7 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Hastie, Trevor 1953- Tibshirani, Robert 1956- Friedman, Jerome H. 1939- The elements of statistical learning data mining, inference, and prediction Estatística computacional larpcal Estatística larpcal Inferência estatística larpcal Mineração de dados larpcal Supervised learning (Machine learning) Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Statistik (DE-588)4056995-0 gnd Anwendung (DE-588)4196864-5 gnd |
subject_GND | (DE-588)4123037-1 (DE-588)4193754-5 (DE-588)4056995-0 (DE-588)4196864-5 |
title | The elements of statistical learning data mining, inference, and prediction |
title_auth | The elements of statistical learning data mining, inference, and prediction |
title_exact_search | The elements of statistical learning data mining, inference, and prediction |
title_full | The elements of statistical learning data mining, inference, and prediction Trevor Hastie ; Robert Tibshirani ; Jerome Friedman |
title_fullStr | The elements of statistical learning data mining, inference, and prediction Trevor Hastie ; Robert Tibshirani ; Jerome Friedman |
title_full_unstemmed | The elements of statistical learning data mining, inference, and prediction Trevor Hastie ; Robert Tibshirani ; Jerome Friedman |
title_short | The elements of statistical learning |
title_sort | the elements of statistical learning data mining inference and prediction |
title_sub | data mining, inference, and prediction |
topic | Estatística computacional larpcal Estatística larpcal Inferência estatística larpcal Mineração de dados larpcal Supervised learning (Machine learning) Datenanalyse (DE-588)4123037-1 gnd Maschinelles Lernen (DE-588)4193754-5 gnd Statistik (DE-588)4056995-0 gnd Anwendung (DE-588)4196864-5 gnd |
topic_facet | Estatística computacional Estatística Inferência estatística Mineração de dados Supervised learning (Machine learning) Datenanalyse Maschinelles Lernen Statistik Anwendung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=022644044&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hastietrevor theelementsofstatisticallearningdatamininginferenceandprediction AT tibshiranirobert theelementsofstatisticallearningdatamininginferenceandprediction AT friedmanjeromeh theelementsofstatisticallearningdatamininginferenceandprediction |