Handbook of photonics for biomedical science:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL
CRC Press
2010
|
Schriftenreihe: | Series in medical physics and biomedical engineering
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxxvi, 815 p., [16] p. of plates ill. (some col.) 26 cm |
ISBN: | 9781439806289 1439806284 9781439806296 1439806292 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV037296485 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 110323s2010 xxua||| |||| 00||| eng d | ||
010 | |a 2009038011 | ||
015 | |a GBB033794 |2 dnb | ||
020 | |a 9781439806289 |c hbk. |9 978-1-439-80628-9 | ||
020 | |a 1439806284 |c hbk. |9 1-439-80628-4 | ||
020 | |a 9781439806296 |9 978-1-439-80629-6 | ||
020 | |a 1439806292 |9 1-439-80629-2 | ||
035 | |a (OCoLC)700524106 | ||
035 | |a (DE-599)BVBBV037296485 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T | ||
050 | 0 | |a R857.O6 | |
082 | 0 | |a 616.07/54 | |
245 | 1 | 0 | |a Handbook of photonics for biomedical science |c edited by Valery V. Tuchin |
264 | 1 | |a Boca Raton, FL |b CRC Press |c 2010 | |
300 | |a xxxvi, 815 p., [16] p. of plates |b ill. (some col.) |c 26 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Series in medical physics and biomedical engineering | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Imaging systems in medicine |v Handbooks, manuals, etc | |
650 | 4 | |a Phototherapy |v Handbooks, manuals, etc | |
650 | 4 | |a Photobiology |v Handbooks, manuals, etc | |
650 | 4 | |a Photonics |v Handbooks, manuals, etc | |
650 | 4 | |a Nanophotonics |v Handbooks, manuals, etc | |
650 | 4 | |a Photobiology |x methods | |
650 | 4 | |a Microscopy |x methods | |
650 | 4 | |a Phototherapy | |
700 | 1 | |a Tučin, Valerij V. |d 1944- |e Sonstige |0 (DE-588)132097613 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021208972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021208972 |
Datensatz im Suchindex
_version_ | 1804143933359390720 |
---|---|
adam_text | Titel: Handbook of photonics for biomedical science
Autor: Tučin, Valerij V.
Jahr: 2010
Preface xix
The Editor xxv
List of Contributors xxvii
1 FDTD Simulation of Light Interaction with Cells for Diagnostics and Imaging in
Nanobiophotonics 1
Stoyan Tanev, Wenbo Sun, James Pond, and Valéry V. Tuchin
1.1 Introduction...................................... 2
1.2 Formulation of the FDTD Method ......................... 3
1.2.1 The basic FDTD numerical scheme..................... 3
1.2.2 Numerical excitation of the input wave.................... 4
1.2.3 Uni-axial perfectly matched layer absorbing boundary conditions ..... 7
1.2.4 FDTD formulation of the light scattering properties from single cells . ... 10
1.2.5 FDTD formulation of optical phase contrast microscopic (OPCM) imaging 15
1.3 FDTD Simulation Results of Light Scattering Patterns from Single Cells ..... 19
1.3.1 Validation of the simulation results...................... 19
1.3.2 Effect of extracellular medium absorption on the light scattering patterns . . 22
1.4 FDTD Simulation Results of OPCM Nanobioimaging ............... 24
1.4.1 Cell structure................................. 24
1.4.2 Optical clearing effect ............................ 24
1.4.3 The cell imaging effect of gold nanoparticles ................ 25
1.5 Conclusion ...................................... 29
2 Plasmonic Nanoparticles: Fabrication, Optical Properties, and Biomedical Applica-
tions 37
Nikolai G. Khlebtsov and Lev A. Dykman
2.1 Introduction...................................... 37
2.2 Chemical Wet Synthesis and Functionalization of Plasmon-Resonant NPs..... 38
2.2.1 Nanosphere colloids ............................. 38
2.2.2 Metal nanorods................................ 38
2.2.3 Metal nanoshells............................... 39
2.2.4 Other particles and nanoparticles assemblies................. 39
2.3 Optical Properties .................................. 40
2.3.1 Basic physical principles........................... 40
2.3.2 Plasmon resonances.............................. 43
2.3.3 Metal spheres................................. 45
2.3.4 Metal nanorods................................ 46
2.3.5 Coupled plasmons .............................. 53
2.4 Biomedical Applications............................... 58
2.4.1 Functionalization of metal nanoparticles................... 58
2.4.2 Homogenous and biobarcode assays..................... 60
2.4.3 Solid-phase assays with nanoparticle markers................ 61
2.4.4 Functionalized NPs in biomedical sensing and imaging........... 63
2.4.5 Interaction of NPs with living cells and organisms: Cell-uptake, biodistri-
bution, and toxicity aspects.......................... 65
2.4.6 Application of NPs to drug delivery and photothermal therapy....... 67
2.5 Conclusion...................................... 69
3 Transfection by Optical Injection 87
David J. Stevenson, Frank J. Gunn-Moore, Paul Campbell, and Kishan Dholakia
3.1 Introduction: Why Cell Transfection? ....................... 87
3.2 Nonoptical Methods of Transfection ........................ 89
3.2.1 Lipoplex transfection............................. 89
3.2.2 Polyplex transfection............................. 89
3.2.3 Gene gun transfection............................. 90
3.2.4 Ultrasound transfection............................ 90
3.2.5 Electroporation................................ 90
3.3 Review of Optical Injection and Transfection .................... 91
3.4 Physics of Species Transport through a Photopore ................. 97
3.5 Physics of the Laser-Cell Interaction......................... Ill
3.6 Conclusion ...................................... 113
4 Advances in Fluorescence Spectroscopy and Imaging 119
Herbert Schneckenburger, Petra Weber, Thomas Bruns, and Michael Wagner
4.1 Introduction...................................... 119
4.2 Techniques and Requirements ............................ 120
4.2.1 Video microscopy and tomography...................... 120
4.2.2 Spectral imaging............................... 121
4.2.3 Fluorescence anisotropy........................... 122
4.2.4 Fluorescence lifetime imaging microscopy (FLIM)............. 122
4.2.5 Fluorescence screening............................ 123
4.3 Applications ..................................... 123
4.3.1 Autofluorescence imaging.......................... 123
4.3.2 Membrane dynamics............................. 125
4.3.3 FRET-based applications........................... 128
4.4 Final Remarks .................................... 132
5 Applications of Optical Tomography in Biomedical Research 137
Ana Sarasa-Renedo, Alex Darrell, and Jorge Ripoll
5.1 Introduction...................................... 137
5.1.1 Fluorescent molecular probes......................... 138
5.2 Light Propagation in Highly Scattering Media.................... 139
5.2.1 The diffusion equation............................ 139
5.2.2 Fluorescence molecular tomography..................... 139
5.3 Light Propagation in Nonscattering Media...................... 144
5.3.1 Optical projection tomography........................ 144
5.3.2 Reconstruction methods in OPT....................... 147
6 Fluorescence Lifetime Imaging and Metrology for Biomedicine 159
Clifford Talbot, James McGinty, Ewan McGhee, Dylan Owen, David Grant, Sunil Kumar,
Pieter De Beule, Egidijus Auksorius, Hugh Manning, Neil Galletly, Bebhinn Treanor, Gordon
Kennedy, Peter M.P. Lanigan, Ian Munro, Daniel S. Elson, Anthony Magee, Dan Davis, Mark
Neil, Gordon Stamp, Christopher Dunsby, and Paul French
6.1 Introduction...................................... 159
6.2 Techniques for Fluorescence Lifetime Imaging and Metrology........... 162
6.2.1 Overview................................... 162
6.2.2 Single-point and laser-scanning measurements of fluorescence lifetime . . . 164
6.2.3 Wide-field FLIM............................... 167
6.3 FLIM and MDFI of Biological Tissue Autofluorescence .............. 170
6.3.1 Introduction.................................. 170
6.3.2 Application to cancer............................. 171
6.3.3 Application to atherosclerosis ........................ 172
6.4 Application to Cell Biology ............................. 175
6.4.1 Fluorescence lifetime sensing ........................ 175
6.4.2 FLIM applied to FRET............................ 176
6.5 Multidimensional Fluorescence Measurement and Imaging Technology...... 178
6.5.1 Overview................................... 178
6.5.2 Excitation-resolved FLIM .......................... 179
6.5.3 Emission-resolved FLIM........................... 180
6.6 Outlook........................................ 182
Raman and CARS Microscopy of Cells and Tissues 197
Christoph Krafft and Jürgen Popp
7.1 Introduction...................................... 197
7.2 Experimental Methods................................ 199
7.2.1 Raman spectroscopy............................. 199
7.2.2 Raman microscopy.............................. 200
7.2.3 Surface enhanced resonance Raman scattering (SERS)........... 201
7.2.4 Resonance Raman scattering (RRS)..................... 201
7.2.5 Coherent anti-Stokes Raman scattering (CARS) microscopy........ 201
7.2.6 Raman imaging................................ 202
7.3 Sample Preparation and Reference Spectra ..................... 203
7.3.1 Preparation of tissues............................. 203
7.3.2 Preparation of cells.............................. 204
7.3.3 Raman spectra of biological molecules.................... 204
7.4 Applications to Cells................................. 205
7.4.1 Raman microscopy of microbial cells.................... 205
7.4.2 Raman spectroscopy of eukaryotic cells................... 206
7.4.3 Resonance Raman spectroscopy of cells................... 208
7.4.4 SERS/TERS of cells............................. 208
7.4.5 CARS microscopic imaging of cells..................... 210
7.5 Applications to Tissue ................................ 211
7.5.1 Raman imaging of hard tissues........................ 211
7.5.2 Raman imaging of soft tissues........................ 212
7.5.3 SERS detection of tissue-specific antigens.................. 214
7.5.4 CARS for medical tissue imaging...................... 215
7.6 Conclusions...................................... 216
Resonance Raman Spectroscopy of Human Skin for the In Vivo Detection of Carotenoid
Antioxidant Substances 229
Maxim E. Darvin and Juergen Lademann
8.1 Introduction...................................... 230
8.2 Production of Free Radicals in the Skin ....................... 231
8.3 Antioxidative Potential of Human Skin ....................... 231
8.3.1 Different types of antioxidants measured in the human skin......... 231
8.3.2 Role of cutaneous carotenoids........................ 232
8.4 Physicochemical Properties of Cutaneous Carotenoids ............... 232
8.4.1 Antioxidative activity............................. 232
8.4.2 Optical absorption .............................. 232
8.4.3 Solubility................................... 232
8.5 Methods for the Detection of Cutaneous Carotenoids................ 233
8.5.1 High pressure liquid chromatography (HPLC)................ 233
8.5.2 Reflection spectroscopy............................ 233
8.5.3 Raman spectroscopy............................. 234
8.5.4 Comparison of the methods.......................... 235
8.6 Resonance Raman Spectroscopy (RRS)....................... 235
8.6.1 Setup for in vivo resonance Raman spectroscopy of cutaneous carotenoids . 235
8.6.2 Optimization of the setup parameters..................... 236
8.6.3 Typical RRS spectra of carotenoids obtained from the skin......... 237
8.6.4 Measurements of the total amount of carotenoids in the skin........ 238
8.6.5 Selective detection of cutaneous beta-carotene and lycopene........ 238
8.6.6 Measurements of cutaneous lycopene.................... 239
8.7 Results Obtained by RRS In Vivo .......................... 240
8.7.1 Distribution of carotenoids in the human skin................ 240
8.7.2 Stress factors, which decrease the carotenoid level in the skin........ 241
8.7.3 Potential methods to increase the carotenoid level in the skin........ 242
8.7.4 Seasonal increase of cutaneous carotenoids................ 243
8.7.5 Antioxidants and premature aging...................... 243
8.7.6 Topical application of antioxidants...................... 245
8.7.7 Medication with antioxidants......................... 245
8.8 Strategies on the Application of Antioxidant Substances .............. 247
8.9 Conclusions...................................... 247
Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Us-
ing Mueller Matrix Decomposition 253
Nirmalya Ghosh, Michael Wood, and Alex Vitkin
9.1 Introduction......................................254
9.2 Mueller Matrix Preliminaries and the Basic Polarization Parameters........255
9.3 Polar Decomposition of Mueller Matrices for Extraction of the Individual Intrinsic
Polarization Parameters ...............................258
9.4 Sensitive Experimental System for Mueller Matrix Measurements in Turbid Media 261
9.5 Forward Modeling of Simultaneous Occurrence of Several Polarization Effects in
Turbid Media Using the Monte Carlo Approach...................264
9.6 Validation of the Mueller Matrix Decomposition Method in Complex Tissue-Like
Turbid Media................................... 267
9.7 Selected Trends: Path length and Detection Geometry Effects on the Decomposition-
Derived Polarization Parameters .......................... 270
9.8 Initial Biomedical Applications ................... 274
9.8.1 Noninvasive glucose measurement in tissue-like turbid media........ 274
9.8.2 Monitoring regenerative treatments of the heart............... 275
9.8.3 Proof-of-principle/« Wvo biomedical deployment of the method...... 277
9.9 Concluding Remarks on the Prospect of the Mueller Matrix Decomposition Method
in Polarimetrie Assessment of Biological Tissues................. 279
10 Statistical, Correlation, and Topological Approaches in Diagnostics of the Structure
and Physiological State of Biréfringent Biological Tissues 283
O.V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, V.P. Pishak, andA.P. Peresunko
10.1 Introduction...................................... 284
10.1.1 Polarimetrie approach ............................ 284
10.1.2 Correlation approach............................. 285
10.1.3 Topological or singular optical approach................... 286
10.2 Biological Tissue as the Converter of Parameters of Laser Radiation........ 288
10.2.1 Crystal optical model of anisotropic component of the main types of biolog-
ical tissues .................................. 288
10.2.2 Techniques for analysis of the structure of inhomogeneously polarized ob-
ject fields ................................... 290
10.3 Laser Polarimetry of Biological Tissues....................... 291
10.3.1 Polarization mapping of biological tissues: Apparatus and techniques . . . 291
10.3.2 Statistical and fractal analysis of polarization images of histological slices
of biological tissues.............................. 292
10.3.3 Diagnostic feasibilities of polarization mapping of histological slices of bi-
ological tissues of various physiological states................ 294
10.3.4 Polarization 2D tomography of biological tissues.............. 298
10.4 Polarization Correlometry of Biological Tissues................... 303
10.4.1 The degree of mutual polarization at laser images of biological tissues . . . 303
10.4.2 Technique for measurement of polarization-correlation maps of histological
slices of biological tissues.......................... 304
10.4.3 Statistical approach to the analysis of polarization-correlation maps of bio-
logical tissues................................. 304
10.5 The Structure of Polarized Fields of Biological Tissues .............. 308
10.5.1 Main mechanisms and scenarios of forming singular nets at laser fields of
biréfringent structures of biological tissues ................. 308
10.5.2 Statistical and fractal approaches to analysis of singular nets at laser fields
of biréfringent structures of biological tissues................ 309
10.5.3 Scenarios of formation of singular structure of polarization parameters at
images of biological tissues.......................... 313
10.5.4 Structure of S-contours of polarization images of the architectonic nets of
biréfringent collagen fibrils.......................... 313
10.5.5 On the interconnection of the singular and statistical parameters of inhomo-
geneously polarized nets of biological crystals................ 315
10.6 Conclusion ...................................... 317
11 Biophotonic Functional Imaging of Skin Microcirculation 323
Martin J. Leahy and Gert E. Nils son
11.1 Skin Microvasculature ................................ 323
11.2 Nailfold Capillaroscopy ............................... 324
11.3 Laser Doppler Perfusion Imaging .......................... 325
11.4 Laser Speckle Perfusion Imaging .......................... 329
11.5 Polarization Spectroscopy .............................. 331
11.6 Comparison of LDPI, LSPI, and TiVi ........................ 333
11.7 Optical Microangiography.............................. 336
11.8 Photoacoustic Tomography ............................. 337
11.9 Conclusions ..................................... 339
12 Advances in Optoacoustic Imaging 343
Tatiana Khokhlova, Ivan Pelivanov, and Alexander Karabutov
12.1 Introduction...................................... 344
12.2 Image Reconstruction in OA Tomography...................... 345
12.2.1 Solution of the inverse problem of OA tomography in spatial-frequency do-
main ...................................... 346
12.2.2 Solution of the inverse problem of OA tomography in time domain..... 347
12.2.3 Possible image artifacts ........................... 348
12.3 3D OA Tomography ................................. 349
12.4 2D OA Tomography ................................. 351
12.4.1 Transducer arrays for 2D OA tomography.................. 351
12.4.2 Image reconstruction in 2D OA tomography ................ 355
12.5 Conclusions...................................... 357
13 Optical-Resolution Photoacoustic Microscopy for In Vivo Volumetric Microvascular
Imaging in Intact Tissues 361
Song Hu, Konstantin Maslov, and Lihong V. Wang
13.1 Introduction...................................... 361
13.2 Dark-Field PAM and Its Limitation in Spatial Resolution.............. 362
13.3 Resolution Improvement in PAM by Using Diffraction-Limited Optical Focusing . 363
13.4 Bright-Field OR-PAM ................................ 364
13.4.1 System design................................. 364
13.4.2 Spatial resolution quantification....................... 365
13.4.3 Imaging depth estimation........................... 367
13.4.4 Sensitivity estimation............................. 367
13.5 In Vivo Microvascular Imaging Using OR-PAM................... 368
13.5.1 Structural imaging.............................. 368
13.5.2 Microvascular bifurcation .......................... 370
13.5.3 Functional imaging of hemoglobin oxygen saturation............ 371
13.5.4 In vivo brain microvascular imaging..................... 373
13.6 Conclusion and Perspectives............................. 373
14 Optical Coherence Tomography Theory and Spectral Time-Frequency Analysis 377
Costas Pitris, Andreas Kartakoullis, and Evgenia Bousi
14.1 Introduction...................................... 377
14.2 Low Coherence Interferometry............................ 379
14.2.1 Axial resolution................................ 381
14.2.2 Transverse resolution............................. 382
14.3 Implementations of OCT............................... 383
14.3.1 Time-domain scanning............................ 383
14.3.2 Fourier-domain OCT............................. 384
14.4 Delivery Devices................................... 385
14.5 Clinical Applications of OCT ............................ 385
14.5.1 Ophthalmology................................ 386
14.5.2 Cardiology.................................. 386
14.5.3 Oncology................................... 386
14.5.4 Other applications .............................. 387
14.5.5 OCT in biology................................ 388
14.6 OCT Image Interpretation .............................. 389
14.7 Spectroscopic OCT.................................. 390
14.7.1 Mie theory in SOCT............................. 390
14.7.2 Spectral analysis of OCT signals....................... 391
14.7.3 Spectral analysis based on Burg s method.................. 392
14.7.4 Experimental demonstration of SOCT for scatterer size estimation..... 395
14.8 Conclusions...................................... 396
15 Label-Free Optical Micro-Angiography for Functional Imaging of Microcirculations
within Tissue Beds In Vivo 401
Lin An, Yali Jia, and Ruikang K. Wang
15.1 Introduction...................................... 401
15.2 Brief Principle of Doppler Optical Coherence Tomography............. 403
15.3 Optical Micro-Angiography ............................. 404
15.3.1 In vivo full-range complex Fourier-domain OCT .............. 405
15.3.2 OMAG flow imaging............................. 407
15.3.3 Directional OMAG flow imaging....................... 409
15.4 OMAG System Setup ................................ 411
15.5 OMAG Imaging Applications ............................ 412
15.5.1 In vivo volumetric imaging of vascular perfusion within the human retina
and choroids ................................. 413
15.5.2 Imaging cerebral blood perfusion in small animal models.......... 413
15.6 Conclusions...................................... 415
16 Fiber-Based OCT: From Optical Design to Clinical Applications 423
V. Gelikonov, G. Gelikonov, M. Kirillin, N. Shakhova, A. Sergeev, N. Gladkova, and E. Za-
gaynova
16.1 Introduction (History, Motivation, Objectives).................... 423
16.2 Fiber-Based OCT as a Tool for Clinical Application ................ 425
16.2.1 Design of the fiber-based cross-polarization OCT device.......... 425
16.2.2 OCT probes: Customizing the device .................... 428
16.3 Clinical Applications of the Fiber-Based OCT Device ............... 430
16.3.1 Diagnosis of cancer and target biopsy optimization............. 430
16.3.2 Differential diagnosis of diseases with similar manifestations ....... 431
16.3.3 OCT monitoring of treatment......................... 431
16.3.4 OCT for guided surgery ........................... 432
16.3.5 Cross-polarization OCT modality for neoplasia OCTdiagnosis....... 434
16.3.6 OCT miniprobe application.......................... 435
16.4 Conclusion ...................................... 439
17 Noninvasive Assessment of Molecular Permeability with OCT 445
Kirill V. Larin, Mohamad G. Ghosn, and Valéry V. Tuchin
17.1 Introduction...................................... 446
17.2 Principles of OCT Functional Imaging ....................... 447
17.3 Materials and Methods................................ 450
17.3.1 Experimental setup.............................. 450
17.3.2 Ocular tissues................................. 450
17.3.3 Vascular tissues................................ 451
17.3.4 Data processing ............................... 451
17.4 Results ........................................ 452
17.4.1 Diffusion in the cornea............................ 452
17.4.2 Diffusion in the sclera ............................ 454
17.4.3 In-depth diffusion monitoring ........................ 456
17.4.4 Diffusion in the carotid............................ 457
17.5 Conclusions...................................... 459
18 Confocal Light Absorption and Scattering Spectroscopic Microscopy 465
Le Qiu and Lev T. Perelman
18.1 Introduction...................................... 465
18.2 Light Scattering Spectroscopy............................ 467
18.3 Confocal Microscopy................................. 468
18.4 CLASS Microscopy ................................. 469
18.5 Imaging of Live Cells with CLASS Microscopy................... 473
18.6 Characterization of Single Gold Nanorods with CLASS Microscopy........ 474
18.7 Conclusion ...................................... 477
19 Dual Axes Confocal Microscopy 481
Michael J. Mandella and Thomas D. Wang
19.1 Introduction...................................... 481
19.1.1 Principles of Confocal Microscopy...................... 482
19.1.2 Role for dual axes confocal microscopy................... 482
19.2 Limitations of Single Axis Confocal Microscopy.................. 483
19.2.1 Single axis confocal design.......................... 484
19.2.2 Single axis confocal systems......................... 484
19.3 Dual Axes Confocal Architecture .......................... 485
19.3.1 Dual axes design............................... 486
19.3.2 Dual axes point spread function....................... 487
19.3.3 Postobjective scanning............................ 489
19.3.4 Improved rejection of scattering....................... 490
19.4 Dual Axes Confocal Imaging ............................ 494
19.4.1 Solid immersion lens............................. 494
19.4.2 Horizontal cross-sectional images...................... 494
19.4.3 Vertical cross-sectional images........................ 495
19.4.4 Dual axes confocal fluorescence imaging .................. 496
19.5 MEMS Scanning Mechanisms............................ 498
19.5.1 Scanner structure and function........................ 498
19.5.2 Scanner characterization........................... 499
19.5.3 Scanner fabrication process.......................... 500
19.6 Miniature Dual Axes Confocal Microscope..................... 501
19.6.1 Imaging scanhead............................... 501
19.6.2 Assembly and alignment........................... 501
19.6.3 Instrument control and image acquisition .................. 502
19.6.4 In vivo confocal fluorescence imaging.................... 503
19.6.5 Endoscope compatible prototype....................... 503
19.7 Conclusions and Future Directions.......................... 505
20 Nonlinear Imaging of Tissues 509
Riccardo Cicchi, Leonardo Sacconi, and Francesco Pavone
20.1 Introduction...................................... 509
20.2 Theoretical Background ............................... 510
20.2.1 Two-photon excitation fluorescence microscopy............... 510
20.2.2 Second-harmonic generation microscopy .................. 512
20.2.3 Fluorescence lifetime imaging microscopy.................. 513
20.3 Morphological Imaging ............................... 516
20.3.1 Combined two-photon fluorescence-second-harmonic generation microscopy
on skin tissue................................. 516
20.3.2 Combined two-photon fluorescence-second-harmonic generation microscopy
on diseased dermis tissue........................... 516
20.3.3 Combined two-photon fluorescence-second-harmonic generation microscopy
on bladder tissue............................... 518
20.3.4 Second-harmonic generation imaging on cornea............... 520
20.3.5 Improving the penetration depth with two-photon imaging: Application of
optical clearing agents............................ 520
20.4 Chemical Imaging .................................. 523
20.4.1 Lifetime imaging of basal cell carcinoma.................. 523
20.4.2 Enhancing tumor margins with two-photon fluorescence by using aminole-
vulinic acid.................................. 525
20.5 Morpho-Functional Imaging............................. 526
20.5.1 Single spine imaging and ablation inside brain of small living animals . . . 526
20.5.2 Optical recording of electrical activity in intact neuronal network by random
access second-harmonic (RASH) microscopy................ 531
20.6 Conclusion ...................................... 535
21 Endomicroscopy Technologies for High-Resolution Nonlinear Optical Imaging and
Optical Coherence Tomography 547
Yicong Wu and Xingde Li
21.1 Introduction...................................... 548
21.2 Beam Scanning and Focusing Mechanisms in Endomicroscopes.......... 549
21.2.1 Mechanical scanning in side-viewing endomicroscopes........... 549
21.2.2 Scanning mechanisms in forward-viewing endomicroscopes........ 550
21.2.3 Compact objective lens and focusing mechanism.............. 555
21.3 Nonlinear Optical Endomicroscopy ......................... 556
21.3.1 Special considerations in nonlinear optical endomicroscopy......... 556
21.3.2 Nonlinear optical endomicroscopy embodiments and applications..... 557
21.4 Optical Coherence Tomography Endomicroscopy.................. 561
21.4.1 Special considerations in OCT fiber-optic endomicroscopy......... 561
21.4.2 Endomicroscopic OCT embodiments and the applications ......... 561
21.5 Summary....................................... 565
22 Advanced Optical Imaging of Early Mammalian Embryonic Development 575
Irina V. Larina, Mary E. Dickinson, and Kirill V Larin
22A Introduction...................................... 575
22.2 Imaging Vascular Development Using Confocal Microscopy of Vital Fluorescent
Markers........................................ 576
22.3 Live Imaging of Mammalian Embryos With OCT.................. 580
22.3.1 Structural 3-D imaging of live embryos with SS-OCT............ 580
22.3.2 Doppler SS-OCT imaging of blood flow................... 583
22.4 Conclusion ...................................... 586
23 Terahertz Tissue Spectroscopy and Imaging 591
Maxim Nazarov, Alexander Shkurinov, Valéry V. Tuchin, and X.-C. Zhang
23.1 Introduction: The Specific Properties of the THz Frequency Range for Monitoring
of Tissue Properties ................................. 592
23.2 Optics of THz Frequency Range: Brief Review on THz Generation and Detection
Techniques ...................................... 593
23.2.1 CW lamp and laser sources, CW detectors.................. 593
23.2.2 FTIR ..................................... 593
23.2.3 THz-TDS,ATR................................ 594
23.3 Biological Molecular Fingerprints.......................... 599
23.3.1 Introduction.................................. 599
23.3.2 Sugars..................................... 600
23.3.3 Polypeptides ................................. 600
23.3.4 Proteins.................................... 601
23.3.5 Amino-acids and nucleobases ........................ 602
23.3.6 DNA ..................................... 602
23.4 Properties of Biological Tissues in the THz Frequency Range ........... 603
23.5 Water Content in Tissues and Its Interaction with Terahertz Radiation ....... 604
23.5.1 Data on water content in various tissues................... 605
23.5.2 THz spectra of water solution ........................ 605
23.5.3 Skin...................................... 608
23.5.4 Muscles.................................... 608
23.5.5 Liver ..................................... 609
23.5.6 Fat....................................... 609
23.5.7 Blood, hemoglobin, myoglobin ....................... 609
23.5.8 Hard tissue.................................. 610
23.5.9 Tissue dehydration.............................. 610
23.6 THz Imaging: Techniques and Applications .................... 612
23.6.1 Introduction.................................. 612
23.6.2 Human breast................................. 612
23.6.3 Skin...................................... 612
23.6.4 Tooth..................................... 612
23.6.5 Nanoparticle-enabled terahertz imaging................... 612
23.7 Summary....................................... 613
24 Nanoparticles as Sunscreen Compound: Risks and Benefits 619
Alexey P. Popov, Alexander V. Priezzhev, Juergen Lademann, and Risto Myllylä
24.1 Introduction...................................... 620
24.2 Nanoparticles in Sunscreens............................. 620
24.3 Penetration of Nanoparticles into Skin........................ 621
24.3.1 Skin structure................................. 621
24.3.2 Stratum corneum............................... 622
24.3.3 Permeability of stratum corneum....................... 623
24.3.4 Penetration of nanoparticles into human skin ................ 624
24.4 UV-Light-Blocking Efficacy of Nanoparticles.................... 626
24.4.1 Solar radiation ................................ 626
24.4.2 Effect of UV radiation on skin........................ 626
24.4.3 Action spectrum and effective spectrum................... 627
24.4.4 Mie calculations of cross-sections and anisotropy scattering factor of
nanoparticles................................. 627
24.4.5 Model of stratum corneum with particles .................. 629
24.4.6 Results of simulations ............................ 631
24.5 Toxicity of Nanoparticles............................... 635
24.5.1 Free radicals ................................. 635
24.5.2 EPR technique................................ 635
24.5.3 Experiments with Ti02 nanoparticles: Materials............... 636
24.5.4 Raman spectroscopy............................. 636
24.5.5 Mie calculations ............................... 636
24.5.6 Experiments I: Emulsion on glass slides................... 638
24.5.7 Experiments II: Emulsion on porcine skin.................. 638
24.6 Conclusion ...................................... 640
25 Photodynamic Therapy/Diagnostics: Principles, Practice, and Advances 649
Brian C. Wilson
25 A Historical Introduction................................ 650
25.2 PhotophysicsofPDT/PDD.............................. 652
25.3 Photochemistry of PDT/PDD ............................ 656
25.4 PhotobiologyofPDT................................. 658
25.5 PDT Instrumentation................................. 661
25.5.1 Light sources................................. 661
25.5.2 Light delivery and distribution........................ 663
25.5.3 Dose monitoring............................... 665
25.5.4 PDT response modeling ........................... 669
25.5.5 PDT biological response monitoring..................... 670
25.5.6 PDT treatment planning ........................... 672
25.6 PDD Technologies .................................. 672
25.7 Novel Directions in PDT............................... 675
25.7.1 Photophysics-based developments...................... 676
25.7.2 Photosensitizer-based............................. 678
25.7.3 Photobiology-based.............................. 678
25.7.4 Applications-based.............................. 679
25.8 Conclusions...................................... 680
26 Advances in Low-Intensity Laser and Phototherapy 687
Ying-Ying Huang, Aaron C.-H. Chen, and Michael R. Hamblin
26.1 Historical Introductions ............................... 688
26.2 Cellular Chromophores................................ 688
26.2.1 Mitochondria................................. 689
26.2.2 Mitochondrial Respiratory Chain....................... 689
26.2.3 Tissue photobiology ............................. 689
26.2.4 Cytochrome c oxidase is a photoacceptor.................. 690
26.2.5 Photoactive porphyrins............................ 690
26.2.6 Flavoproteins................................. 691
26.2.7 Laser speckle effects in mitochondria.................... 691
26.2.8 LLLT enhances ATP synthesis in mitochondria............... 692
26.3 LLLT and Signaling Pathways............................ 692
26.3.1 Redox sensitive pathway........................... 692
26.3.2 Cyclic AMP-dependent signaling pathway.................. 693
26.3.3 Nitric oxide signaling............................. 693
26.3.4 G-protein pathway.............................. 694
26.4 Gene Transcription after LLLT............................ 695
26.4.1 NF-ktB .................................... 696
26.4.2 AP-1 ..................................... 696
26.4.3 HIF-1..................................... 696
26.4.4 Ref-1 ..................................... 697
26.5 Cellular Effects.................................... 697
26.5.1 Prevention of apoptosis............................ 699
26.5.2 Proliferation.................................. 699
26.5.3 Migration................................... 699
26.5.4 Adhesion................................... 700
26.6 Tissue Effects .................................... 700
26.6.1 Epithelium .................................. 700
26.6.2 Connective tissue............................... 700
26.6.3 Muscle tissue................................. 701
26.7 Animal and Clinical Studies of LLLT ........................ 701
26.7.1 LLLT in inflammatory disorders....................... 701
26.7.2 LLLT in healing................................ 703
26.7.3 LLLT in pain relief.............................. 704
26.7.4 LLLT in aesthetic applications........................ 705
26.8 Conclusion ...................................... 706
27 Low-Level Laser Therapy in Stroke and Central Nervous System 717
Ying-Ying Huang, Michael R Hamblin, and Luis De Taboada
21A Introduction...................................... 718
27.2 Photobiology of Low-Level Laser Therapy ..................... 718
27.3 LLLT Effects on Nerves ............................... 719
27.3.1 LLLT on neuronal cells............................ 719
27.3.2 LLLT on nerves in vivo............................ 720
27.4 Human Skull Transmission Measurements ..................... 720
27.5 The Problem of Stroke................................ 721
27.5.1 Epidemic of stroke.............................. 721
27.5.2 Mechanisms of brain injury after stroke................... 723
27.5.3 Thrombolysis therapy of stroke........................ 724
27.5.4 Investigational neuroprotectants and pharmacological intervention..... 724
27.6 TLT for Stroke .................................... 724
27.6.1 TLT in animal models for stroke....................... 725
27.6.2 TLT in clinical trials for stroke........................ 726
27.7 LLLT for CNS Damage ............................... 727
27.7.1 Traumatic brain injury (TBI)......................... 729
27.7.2 Spinal cord injury (SCI) ........................... 729
27.7.3 Reversal of neurotoxicity........................... 729
27.8 LLLT for Neurodegenerative Diseases ....................... 730
27.8.1 Neurodegenerative disease.......................... 730
27.8.2 Parkinson s disease.............................. 730
27.8.3 Alzheimer s disease.............................. 730
27.8.4 Amyotrophic lateral sclerosis (ALS)..................... 731
27.9 LLLT for Psychiatric Disorders ........................... 731
27. lOConclusions and Future Outlook........................... 731
28 Advances in Cancer Photothermal Therapy 739
Wei R. Chen, Xiaosong Li, Mark F. Naylor, Hong Liu, and Robert E. Nordquist
28.1 Introduction...................................... 740
28.2 Thermal Effects on Biological Tissues........................ 741
28.2.1 Tissue responses to temperature increase................... 741
28.2.2 Tumor tissue responses to thermal therapy.................. 741
28.2.3 Immune responses induced by photothermal therapy ............ 741
28.3 Selective Photothermal Interaction in Cancer Treatment .............. 742
28.3.1 Near-infrared laser for tissue irradiation................... 742
28.3.2 Selective photothermal interaction using light absorbers........... 742
28.3.3 Indocyanine green .............................. 743
28.3.4 In vivo selective laser-photothermal tissue interaction............ 743
28.3.5 Laser-ICG photothermal effect on survival of tumor-bearing rats...... 744
28.4 Selective Photothermal Therapy Using Nanotechnology .............. 746
28.4.1 Nanotechnology in biomedical fields..................... 746
28.4.2 Nanotechnology for immunological enhancement.............. 746
28.4.3 Nanotechnology for enhancement of photothermal interactions....... 746
28.4.4 Antibody-conjugated nanomaterials for enhancement of photothermal de-
struction of tumors.............................. 746
28.5 Photothermal Immunotherapy ............................ 747
28.5.1 Procedures of photothermal immunotherapy................. 748
28.5.2 Effects of photothermal immunotherapy in preclinical studies........ 748
28.5.3 Possible immunological mechanism of photothermal immunotherapy . . . 750
28.5.4 Photothermal immunotherapy in clinical studies............... 751
28.6 Conclusion ...................................... 752
29 Cancer Laser Thermotherapy Mediated by Plasmonic Nanoparticles 763
Georgy S. Terentyuk, Garif G. Akchurin, Irina L. Maksimova, Galina N. Maslyakova, Nikolai
G. Khlebtsov, and Valéry V. Tuchin
29.1 Introduction...................................... 764
29.2 Characteristics of Gold Nanoparticles ........................ 766
29.3 Calculation of the Temperature Fields and Model Experiments........... 767
29.4 Circulation and Distribution of Gold Nanoparticles and Induced Alterations of Tis-
sue Morphology at Intravenous Particle Delivery .................. 774
29.5 Local Laser Hyperthermia and Thermolysis of Normal Tissues, Transplanted and
Spontaneous Tumors................................. 781
29.6 Conclusions...................................... 790
30 All Laser Corneal Surgery by Combination of Femtosecond Laser Ablation and
Laser Tissue Welding 799
Francesca Rossi, Paolo Matteini, Fulvio Ratto, Luca Menabuoni, lvo Lenzetti, and Roberto
Pini
30.1 Basic Principles of Femtosecond Laser Ablation .................. 800
30.2 Femtosecond Laser Preparation of Ocular Flaps................... 800
30.3 Low-Power Diode Laser Welding of Ocular Tissues ................ 802
30.4 Combining Femtosecond Laser Cutting and Diode Laser Suturing......... 804
30.4.1 Penetrating keratoplasty ........................... 804
30.4.2 Anterior lamellar keratoplasty........................ 805
30.4.3 Endothelial transplantation (deep lamellar keratoplasty)........... 806
30.5 Conclusions...................................... 807
Index 811
|
any_adam_object | 1 |
author_GND | (DE-588)132097613 |
building | Verbundindex |
bvnumber | BV037296485 |
callnumber-first | R - Medicine |
callnumber-label | R857 |
callnumber-raw | R857.O6 |
callnumber-search | R857.O6 |
callnumber-sort | R 3857 O6 |
callnumber-subject | R - General Medicine |
ctrlnum | (OCoLC)700524106 (DE-599)BVBBV037296485 |
dewey-full | 616.07/54 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 616 - Diseases |
dewey-raw | 616.07/54 |
dewey-search | 616.07/54 |
dewey-sort | 3616.07 254 |
dewey-tens | 610 - Medicine and health |
discipline | Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01833nam a2200481zc 4500</leader><controlfield tag="001">BV037296485</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110323s2010 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009038011</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBB033794</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439806289</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-1-439-80628-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1439806284</subfield><subfield code="c">hbk.</subfield><subfield code="9">1-439-80628-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439806296</subfield><subfield code="9">978-1-439-80629-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1439806292</subfield><subfield code="9">1-439-80629-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)700524106</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV037296485</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">R857.O6</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.07/54</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of photonics for biomedical science</subfield><subfield code="c">edited by Valery V. Tuchin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">CRC Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxvi, 815 p., [16] p. of plates</subfield><subfield code="b">ill. (some col.)</subfield><subfield code="c">26 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in medical physics and biomedical engineering</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imaging systems in medicine</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototherapy</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photobiology</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonics</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanophotonics</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photobiology</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscopy</subfield><subfield code="x">methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phototherapy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tučin, Valerij V.</subfield><subfield code="d">1944-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)132097613</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021208972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021208972</subfield></datafield></record></collection> |
id | DE-604.BV037296485 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:55:32Z |
institution | BVB |
isbn | 9781439806289 1439806284 9781439806296 1439806292 |
language | English |
lccn | 2009038011 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021208972 |
oclc_num | 700524106 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxxvi, 815 p., [16] p. of plates ill. (some col.) 26 cm |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | CRC Press |
record_format | marc |
series2 | Series in medical physics and biomedical engineering |
spelling | Handbook of photonics for biomedical science edited by Valery V. Tuchin Boca Raton, FL CRC Press 2010 xxxvi, 815 p., [16] p. of plates ill. (some col.) 26 cm txt rdacontent n rdamedia nc rdacarrier Series in medical physics and biomedical engineering Includes bibliographical references and index Imaging systems in medicine Handbooks, manuals, etc Phototherapy Handbooks, manuals, etc Photobiology Handbooks, manuals, etc Photonics Handbooks, manuals, etc Nanophotonics Handbooks, manuals, etc Photobiology methods Microscopy methods Phototherapy Tučin, Valerij V. 1944- Sonstige (DE-588)132097613 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021208972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of photonics for biomedical science Imaging systems in medicine Handbooks, manuals, etc Phototherapy Handbooks, manuals, etc Photobiology Handbooks, manuals, etc Photonics Handbooks, manuals, etc Nanophotonics Handbooks, manuals, etc Photobiology methods Microscopy methods Phototherapy |
title | Handbook of photonics for biomedical science |
title_auth | Handbook of photonics for biomedical science |
title_exact_search | Handbook of photonics for biomedical science |
title_full | Handbook of photonics for biomedical science edited by Valery V. Tuchin |
title_fullStr | Handbook of photonics for biomedical science edited by Valery V. Tuchin |
title_full_unstemmed | Handbook of photonics for biomedical science edited by Valery V. Tuchin |
title_short | Handbook of photonics for biomedical science |
title_sort | handbook of photonics for biomedical science |
topic | Imaging systems in medicine Handbooks, manuals, etc Phototherapy Handbooks, manuals, etc Photobiology Handbooks, manuals, etc Photonics Handbooks, manuals, etc Nanophotonics Handbooks, manuals, etc Photobiology methods Microscopy methods Phototherapy |
topic_facet | Imaging systems in medicine Handbooks, manuals, etc Phototherapy Handbooks, manuals, etc Photobiology Handbooks, manuals, etc Photonics Handbooks, manuals, etc Nanophotonics Handbooks, manuals, etc Photobiology methods Microscopy methods Phototherapy |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021208972&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tucinvalerijv handbookofphotonicsforbiomedicalscience |