Optical and digital image processing: fundamentals and applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2011
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | LXXXVII, 900 S. Ill., graph. Darst. |
ISBN: | 9783527409563 3527409564 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037264426 | ||
003 | DE-604 | ||
005 | 20121107 | ||
007 | t | ||
008 | 110304s2011 ad|| |||| 00||| eng d | ||
016 | 7 | |a 1007936894 |2 DE-101 | |
020 | |a 9783527409563 |9 978-3-527-40956-3 | ||
020 | |a 3527409564 |9 3-527-40956-4 | ||
035 | |a (OCoLC)729897620 | ||
035 | |a (DE-599)DNB1007936894 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-29T |a DE-703 |a DE-92 |a DE-706 |a DE-83 | ||
082 | 0 | |a 621.36 |2 22/ger | |
084 | |a ST 330 |0 (DE-625)143663: |2 rvk | ||
084 | |a ZN 6294 |0 (DE-625)157546: |2 rvk | ||
084 | |a 004 |2 sdnb | ||
084 | |a 621.3 |2 sdnb | ||
245 | 1 | 0 | |a Optical and digital image processing |b fundamentals and applications |c ed. by Gabriel Cristobal ... |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2011 | |
300 | |a LXXXVII, 900 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bildverarbeitung |0 (DE-588)4006684-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optische Signalverarbeitung |0 (DE-588)4172670-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Bildverarbeitung |0 (DE-588)4006684-8 |D s |
689 | 0 | 1 | |a Optische Signalverarbeitung |0 (DE-588)4172670-4 |D s |
689 | 0 | 2 | |a Digitale Signalverarbeitung |0 (DE-588)4113314-6 |D s |
689 | 0 | 3 | |a Bildgebendes Verfahren |0 (DE-588)4006617-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cristóbal, Gabriel |4 edt | |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3554214&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021177494&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-021177494 |
Datensatz im Suchindex
_version_ | 1805095526489653248 |
---|---|
adam_text |
IMAGE 1
VII
CONTENTS
PREFACE XXIX LIST OF CONTRIBUTORS XXXIX COLOR PLATES LI
1 FUNDAMENTALS OF OPTICS 1
TING-CHUNG POON AND JUNG-PING LIU 1.1 INTRODUCTION 1
1.2 THE ELECTROMAGNETIC SPECTRUM 1 1.3 GEOMETRICAL OPTICS 3 1.3.1 RAY
TRANSFER MATRIX 3 1.3.2 TWO-LENS IMAGING SYSTEM 6
1.3.3 ABERRATIONS 8 1.4 MAXWELL'S EQUATIONS AND THE WAVE EQUATION 9 1.5
WAVE OPTICS AND DIFFRACTION 11 1.6 FOURIER OPTICS AND APPLICATIONS 14
1.6.1 IDEAL THIN LENS AS OPTICAL FOURIER TRANSFORMER 14 1.6.2 IMAGING
AND OPTICAL IMAGE PROCESSING 17 1.6.3 OPTICAL CORRELATOR 19 1.7 THE
HUMAN VISUAL SYSTEM 21 1.8 CONCLUSION 23
REFERENCES 23
2 FUNDAMENTALS OF PHOTONICS 25 ERIK STIJNS AND HUGO THIENPONT 2.1
INTRODUCTION 25
2.2 INTERFERENCE AND DIFFRACTION 25 2.2.1 INTERFERENCE 25 2.2.2
DIFFRACTION 26 2.2.2.1 DIFFRACTION AT A ONE-DIMENSIONAL SLIT 26
2.2.2.2 DIFFRACTION AT A CIRCULAR APERTURE 27 2.2.3 RESOLUTION 28
2.2.3.1 ANGULAR RESOLUTION 28 2.2.3.2 SPATIAL RESOLUTION 29
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/1007936894
DIGITALISIERT DURCH
IMAGE 2
VIII CONTENTS
2.2.4
2.2.4.1 2.2.4.2 2.3 2.3.1 2.3.2
2.3.2.1 2.3.2.2 2.3.2.3 2.3.2.4 2.3.2.5
2.3.2.6 2.3.3 2.3.3.1 2.3.3.2
2.3.3.3 2.3.4 2.3.4.1
2.4 2.4.1 2.4.2 2.4.3 2.4.3.1 2.4.3.2 2.4.3.3
2.4.4 2.4.4.1 2.4.4.2 2.4.4.3 2.4.4.4
2.5 2.5.1 2.5.2 2.5.3
2.5.4 2.5.5 2.5.6 2.6 2.6.1 2.6.2
2.6.3 2.6.4 2.7
COHERENCE 29 TEMPORAL OR LONGITUDINAL COHERENCE 29 TRANSVERSE OR SPATIAL
COHERENCE 30 TERMS AND UNITS: THE MEASUREMENT OF LIGHT 30
INTRODUCTION: RADIOMETRY VERSUS PHOTOMETRY 30 RADIOMETRIE TERMS AND
UNITS 30 RADIANT ENERGY 30 RADIANT FLUX 31
RADIANT FLUX DENSITY 3 1 RADIANT INTENSITY 31 RADIANCE 32 RADIANT
EXPOSURE 32
PHOTOMETRIC TERMS 33 SPECTRAL TERMS 33 SPECTRAL SENSITIVITY OF THE EYE
33 LUMINOUS TERMS 33 PHOTOMETRIC UNITS 34 OTHER VISUAL TERMS AND UNITS
34
COLOR 35 INTRODUCTION 35 THE SPECTRUM OF LIGHT 3 6 TRISTIMULUS THEORY 36
THE TRISTIMULUS 36 THE 1931 CIE STANDARD 38
CIE 1976 UCS DIAGRAM 39 THEORY OF THE OPPONENT COLORS 40 DESCRIBING THE
VISUAL OBSERVATIONS 40 SATURATION OR CHROMA 41
HUE 41 THE CIELAB DIAGRAM 42 BASIC LASER PHYSICS 43
INTRODUCTION 43 NORMAL OR SPONTANEOUS EMISSION OF LIGHT 43 ABSORPTION 44
STIMULATED EMISSION OF LIGHT 44
AMPLIFICATION 45 BASIC SETUP 45 BASIC PROPERTIES OF LASER LIGHT 46 LASER
LIGHT HAS ONE DIRECTION 47
LASER LIGHT IS MONOCHROMATIC 47 LASER LIGHT IS COHERENT 47 LASER LIGHT
IS INTENSE 47 CONCLUSIONS 48 REFERENCES 48
IMAGE 3
CONTENTS IX
3
3.1 3.2 3.2.1 3.2.2
3.2.3 3.2.4 3.2.5 3.2.6
3.2.7 3.3 3.3.1 3.3.2 3.3.2.1 3.3.3 3.3.4 3.3.5 3.3.6 3.4 3.4.1 3.4.2
3.4.3 3.4.4 3.4.5 3.5
BASICS OF INFORMATION THEORY 49 MICHAL DOBES INTRODUCTION 49 PROBABILITY
49
SEVERAL EVENTS 50 CONDITIONAL PROBABILITIES: INDEPENDENT AND DEPENDENT
EVENTS 51 RANDOM VARIABLE 52
DISTRIBUTION FUNCTION 52 DISCRETE DISTRIBUTION 53 CONTINUOUS
DISTRIBUTION 53 EXPECTED VALUE 54
ENTROPY AND MUTUAL INFORMATION 54 HISTORICAL NOTES 55 ENTROPY 55
SOME PROPERTIES OF ENTROPY 55 JOINT ENTROPY 56 MUTUAL INFORMATION 60
KULLBACK-LEIBLER DIVERGENCE 62 OTHER TYPES OF ENTROPIES 62 INFORMATION
CHANNEL 62 DISCRETE CHANNEL 63 CHANNEL CAPACITY 63
SYMMETRIC CHANNEL 64 BINARY SYMMETRIC CHANNEL 65 GAUSSIAN CHANNEL 65
CONCLUSION 66 APPENDIX 3.A: APPLICATION OF MUTUAL INFORMATION 67
REFERENCES 68
4 FUNDAMENTALS OF IMAGE PROCESSING 71 VACLAV HLAVAC 4.1 INTRODUCTION 71
4.2 DIGITAL IMAGE REPRESENTATION 73 4.2.1 TOPOLOGICAL AND METRIC
PROPERTIES OF IMAGES 74 4.2.2 BRIGHTNESS HISTOGRAM 77 4.3 IMAGE
FILTERING PARADIGM 78
AA FREQUENCY DOMAIN 80 4.4.1 ID FOURIER TRANSFORM 80 4.4.2 2D FOURIER
TRANSFORM 85 4.5 FILTERING IN THE IMAGE DOMAIN 90 4.6 CONCLUSIONS 96
REFERENCES 96
IMAGE 4
X I CONTENTS
5 JOINT SPATIAL/SPATIAL-FREQUENCY REPRESENTATIONS 97
GABRIEL CRISTOBAL, SALVADOR GABARDA, AND LEON COHEN 5.1 INTRODUCTION 97
5.2 FUNDAMENTALS OF JOINT REPRESENTATIONS 98 5.2.1 NOTATION 99
5.2.2 THE WIGNER DISTRIBUTION 100 5.2.2.1 MARGINALS 101 5.2.2.2
INVERSION 101 5.2.2.3 TRANSLATION INVARIANCE 101
5.2.2.4 PRODUCT OF IMAGES 102 5.2.2.5 OVERLAP OF TWO IMAGES 102 5.2.2.6
REAL IMAGES 102 5.2.2.7 CROSS WIGNER DISTRIBUTION 103
5.3 OTHER DISTRIBUTIONS 103 5.3.1 THE SPECTROGRAM 104 5.3.2 THE ANALYTIC
IMAGE 104 5.4 THE PSEUDO-WIGNER-VILLE DISTRIBUTION (PWVD) 105 5.4.1
ID-SMOOTHED PWVD 105 5.4.2 ID DIRECTIONAL PWVD 105
5.4.3 2D-SMOOTHED PWVD DEFINITION AND IMPLEMENTATION 108 5.5 2D
LOG-GABOR FILTERING SCHEMES FOR IMAGE PROCESSING 110 5.6 TEXTURE
SEGMENTATION 112 5.7 HYBRID OPTICAL-DIGITAL IMPLEMENTATION 114 5.8
CONCLUSIONS 116
ACKNOWLEDGMENTS 116 REFERENCES 116
6 SPLINES IN BIOMEDICAL IMAGE PROCESSING 119 SLAVICA JONIC AND CARLOS
OSCAR SANCHEZ SORZANO 6.1 INTRODUCTION 119
6.2 MAIN THEORETICAL RESULTS ABOUT SPLINES 120 6.2.1 SPLINES AS
INTERPOLANTS AND BASIS FUNCTIONS 120 6.2.1.1 TENSOR PRODUCT SPLINES 120
6.2.1.2 POLYHARMONIC SPLINES 127 6.2.2 SPLINES FOR MULTISCALE ANALYSIS
129 6.3 SPLINES IN BIOMEDICAL IMAGE AND VOLUME REGISTRATION 131 6.4
CONCLUSIONS 132
REFERENCES 133
7 WAVELETS 135
ANN DOOMS AND INGRID DAUBECHIES 7.1 INTRODUCTION 135
7.2 CHASING SHERLOCK HOLMES: HOW TO SCRUTINIZE AN IMAGE 139 7.2.1
CLASSICAL FOURIER ANALYSIS 140 7.2.2 FORCES OF NATURE 141
IMAGE 5
CONTENTS XI
7.3 A NATURAL EVOLUTION: THE CONTINUOUS WAVELET TRANSFORM 142
7.4 THEORY INTO PRACTICE: THE DISCRETE WAVELET TRANSFORM 143 7.5 MALLAT
AND MEYER DIGGING DEEPER: MULTIRESOLUTION ANALYSIS 144 7.5.1 EXAMPLES
146
7.6 GOING TO HIGHER DIMENSIONS: DIRECTIONAL TRANSFORMS 148 7.6.1
SEPARABLE TRANSFORMS 148 7.6.2 DUAL-TREE COMPLEX WAVELET TRANSFORM 149
7.6.3 SHEARLETS 151
7.7 CONCLUSION 152
REFERENCES 153
8 SCALE-SPACE REPRESENTATIONS FOR CRAY-SCALE AND COLOR IMAGES 155 IRIS
U. VANHAMEL, IOANNIS PRATIKAKIS, AND HICHEM SAHLI 8.1 INTRODUCTION 155
8.2 BACKGROUND 156
8.2.1 DEFINITIONS 156
8.2.2 AXIOMS AND PROPERTIES 157 8.2.2.1 FUNDAMENTAL AXIOMS 158 8.2.2.2
PROPERTIES 160 8.2.2.3 MORPHOLOGICAL PROPERTIES 161 8.2.3 PDE
EQUATION-BASED FORMULATION 162 8.2.3.1 CLASSIFICATION 162 8.2.3.2
WELL-POSEDNESS 163 8.2.3.3 SOLVING THE PDE 163
8.2.4 VARIATIONAL FORMULATION 165 8.3 REPRESENTATION 165
8.3.1 GAUSSIAN SCALE SPACE 165 8.3.2 VARIABLE CONDUCTANCE DIFFUSION 167
8.3.3 GEOMETRY-DRIVEN SCALE SPACE 171 8.3.4 MATHEMATICAL MORPHOLOGY
SCALE SPACE 173 8.4 CONCLUSIONS 176
REFERENCES 176
9 SPATIAL LIGHT MODULATORS (SLMS) 179 PHILIP M. BIRCH, RUPERT YOUNG, AND
CHRIS CHATWIN 9.1 INTRODUCTION 179
9.2 TYPES OF SLM 180
9.2.1 LIQUID CRYSTAL 180
9.2.1.1 NEMATIC LIQUID CRYSTAL SLMS 181 9.2.1.2 FRAME RATES 183 9.2.1.3
TEMPERATURE EFFECTS 184 9.2.1.4 TWISTED NEMATIC LC-SLM 184 9.2.1.5
MODULATION METHODS 186 9.2.1.6 FERROELECTRIC 187 9.2.1.7 ADDRESSING
METHODS 189
IMAGE 6
XII CONTENTS
9.2.2 MULTIPLE QUANTUM-WELL SLMS 191
9.2.3 MIRROR DEVICES 192 9.2.3.1 AMPLITUDE MODULATORS 192 9.2.3.2 PHASE
MODULATORS 193
9.3 FULLY COMPLEX MODULATION METHODS 194 9.4 APPLICATIONS 196
9.5 CONCLUSIONS 197
REFERENCES 198
10 HOLOGRAPHIC VISUALIZATION OF 3D DATA 201 PIERRE-ALEXANDRE BLANCHE
10.1 INTRODUCTION 201
10.2 REPRODUCING THE AMPLITUDE AND THE PHASE 203 10.3 DIFFERENT TYPES OF
HOLOGRAMS 207 10.3.1 TRANSMISSION VERSUS REFLECTION 207 10.3.2 DENISYUK
HOLOGRAM 209
10.3.3 COLOR REPRODUCTION 210 10.3.3.1 REFLECTION 211 10.3.3.2
TRANSMISSION 212 10.3.4 PHASE VERSUS AMPLITUDE: THE DIFFRACTION
EFFICIENCY 213
10.3.5 SURFACE RELIEF HOLOGRAMS 214 10.3.6 THIN VERSUS THICK HOLOGRAM
215 10.4 HOLOGRAPHIC APPROXIMATIONS 215 10.4.1 RAINBOW HOLOGRAM 216
10.4.2 HOLOGRAPHIC STEREOGRAM 217 10.5 DYNAMIC HOLOGRAPHY 220 10.5.1
HOLOGRAPHIC CINEMATOGRAPHY 220 10.5.2 REAL-TIME INTEGRAL HOLOGRAPHY 222
10.5.3 HOLOGRAPHIC VIDEO 223 10.6 CONCLUSION 224
ACKNOWLEDGMENT 225 REFERENCES 225 FURTHER READING 226
11 HOLOGRAPHIC DATA STORAGE TECHNOLOGY 227 KEVIN CURTIS, LISA DHAR, AND
PIERRE-ALEXANDRE BLANCHE 11.1 INTRODUCTION 227
11.2 HOLOGRAPHIC DATA STORAGE OVERVIEW 228 11.2.1 DRIVE ARCHITECTURE 231
11.2.2 CONSUMER DRIVE IMPLEMENTATION 233 11.3 TOLERANCES AND BASIC SERVO
234
11.4 DATA CHANNEL OVERVIEW 236 11.5 MATERIALS FOR HOLOGRAPHY 237 11.5.1
SILVER HALIDE PHOTOGRAPHIC EMULSION 238 11.5.2 PHOTOPOLYMERS 239
IMAGE 7
CONTENTS XIII
11.5.3 DICHROMATED GELATIN 240
11.5.4 MISCELLANEOUS RECORDING MEDIA 241 11.5.4.1 PHOTOTHERMOPLASTICS
241 11.5.4.2 PHOTOCHROMIES 242 11.5.4.3 PHOTOREFRACTIVE 242 11.6
MATERIAL FOR DATA STORAGE 243
11.7 MEDIA FOR HOLOGRAPHIC DATA STORAGE 246 11.8 CONCLUSIONS 246
REFERENCES 247
12 PHASE-SPACE ROTATORS AND THEIR APPLICATIONS IN OPTICS 251 JOSE A.
RODRIGO, TATIANA ALIEVA, AND MARTIN J. BASTIAANS 12.1 INTRODUCTION 251
12.2 SIGNAL REPRESENTATION IN PHASE SPACE: THE WIGNER DISTRIBUTION 252
12.2.1 DESCRIPTION OF PARTIALLY COHERENT LIGHT 252 12.2.2 WIGNER
DISTRIBUTION 253 12.3 MATRIX FORMALISM FOR THE DESCRIPTION OF
PHASE-SPACE ROTATIONS 255
12.4 BASIC PHASE-SPACE ROTATORS FOR TWO-DIMENSIONAL SIGNALS 257 12.5
OPTICAL SYSTEM DESIGN FOR PHASE-SPACE ROTATORS AND THEIR EXPERIMENTAL
IMPLEMENTATIONS 260 12.6 APPLICATIONS OF PHASE-SPACE ROTATORS IN OPTICS
264
12.7 CONCLUSIONS 269
ACKNOWLEDGMENTS 269 REFERENCES 269
13 MICROSCOPIC IMAGING 273 GLORIA BUENO, OSCAR DENIZ, ROBERTO
GONZALEZ-MORALES, JUAN VIDAL, AND JESUS SALIDO 13.1 INTRODUCTION 273
13.2 IMAGE FORMATION: BASIC CONCEPTS 274 13.2.1 TYPES OF IMAGE 274
13.2.2 IMAGE FORMATION IN THE OPTICAL MICROSCOPE 274 13.2.3 LIGHT 275
13.2.4 RESOLUTION 275
13.3 COMPONENTS OF A MICROSCOPIC IMAGING SYSTEM 276 13.4 TYPES OF
MICROSCOPY 277
13.4.1 BRIGHT-FIELD MICROSCOPY 278 13.4.2 PHASE CONTRAST MICROSCOPY 279
13.4.3 DARK CONTRAST MICROSCOPY 280 13.4.4 DIFFERENTIAL INTERFERENCE
CONTRAST (DIC) MICROSCOPY 281 13.4.5 FLUORESCENCE MICROSCOPY 282 13.4.6
CONFOCAL MICROSCOPY 283 13.4.7 ELECTRON MICROSCOPY 283 13.5 DIGITAL
IMAGE PROCESSING IN MICROSCOPY 284 13.5.1 IMAGE PREPROCESSING 284
IMAGE 8
XIV CONTENTS
13.5.2
13.5.3 13.5.4 13.6
IMAGE ENHANCEMENT SEGMENTATION 287 CLASSIFICATION 289 CONCLUSIONS 292
ACKNOWLEDGMENTS
REFERENCES 292
286
292
14
14.1 14.2 14.2.1 14.2.2
14.2.3 14.2.4 14.2.5 14.3
14.3.1 14.3.2 14.4 14.4.1 14.4.2 14.4.3 14.5 14.5.1 14.5.2 14.6 14.6.1
14.6.2 14.6.3 14.7
15
15.1 15.2 15.3 15.4
15.4.1 15.4.2 15.5 15.5.1
15.5.1.1
ADAPTIVE OPTICS IN MICROSCOPY 295 MARTIN J. BOOTH INTRODUCTION 295
ABERRATIONS IN MICROSCOPY 296
DEFINITION OF ABERRATIONS 296 REPRESENTATION OF ABERRATIONS 297 EFFECTS
OF ABERRATIONS IN MICROSCOPES 298 SOURCES OF ABERRATIONS IN MICROSCOPES
300
EFFECTS OF THE NUMERICAL APERTURE 300 PRINCIPLES OF ADAPTIVE OPTICS 301
METHODS FOR ABERRATION MEASUREMENT 303 ABERRATION CORRECTION DEVICES 305
ABERRATION CORRECTION IN HIGH-RESOLUTION OPTICAL MICROSCOPY 307
MICROSCOPE CONFIGURATIONS 307 POINT-SCANNING MICROSCOPES 308 WIDEFIELD
MICROSCOPES 309 ABERRATION MEASUREMENT AND WAVEFRONT SENSING 312 DIRECT
WAVEFRONT SENSING IN MICROSCOPY 312 INDIRECT WAVEFRONT SENSING 314
CONTROL STRATEGIES FOR ADAPTIVE MICROSCOPY 317 CHOICE OF SIGNAL FOR
WAVEFRONT SENSING 318 ABERRATION DYNAMICS 318
FIELD-DEPENDENT ABERRATIONS 319 CONCLUSION 320 ACKNOWLEDGMENTS 321
REFERENCES 321
APERTURE SYNTHESIS AND ASTRONOMICAL IMAGE FORMATION ANNA SCAIFE
INTRODUCTION 323 IMAGE FORMATION FROM OPTICAL TELESCOPES 324
SINGLE-APERTURE RADIO TELESCOPES 326 APERTURE SYNTHESIS 327 PRINCIPLES
OF EARTH ROTATION APERTURE SYNTHESIS 327 RECEIVING SYSTEM RESPONSE 330
IMAGE FORMATION 333 DERIVATION OF INTENSITY FROM VISIBILITY 333 FULL-SKY
IMAGING 335
323
IMAGE 9
CONTENTS XV
15.5.2 DECONVOLUTION TECHNIQUES 337
15.5.2.1 THE CLEAN ALGORITHM 338 15.5.3 MAXIMUM ENTROPY DECONVOLUTION
(THE BAYESIAN RADIO ASTRONOMER) 339 15.5.4 COMPRESSED SENSING 342 15.6
CONCLUSIONS 343
REFERENCES 343
16 DISPLAY AND PROJECTION 345 TOM KIMPE, PATRICK CANARY, AND PETER
JANSSENS 16.1 INTRODUCTION 345
16.2 DIRECT VIEW DISPLAYS 345
16.2.1 WORKING PRINCIPLE 345 16.2.2 TRANSMISSIVE DISPLAYS 346 16.2.3
EMISSIVE DISPLAYS 348 16.2.3.1 CRT DISPLAY 348
16.2.3.2 PLASMA DISPLAY 349 16.2.3.3 LED DISPLAY 350 16.2.3.4 OLED
DISPLAY 350 16.2.4 REFLECTIVE DISPLAYS 351 16.2.4.1 REFLECTIVE LCD 352
16.2.4.2 ELECTRONIC PAPER (E-PAPER) 352 16.3 PROJECTION DISPLAYS 353
16.3.1 BASIC CONCEPTS AND KEY COMPONENTS 353 16.3.2 PROJECTOR
ARCHITECTURES 356 16.3.2.1 THREE-PANEL TRANSMISSIVE 357 16.3.2.2
THREE-PANEL REFLECTIVE 357 16.3.2.3 ONE-PANEL REFLECTIVE DLP WITH UHP
LAMP 358 16.3.2.4 ONE-PANEL REFLECTIVE LCOS WITH HIGH-BRIGHTNESS LEDS
359 16.3.2.5 THREE-PANEL GRATING LIGHT VALVE PROJECTOR 359 16.4
APPLICATIONS 362
16.4.1 MEDICAL IMAGING DISPLAYS 362 16.4.1.1 MEDICAL LCD DISPLAYS 362
16.4.1.2 CALIBRATION AND QUALITY ASSURANCE OF MEDICAL DISPLAY SYSTEMS
362 16.4.2 OTHER APPLICATIONS 364
16.5 CONCLUSION 366
REFERENCES 366
17 3D DISPLAYS 369
JANUSZ KONRAD
17.1 INTRODUCTION 369
17.2 PLANAR STEREOSCOPIC DISPLAYS 370 17.2.1 STEREOSCOPIC DISPLAYS WITH
GLASSES 371 17.2.1.1 SPECTRAL FILTERING 371 17.2.1.2 LIGHT POLARIZATION
373
IMAGE 10
XVI CONTENTS
17.2.1.3 LIGHT SHUTTERING 375
17'.2.2 AUTOSTEREOSCOPIC DISPLAYS (WITHOUT GLASSES) 375 17.3 PLANAR
MULTIVIEW DISPLAYS 378 17.3.1 ACTIVE MULTIVIEW 3D DISPLAYS 378 17.3.2
PASSIVE MULTIVIEW 3D DISPLAYS 379 17 A SIGNAL PROCESSING FOR 3D DISPLAYS
381 17'.4.1 ENHANCEMENT OF 3D ANAGLYPH VISUALIZATION 381 17.4.2 GHOSTING
SUPPRESSION IN POLARIZED AND SHUTTERED 3D DISPLAYS 382 17A3 ANTI-ALIAS
FILTERING FOR MULTIVIEW AUTOSTEREOSCOPIC DISPLAYS 384
17AA LUMINANCE/COLOR BALANCING FOR STEREO PAIRS 387 17.4.5 INTERMEDIATE
VIEW INTERPOLATION 389 17.5 CONCLUSIONS 393 ACKNOWLEDGMENTS 394
REFERENCES 394
18 LINKING ANALOG AND DIGITAL IMAGE PROCESSING 397 LEONID P. YAROSLAVSKY
18.1 INTRODUCTION 397
18.2 HOW SHOULD ONE BUILD DISCRETE REPRESENTATION OF IMAGES AND
TRANSFORMS? 398 18.2.1 SIGNAL DISCRETIZATION 399 18.2.2 IMAGING
TRANSFORMS IN THE MIRROR OF DIGITAL COMPUTERS 401 18.2.3
CHARACTERIZATION OF DISCRETE TRANSFORMS IN TERMS OF EQUIVALENT
ANALOG TRANSFORMS 402 18.2.3.1 POINT SPREAD FUNCTION AND FREQUENCY
RESPONSE OF A CONTINUOUS FILTER EQUIVALENT TO A GIVEN DIGITAL FILTER 403
18.2.3.2 POINT SPREAD FUNCTION OF THE DISCRETE FOURIER ANALYSIS 406
18.3 BUILDING CONTINUOUS IMAGE MODELS 408 18.3.1 DISCRETE SINE
INTERPOLATION: THE GOLD STANDARD FOR IMAGE RESAMPLING 408 18.3.1.1
SIGNAL RECOVERY FROM SPARSE OR NONUNIFORMLY SAMPLED DATA 409 18.3.2
IMAGE NUMERICAL DIFFERENTIATION AND INTEGRATION 411 18.4
DIGITAL-TO-ANALOG CONVERSION IN DIGITAL HOLOGRAPHY. CASE STUDY:
RECONSTRUCTION OF KINOFORM 414 18.5 CONCLUSION 417
REFERENCES 418
19 VISUAL PERCEPTION AND QUALITY ASSESSMENT 419 ANUSH K. MOORTHY, ZHOU
WANG, AND ALAN C. BOVIK 19.1 INTRODUCTION 419
19.2 THE HUMAN VISUAL SYSTEM 420 19.3 HUMAN-VISUAL-SYSTEM-BASED MODELS
422 19.3.1 VISUAL DIFFERENCE PREDICTOR (VDP) 423 19.3.2 VISUAL
DISCRIMINATION MODEL (VDM) 423 19.3.3 TEO AND HEEGER MODEL 423
IMAGE 11
CONTENTS XVII
19.3.4 VISUAL SIGNAL-TO-NOISE RATIO (VSNR) 424
19.3.5 DIGITAL VIDEO QUALITY METRIC (DVQ) 424 19.3.6 MOVING PICTURE
QUALITY METRIC (MPQM) 424 19.3.7 SCALABLE WAVELET-BASED DISTORTION
METRIC FOR VQA 425 19A FEATURE-BASED MODELS 425 19.4.1 A DISTORTION
MEASURE BASED ON HUMAN VISUAL
SENSITIVITY 425
19.4.2 SINGULAR VALUE DECOMPOSITION AND QUALITY 425 19.4.3
CURVATURE-BASED IMAGE QUALITY ASSESSMENT 426 19.4.4 PERCEPTUAL VIDEO
QUALITY METRIC (PVQM) 426 19.4.5 VIDEO QUALITY METRIC (VQM) 426 19.4.6
TEMPORAL VARIATIONS OF SPATIAL-DISTORTION-BASED VQA 427 19.4.7 TEMPORAL
TRAJECTORY AWARE QUALITY MEASURE 427 19.5 STRUCTURAL AND
INFORMATION-THEORETIC MODELS 427
19.5.1 SINGLE-SCALE STRUCTURAL SIMILARITY INDEX (SS-SSIM) 428 19.5.2
MULTISCALE STRUCTURAL SIMILARITY INDEX (MS-SSIM) 428 19.5.3 SSIM
VARIANTS 429 19.5.4 VISUAL INFORMATION FIDELITY (VIF) 429
19.5.5 STRUCTURAL SIMILARITY FOR VQA 430 19.5.6 VIDEO VIF 430
19.6 MOTION-MODELING-BASED ALGORITHMS 430 19.6.1 SPEED-WEIGHTED
STRUCTURAL SIMILARITY INDEX (SW-SSIM) 431 19.6.2 MOTION-BASED VIDEO
INTEGRITY EVALUATION (MOVIE) 431 19.7 PERFORMANCE EVALUATION AND
VALIDATION 432 19.8 CONCLUSION 435
REFERENCES 435
20 DIGITAL IMAGE AND VIDEO COMPRESSION 441 JOERI BARBARIEN, ADRIAN
MUNTEANU, AND PETER SCHELKENS 20.1 INTRODUCTION 441
20.2 TYPICAL ARCHITECTURE 441 20.3 DATA PREDICTION AND TRANSFORMATION
442 20.3.1 REMOVING DATA REDUNDANCY 442 20.3.2 SPATIAL PREDICTION 443
20.3.3 SPATIAL TRANSFORMS 444 20.3.4 COLOR/SPECTRAL AND
MULTIPLE-COMPONENT PREDICTION AND TRANSFORMS 445 20.3.5 TEMPORAL
REDUNDANCY REMOVAL BY MOTION ESTIMATION 445
20.3.5.1 MOTION-COMPENSATED PREDICTION 445 20.3.5.2 IMPROVEMENTS OVER
THE BASIC APPROACH 447 20.4 QUANTIZATION 449
20.4.1 PRINCIPLE 449
20.4.2 LLOYD-MAX QUANTIZERS 450 20.4.3 EMBEDDED QUANTIZATION 451 20.5
ENTROPY CODING 452
IMAGE 12
XVIII CONTENTS
20.5.1
20.5.2 20.6 20.6.1 20.6.2 20.6.3
20.7 20.7.1 20.7.2 20.8
HUFFMAN CODING 452 ARITHMETIC CODING 453 IMAGE AND VOLUMETRIC CODING 455
GENERIC IMAGE CODING 455
JPEG 456 JPEG 2000 456 VIDEO CODING 457 H.261 458
H.264/AVC 459 CONCLUSIONS 460 ACKNOWLEDGMENTS 460 REFERENCES 460
21 OPTICAL COMPRESSION SCHEME TO SIMULTANEOUSLY MULTIPLEX AND ENCODE
IMAGES 463 AYMAN ALFALOU, ALI MANSOUR, MARWA ELBOUZ, AND CHRISTIAN
BROSSEAU 21.1 INTRODUCTION 463
21.2 OPTICAL IMAGE COMPRESSION METHODS: BACKGROUND 464 21.3 COMPRESSION
AND MULTIPLEXING: INFORMATION FUSION BY SEGMENTATION IN THE SPECTRAL
PLANE 466 21.4 OPTICAL COMPRESSION OF COLOR IMAGES BY USING JPEG AND
JPEG2000
STANDARDS 470
21.4.1 OPTICAL JPEG IMPLEMENTATION RESULTS 472 21.4.2 OPTICAL AND
DIGITAL JPEG COMPARISON 473 21.4.3 OPTICAL JPEG2000 IMPLEMENTATION 474
21.5 NEW SIMULTANEOUS COMPRESSION AND ENCRYPTION APPROACH BASED ON A
BIOMETRIE KEY AND DCT 474 21.6 CONCLUSIONS 480 REFERENCES 481
22 COMPRESSIVE OPTICAL IMAGING: ARCHITECTURES AND ALGORITHMS 485 ROUMMEL
F. MARCIA, REBECCA M. WILLETT, AND ZACHARY T. HARMANY 22.1 INTRODUCTION
485
22.1.1 ORGANIZATION OF THE CHAPTER 486 22.2 COMPRESSIVE SENSING 486 22.3
ARCHITECTURES FOR COMPRESSIVE IMAGE ACQUISITION 488 22.3.1 CODED
APERTURES 490
22.3.2 COMPRESSIVE-CODED APERTURES 492 22.4 ALGORITHMS FOR RESTORING
COMPRESSIVELY SENSED IMAGES 494 22.4.1 CURRENT ALGORITHMS FOR SOLVING
THE CS MINIMIZATION PROBLEM 494
22.4.2 ALGORITHMS FOR NONNEGATIVITY CONSTRAINED 2-^1 CS MINIMIZATION
496 22.4.3 MODEL-BASED SPARSITY 497 22.4.4 COMPENSATING FOR NONNEGATIVE
SENSING MATRICES 498
IMAGE 13
CONTENTS XIX
22.5 EXPERIMENTAL RESULTS 499
22.6 NOISE AND QUANTIZATION 502 22.7 CONCLUSIONS 502 ACKNOWLEDGMENTS 503
REFERENCES 503
23 COMPRESSED SENSING: "WHEN SPARSITY MEETS SAMPLING" 507 LAURENT
JACQUES AND PIERRE VANDERGHEYNST 23.1 INTRODUCTION 507 23.1.1
CONVENTIONS 508 23.2 IN PRAISE OF SPARSITY 508 23.3 SENSING AND
COMPRESSING IN A SINGLE STAGE 510 23.3.1 LIMITS OF THE SHANNON-NYQUIST
SAMPLING 510 23.3.2 NEW SENSING MODEL 511 23.4 RECONSTRUCTING FROM
COMPRESSED INFORMATION: A BET ON
SPARSITY 512
23.5 SENSING STRATEGIES MARKET 515 23.5.1 RANDOM SUB-GAUSSIAN MATRICES
516 23.5.2 RANDOM FOURIER ENSEMBLE 516 23.5.3 RANDOM BASIS ENSEMBLE 517
23.5.4 RANDOM CONVOLUTION 517 23.5.5 OTHER SENSING STRATEGIES 518 23.6
RECONSTRUCTION RELATIVES 518 23.6.1 BE SPARSE IN GRADIENT 518
23.6.2 ADD OR CHANGE PRIORS 519 23.6.3 OUTSIDE CONVEXITY 520 23.6.4 BE
GREEDY 520 23.7 SOME COMPRESSIVE IMAGING APPLICATIONS 521 23.7.1
COMPRESSIVE IMAGERS 521
23.7.2 COMPRESSIVE RADIO INTERFEROMETRY 523 23.8 CONCLUSION AND THE
"SCIENCE 2.0" EFFECT 524 23.8.1 INFORMATION SOURCES 524 23.8.2
REPRODUCIBLE RESEARCH 525
ACKNOWLEDGMENTS 526 REFERENCES 526 FURTHER READING 527
24 BLIND DECONVOLUTION IMAGING 529 FILIP SROUBEK AND MICHAL SOREL 24.1
INTRODUCTION 529 24.2 IMAGE DECONVOLUTION 530 24.3 SINGLE-CHANNEL
DECONVOLUTION 534 24A MULTICHANNEL DECONVOLUTION 539 24.5 SPACE-VARIANT
EXTENSION 542
24.6 CONCLUSIONS 546
IMAGE 14
XX I CONTENTS
ACKNOWLEDGMENTS 547
REFERENCES 547
25 OPTICS AND DECONVOLUTION: WAVEFRONT SENSING 549 JUSTO ANNES AND
SALVADOR BARD 25.1 INTRODUCTION 549
25.2 DECONVOLUTION FROM WAVEFRONT SENSING (DWFS) 550 25.3 PAST AND
PRESENT 551
25.4 THE RESTORATION PROCESS 552 25.4.1 ESTIMATING THE WAVE ABERRATION
WITH GRADIENT-BASED WAVEFRONT SENSORS 553 25.4.2 PSF AND OTF: ESTIMATION
PROCESS AND BIAS 558 25.4.3 SIGNIFICANCE OF THE RESTORATION FILTER 559
25.4.4 RESOLUTION OF THE RESTORED IMAGE: EFFECTIVE CUTOFF FREQUENCY 560
25.4.5 IMPLEMENTATION OF THE DECONVOLUTION FROM WAVEFRONT SENSING
TECHNIQUE 562 25.5 EXAMPLES OF APPLICATION 563 25.5.1 ASTRONOMICAL
IMAGING 563 25.5.2 EYE FUNDUS IMAGING 564 25.6 CONCLUSIONS 567
ACKNOWLEDGMENTS 568 REFERENCES 568 FURTHER READING 569
26 IMAGE RESTORATION AND APPLICATIONS IN BIOMEDICAL PROCESSING 571 FILIP
ROOMS, BART GOOSSENS, ALEKSANDRA PIZURICA, AND WILFRIED PHILIPS 26.1
INTRODUCTION 571 26.2 CLASSICAL RESTORATION TECHNIQUES 574 26.2.1
INVERSE FILTER AND WIENER FILTER 574 26.2.1.1 INVERSE FILTER 574
26.2.1.2 WIENER FILTER 575
26.2.2 BAYESIAN RESTORATION 577 26.2.2.1 GAUSSIAN NOISE MODEL 578 26.2.3
POISSON NOISE MODEL 580 26.2.3.1 RICHARDSON-LUCY RESTORATION 580
26.2.3.2 CLASSICAL REGULARIZATION OF RICHARDSON-LUCY 581 26.3 SPERRIL:
ESTIMATION AND RESTORATION OF CONFOCAL IMAGES 583 26.3.1 ORIGIN AND
RELATED METHODS 583 26.3.2 OUTLINE OF THE ALGORITHM 584 26.3.2.1 NOISE
REDUCTION 584
26.3.2.2 DEBLURRING STEP 585 26.3.2.3 SPERRIL AS RL WITH A PRIOR? 585
26.3.3 EXPERIMENTAL RESULTS 586 26.3.3.1 COLOCALIZATION ANALYSIS: WHAT
AND WHY? 586 26.3.3.2 EXPERIMENTAL SETUP 586
IMAGE 15
CONTENTS XXI
26.4 CONCLUSIONS 589
ACKNOWLEDGMENT 589 REFERENCES 590
27 OPTICAL AND GEOMETRICAL SUPER-RESOLUTION 593 JAVIER GARCIA MONREAL
27.1 INTRODUCTION 593 27.2 FUNDAMENTAL LIMITS TO RESOLUTION IMPROVEMENT
594 27.3 DIFFRACTIVE OPTICAL SUPER-RESOLUTION 595 27.3.1 OPTICAL SYSTEM
LIMITATIONS AND SUPER-RESOLUTION STRATEGY 595 27.3.2 NONHOLOGRAPHIC
APPROACHES 597 27.3.2.1 TIME MULTIPLEXING 597 27.3.2.2 ANGULAR
MULTIPLEXING 600 27.3.2.3 MULTIPLEXING IN OTHER DEGREES OF FREEDOM 601
27.3.3 HOLOGRAPHIC APPROACHES 602 27.3.3.1 HOLOGRAPHIC WAVEFRONT CODING
602 27.3.3.2 MULTIPLEXED HOLOGRAMS 603 27.3.3.3 DIGITAL HOLOGRAPHY 604
27.3.3.4 AXIAL SUPER-RESOLUTION 607 27A GEOMETRICAL SUPER-RESOLUTION 608
REFERENCES 611
28 SUPER-RESOLUTION IMAGE RECONSTRUCTION CONSIDERING INACCURATE SUBPIXEL
MOTION INFORMATION 613 JONGSEONG CHOI AND MOON GI KANG 28.1 INTRODUCTION
613 28.2 FUNDAMENTALS OF SUPER-RESOLUTION IMAGE RECONSTRUCTION 614
28.2.1 BASIC CONCEPT OF SUPER-RESOLUTION 614 28.2.2 OBSERVATION MODEL
616 28.2.3 SUPER-RESOLUTION AS AN INVERSE PROBLEM 617 28.2.3.1
CONSTRAINED LEAST SQUARES APPROACH 617 28.2.3.2 BAYESIAN APPROACH 618
28.2.4 THE FREQUENCY DOMAIN INTERPRETATION 621 28.3 SUPER-RESOLUTION
IMAGE RECONSTRUCTION CONSIDERING INACCURATE
SUBPIXEL MOTION ESTIMATION 623 28.3.1 ANALYSIS OF THE MISREGISTRATION
ERROR 623 28.3.2 MULTICHANNEL-REGULARIZED SUPER-RESOLUTION IMAGE
RECONSTRUCTION ALGORITHM 624 28.3.3 EXPERIMENTAL RESULTS 628
28.4 DEVELOPMENT AND APPLICATIONS OF SUPER-RESOLUTION IMAGE
RECONSTRUCTION 631 28.4.1 SUPER-RESOLUTION FOR COLOR IMAGING SYSTEMS 632
28.4.2 SIMULTANEOUS ENHANCEMENT OF SPATIAL RESOLUTION AND DYNAMIC
RANGE 634
28.4.3 SUPER-RESOLUTION FOR VIDEO SYSTEMS 636
IMAGE 16
XXII CONTENTS
28.5 CONCLUSIONS 640
ACKNOWLEDGMENTS 640 REFERENCES 641
29 IMAGE ANALYSIS: INTERMEDIATE-LEVEL VISION 643 JAN CORNELLS, ANETA
MARKOVA, AND RUDI DEKLERCK 29.1 INTRODUCTION 643
29.2 PIXEL- AND REGION-BASED SEGMENTATION 645 29.2.1 SUPERVISED
APPROACHES 646 29.2.1.1 CLASSIFICATION BASED ON MAP (MAXIMIZING THE A
POSTERIORI PROBABILITY) 646
29.2.2 UNSUPERVISED APPROACHES 647 29.2.2.1 K-MEANS CLUSTERING 648
29.2.2.2 EXPECTATION-MAXIMIZATION (EM) 649 29.2.3 IMPROVING THE
CONNECTIVITY OF THE CLASSIFICATION RESULTS 650
29.2.3.1 SEEDED REGION GROWING 651 29.2.3.2 MATHEMATICAL MORPHOLOGY 651
29.3 EDGE-BASED SEGMENTATION 652 29.3.1 OPTIMAL EDGE DETECTION AND
SCALE-SPACE APPROACH 654 29.4 DEFORMABLE MODELS 654 29.4.1 MATHEMATICAL
FORMULATION (CONTINUOUS CASE) 655 29.4.2 APPLICATIONS OF ACTIVE CONTOURS
657 29.4.3 THE BEHAVIOR OF SNAKES 658
29.5 MODEL-BASED SEGMENTATION 661 29.5.1 STATISTICAL LABELING 662 29.5.2
BAYESIAN DECISION THEORY 662
29.5.3 GRAPHS AND MARKOV RANDOM FIELDS DEFINED ON A GRAPH 662 29.5.4
CLIQUES 663 29.5.5 MODELS FOR THE PRIORS 663 29.5.6 LABELING IN A
BAYESIAN FRAMEWORK BASED ON MARKOV RANDOM FIELD
MODELING 663
29.6 CONCLUSIONS 664 REFERENCES 664
30 HYBRID DIGITAL-OPTICAL CORRELATOR FOR ATR 667 TIEN-HSIN CHAO AND
THOMAS LU 30.1 INTRODUCTION 667
30.1.1 GRAY-SCALE OPTICAL CORRELATOR SYSTEM'S SPACE-BANDWIDTH PRODUCT
MATCHING 669 30.1.2 INPUT SLM SELECTION 671 30.2 MINIATURIZED GRAY-SCALE
OPTICAL CORRELATOR 673
30.2.1 512 X 512 GOC SYSTEM ARCHITECTURE 673 30.2.2 GRAPHIC USER
INTERFACE OF THE GOC SYSTEM 674 30.2.3 GRAY-SCALE OPTICAL CORRELATOR
TESTING 675 30.2.4 SUMMARY 676
IMAGE 17
CONTENTS XXIII
30.3 OPTIMIZATION OF OT-MACH FILTER 677
30.3.1 OPTIMIZATION APPROACH 677 30.4 SECOND STAGE: NEURAL NETWORK FOR
TARGET VERIFICATION 681 30.4.1 FEATURE EXTRACTION METHODS 682 30.4.1.1
HORIZONTAL AND VERTICAL BINNING 682 30.4.1.2 PRINCIPAL COMPONENT
ANALYSIS 684 30.4.2 NEURAL NETWORK IDENTIFICATION 686
30.4.2.1 NEURAL NETWORK ALGORITHM 686 30.5 EXPERIMENTAL DEMONSTRATION OF
ATR PROCESS 687 30.5.1 VEHICLE IDENTIFICATION 687 30.5.2 SONAR MINE
IDENTIFICATION 689 30.6 CONCLUSIONS 690
ACKNOWLEDGMENTS 692 REFERENCES 692
31 THEORY AND APPLICATION OF MULTISPECTRAL FLUORESCENCE TOMOGRAPHY 695
ROSY FAVICCHIO, GIANNIS ZACHARAKIS, ANIKITOS GAROFALAKIS,
AND JORGE RIPOLL
31.1 INTRODUCTION 695
31.2 FLUORESCENCE MOLECULAR TOMOGRAPHY (FMT) 696 31.2.1 FMT PRINCIPLE
696 31.2.2 THEORETICAL BACKGROUND 697 31.2.2.1 OPTICAL PARAMETERS 698
31.2.2.2 THE DIFFUSION EQUATION 699 31.2.2.3 SOLUTIONS OF THE DIFFUSION
EQUATION FOR INFINITE HOMOGENEOUS
MEDIA 699
31.2.2.4 THE EXCITATION SOURCE TERM 700 31.2.2.5 THE FLUORESCENCE SOURCE
TERM 700 31.2.2.6 THE BORN APPROXIMATION FOR THE EXCITATION TERM 702
31.2.2.7 BOUNDARY CONDITIONS 702
31.2.2.8 INVERSE PROBLEM 703 31.2.2.9 THE NORMALIZED BORN APPROXIMATION
703 31.2.3 EXPERIMENTAL SETUP 705 31.3 SPECTRAL TOMOGRAPHY 706 31.3.1
SPECTRAL DECONVOLUTION 707 31.4 MULTITARGET DETECTION AND SEPARATION 709
31.4.1 MULTICOLOR PHANTOM 709 31.4.1.1 IN VITRO FLUOROPHORE UNMIXING 709
31.4.1.2 METHODOLOGY 709 31.4.2 LN VIVO STUDY 711
31.4.2.1 IN VIVO FLUOROPHORE UNMIXING 711 31.4.2.2 METHODOLOGY 711 31.5
CONCLUSIONS 712
REFERENCES 713
IMAGE 18
XXIV CONTENTS
32 BIOMEDICAL IMAGING BASED ON VIBRATIONAL SPECTROSCOPY 717
CHRISTOPH KRAFFI, BENJAMIN DIETZEK, AND JUERGEN POPP 32.1 INTRODUCTION
717
32.2 VIBRATIONAL SPECTROSCOPY AND IMAGING 718 32.2.1 INFRARED
SPECTROSCOPY 718 32.2.2 RAMAN SPECTROSCOPY 720 32.2.3 COHERENT
ANTI-STOKES-RAMAN SCATTERING MICROSCOPY 721
32.3 ANALYSIS OF VIBRATIONAL SPECTROSCOPIC IMAGES 723 32.3.1
PREPROCESSING 723 32.3.1.1 QUALITY TEST 723
32.3.1.2 DENOISING 724 32.3.1.3 BACKGROUND AND BASELINE CORRECTION 724
32.3.1.4 NORMALIZATION 724 32.3.1.5 IMAGE COMPRESSION 725
323.2 EXPLORATORY IMAGE ANALYSIS 725 32.3.2.1 CLASSICAL IMAGE
REPRESENTATIONS 725 32.3.2.2 PRINCIPAL COMPONENT ANALYSIS 726 32.3.3
IMAGE SEGMENTATION: CLUSTER ANALYSIS 728
323 A SUPERVISED IMAGE SEGMENTATION: LINEAR DISCRIMINANT ANALYSIS 729
32.4 CHALLENGES FOR IMAGE ANALYSIS IN CARS MICROSCOPY 730 32 A.I
PARTICLE IDENTIFICATION IN NONLINEAR MICROSCOPY 731 32.4.2 NUMERICAL
REDUCTION OR SUPPRESSION OF NONRESONANT
BACKGROUND 732
32.4.3 OUTLOOK - MERGING CARS IMAGING WITH CHEMOMETRICS 734 32.5
BIOMEDICAL APPLICATIONS OF VIBRATIONAL SPECTROSCOPIC IMAGING: TISSUE
DIAGNOSTICS 734 32.6 CONCLUSIONS 736
ACKNOWLEDGMENTS 736 REFERENCES 736
33 OPTICAL DATA ENCRYPTION 739 MARIA SAGRARIO MILLDN GARCIA-VARELA AND
ELISABET PEREZ-CABRE 33.1 INTRODUCTION 739
33.2 OPTICAL TECHNIQUES IN ENCRYPTION ALGORITHMS 740 33.2.1 RANDOM PHASE
MASK (RPM) AND PHASE ENCODING 740 33.2.2 DOUBLE-RANDOM PHASE ENCRYPTION
(DRPE) 741 33.2.3 RESISTANCE OF DRPE AGAINST ATTACKS 746
33.2.4 ENCRYPTION ALGORITHMS BASED ON REAL (PHASE-ONLY AND
AMPLITUDE-ONLY) FUNCTIONS 748 33.2.5 HOLOGRAPHIC MEMORY 749 33.2.6
WAVELENGTH MULTIPLEXING AND COLOR IMAGE ENCRYPTION 750 33.2.7 FRESNEL
DOMAIN 751
33.2.8 FRACTIONAL FOURIER TRANSFORMS 753 33.3 APPLICATIONS TO SECURITY
SYSTEMS 755 33.3.1 OPTICAL TECHNIQUES AND DRPE IN DIGITAL CRYPTOGRAPHY
755
IMAGE 19
CONTENTS XXV
33.3.2 MULTIFACTOR IDENTIFICATION AND VERIFICATION OF BIOMETRICS 756
33.3.3 ID TAGS FOR REMOTE VERIFICATION 759 33.4 CONCLUSIONS 765
ACKNOWLEDGMENTS 765 REFERENCES 765
34 QUANTUM ENCRYPTION 769 BING QI, LI QIAN, AND HOI-KWONG LO 34.1
INTRODUCTION 769
34.2 THE PRINCIPLE OF QUANTUM CRYPTOGRAPHY 770 34.2.1 QUANTUM NO-CLONING
THEOREM 770 34.2.2 THE BB84 QUANTUM KEY DISTRIBUTION PROTOCOL 771 34.2.3
ENTANGLEMENT-BASED QUANTUM KEY DISTRIBUTION PROTOCOL 774 34.2.4
CONTINUOUS VARIABLE QUANTUM KEY DISTRIBUTION PROTOCOL 776 34.3
STATE-OF-THE-ART QUANTUM KEY DISTRIBUTION TECHNOLOGIES 777 34.3.1
SOURCES FOR QUANTUM KEY DISTRIBUTION 777 34.3.1.1 SINGLE-PHOTON SOURCE
777 34.3.1.2 EPR PHOTON PAIR 778
34.3.1.3 ATTENUATED LASER SOURCE 778 34.3.2 QUANTUM STATE DETECTION 779
34.3.2.1 SINGLE-PHOTON DETECTOR 779 34.3.2.2 OPTICAL HOMODYNE DETECTOR
780 34.3.3 QUANTUM RANDOM NUMBER GENERATOR 781 34.3.4 QUANTUM KEY
DISTRIBUTION DEMONSTRATIONS 781 34.3.4.1 QKD EXPERIMENTS THROUGH TELECOM
FIBER 781 34.3.4.2 QKD EXPERIMENTS THROUGH FREE SPACE 782 34 A SECURITY
OF PRACTICAL QUANTUM KEY DISTRIBUTION SYSTEMS 783 34.4.1 QUANTUM HACKING
AND COUNTERMEASURES 783 34.4.2 SELF-TESTING QUANTUM KEY DISTRIBUTION 784
34.5 CONCLUSIONS 785
ACKNOWLEDGMENTS 786 REFERENCES 786
35 PHASE-SPACE TOMOGRAPHY OF OPTICAL BEAMS 789 TATIANA ALIEVA, ALEJANDRO
CDMARA, JOS6 A. RODRIGO, AND MARIA L. CALVO 35.1 INTRODUCTION 789
35.2 FUNDAMENTALS OF PHASE-SPACE TOMOGRAPHY 790 35.3 PHASE-SPACE
TOMOGRAPHY OF BEAMS SEPARABLE IN CARTESIAN COORDINATES 793 35 A RADON
TRANSFORM 794
35.5 EXAMPLE: TOMOGRAPHIE RECONSTRUCTION OF THE WD OF GAUSSIAN BEAMS 796
35.6 EXPERIMENTAL SETUP FOR THE MEASUREMENTS OF THE WD PROJECTIONS 798
35.7 RECONSTRUCTION OF WD: NUMERICAL AND EXPERIMENTAL RESULTS 800
35.8 PRACTICAL WORK FOR POSTGRADUATE STUDENTS 802
IMAGE 20
XXVI CONTENTS
35.9 CONCLUSIONS 807
ACKNOWLEDGMENTS 807 REFERENCES 807
36 HUMAN FACE RECOGNITION AND IMAGE STATISTICS USING MATLAB 809 MATTHIAS
S. KEIL 36.1 INTRODUCTION 809
36.2 NEURAL INFORMATION-PROCESSING AND IMAGE STATISTICS 811 36.2.1
POSSIBLE REASONS OF THE KR 2 FREQUENCY SCALING 811 36.2.1.1 OCCLUSION
813 36.2.1.2 SCALE INVARIANCE 813
36.2.1.3 CONTRAST EDGES 813 36.2.2 THE FIRST STRATEGY: SPATIAL
DECORRELATION 814 36.2.3 THE SECOND STRATEGY: RESPONSE EQUALIZATION
("WHITENING") 816 36.3 FACE IMAGE STATISTICS AND FACE PROCESSING 818
36.3.1 FACE IMAGE DATASET 818 36.3.2 DIMENSION OF SPATIAL FREQUENCY 819
36.4 AMPLITUDE SPECTRA 820 36.4.1 WINDOW ARTIFACTS AND CORRECTED SPECTRA
821 36.4.2 WHITENED SPECTRA OF FACE IMAGES 821 36.4.2.1 SLOPE WHITENING
822 36.4.2.2 VARIANCE WHITENING 822 36.4.2.3 WHITENING BY DIFFUSION 824
36.4.2.4 SUMMARY AND CONCLUSIONS 826 36.5 MAKING ARTIFICIAL FACE
RECOGNITION "MORE HUMAN" 826 36.6 STUDENT ASSIGNMENTS 827
REFERENCES 828
37 IMAGE PROCESSING FOR SPACECRAFT OPTICAL NAVIGATION 833 MICHAEL A.
PALUSZEK AND PRADEEP BHATTA 37.1 INTRODUCTION 833
37.2 GEOMETRIC BASIS FOR OPTICAL NAVIGATION 835 37.2.1 EXAMPLE:
ANALYTICAL SOLUTION OF R 837 37.3 OPTICAL NAVIGATION SENSORS AND MODELS
837 37.3.1 OPTICS 837
37.3.2 IMAGING SYSTEM RESOLUTION 838 37.3.3 BASIC RADIOMETRY 839 37.3.4
IMAGING 840 37.3.4.1 NOISE AND PERFORMANCE FACTORS 841
37.3.4.2 DATA REDUCTION 844 37.3.4.3 ERROR MODELING 845 31A DYNAMICAL
MODELS 845 37.5 PROCESSING THE CAMERA DATA 847
37.6 KAIMAN FILTERING 847 37.6.1 INTRODUCTION TO KAIMAN FILTERING 847
IMAGE 21
CONTENTS XXVII
37.6.2 THE UNSCENTED KAIMAN FILTER 848
37.7 EXAMPLE DEEP SPACE MISSION 850 37.7.1 SENSOR MODEL 851 37.7.2
SIMULATION RESULTS 854 37.8 STUDENT ASSIGNMENT 855
37.9 CONCLUSION 856
REFERENCES 857
38 IMAGEJ FOR MEDICAL MICROSCOPY IMAGE PROCESSING: AN INTRODUCTION TO
MACRO DEVELOPMENT FOR BATCH PROCESSING 859 TONY COLLINS 38.1
INTRODUCTION 859
38.2 INSTALLATION 859
38.2.1 ADD-ONS 860
38.3 PLUGIN COLLECTIONS 861
38.4 OPENING IMAGES 861
38.5 DEVELOPING A MACRO 862
38.5.1 GETTING STARTED - MANUALLY PLANNING THE ANALYSIS 862 38.5.2
AUTOMATING THE ANALYSIS: RECORDING MENU COMMANDS 863 38.5.3 MEASURING
INTENSITY 864 38.5.4 BASIC MACRO PROGRAMMING 865 38.5.5 BATCH PROCESSING
866 38.5.5.1 MAKING A "FUNCTION" 866 38.5.5.2 PROCESSING A LIST OF FILES
WITH A "FOR" LOOP 868 38.5.5.3 FILTERING FILES WITH AN " IF STATEMENT
869 38.5.6 ADDING A DIALOG BOX 869 38.5.6.1 CREATING A DIALOG 869
38.5.6.2 ASSIGNING VALUES TO VARIABLES FROM THE DIALOG 870 38.6 FURTHER
PRACTICAL EXERCISES 872 38.7 IMPORTANT WEBSITES 872
APPENDIX 38.A: ANALYZING A SINGLE IMAGE 872 APPENDIX 38.B: INCLUDING
INTENSITY MEASUREMENTS 873 APPENDIX 38.C: MAKING A FUNCTION 873 APPENDIX
38.D: BATCH PROCESSING A FOLDER 873 APPENDIX 38.E: ADDING A DIALOG AND
BATCH PROCESSING A FOLDER 874 APPENDIX 38.F: BATCH PROCESSING SUBFOLDERS
875
REFERENCES 877
INDEX 879 |
any_adam_object | 1 |
author2 | Cristóbal, Gabriel |
author2_role | edt |
author2_variant | g c gc |
author_facet | Cristóbal, Gabriel |
building | Verbundindex |
bvnumber | BV037264426 |
classification_rvk | ST 330 ZN 6294 |
ctrlnum | (OCoLC)729897620 (DE-599)DNB1007936894 |
dewey-full | 621.36 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.36 |
dewey-search | 621.36 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV037264426</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121107</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110304s2011 ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1007936894</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527409563</subfield><subfield code="9">978-3-527-40956-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527409564</subfield><subfield code="9">3-527-40956-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)729897620</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1007936894</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 330</subfield><subfield code="0">(DE-625)143663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6294</subfield><subfield code="0">(DE-625)157546:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">621.3</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical and digital image processing</subfield><subfield code="b">fundamentals and applications</subfield><subfield code="c">ed. by Gabriel Cristobal ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXXXVII, 900 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optische Signalverarbeitung</subfield><subfield code="0">(DE-588)4172670-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bildverarbeitung</subfield><subfield code="0">(DE-588)4006684-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Optische Signalverarbeitung</subfield><subfield code="0">(DE-588)4172670-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Digitale Signalverarbeitung</subfield><subfield code="0">(DE-588)4113314-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Bildgebendes Verfahren</subfield><subfield code="0">(DE-588)4006617-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cristóbal, Gabriel</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3554214&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021177494&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021177494</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV037264426 |
illustrated | Illustrated |
indexdate | 2024-07-20T11:00:41Z |
institution | BVB |
isbn | 9783527409563 3527409564 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021177494 |
oclc_num | 729897620 |
open_access_boolean | |
owner | DE-11 DE-29T DE-703 DE-92 DE-706 DE-83 |
owner_facet | DE-11 DE-29T DE-703 DE-92 DE-706 DE-83 |
physical | LXXXVII, 900 S. Ill., graph. Darst. |
publishDate | 2011 |
publishDateSearch | 2011 |
publishDateSort | 2011 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Optical and digital image processing fundamentals and applications ed. by Gabriel Cristobal ... Weinheim Wiley-VCH 2011 LXXXVII, 900 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Bildgebendes Verfahren (DE-588)4006617-4 gnd rswk-swf Digitale Signalverarbeitung (DE-588)4113314-6 gnd rswk-swf Bildverarbeitung (DE-588)4006684-8 gnd rswk-swf Optische Signalverarbeitung (DE-588)4172670-4 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Bildverarbeitung (DE-588)4006684-8 s Optische Signalverarbeitung (DE-588)4172670-4 s Digitale Signalverarbeitung (DE-588)4113314-6 s Bildgebendes Verfahren (DE-588)4006617-4 s DE-604 Cristóbal, Gabriel edt X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3554214&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021177494&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Optical and digital image processing fundamentals and applications Bildgebendes Verfahren (DE-588)4006617-4 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Bildverarbeitung (DE-588)4006684-8 gnd Optische Signalverarbeitung (DE-588)4172670-4 gnd |
subject_GND | (DE-588)4006617-4 (DE-588)4113314-6 (DE-588)4006684-8 (DE-588)4172670-4 (DE-588)4143413-4 |
title | Optical and digital image processing fundamentals and applications |
title_auth | Optical and digital image processing fundamentals and applications |
title_exact_search | Optical and digital image processing fundamentals and applications |
title_full | Optical and digital image processing fundamentals and applications ed. by Gabriel Cristobal ... |
title_fullStr | Optical and digital image processing fundamentals and applications ed. by Gabriel Cristobal ... |
title_full_unstemmed | Optical and digital image processing fundamentals and applications ed. by Gabriel Cristobal ... |
title_short | Optical and digital image processing |
title_sort | optical and digital image processing fundamentals and applications |
title_sub | fundamentals and applications |
topic | Bildgebendes Verfahren (DE-588)4006617-4 gnd Digitale Signalverarbeitung (DE-588)4113314-6 gnd Bildverarbeitung (DE-588)4006684-8 gnd Optische Signalverarbeitung (DE-588)4172670-4 gnd |
topic_facet | Bildgebendes Verfahren Digitale Signalverarbeitung Bildverarbeitung Optische Signalverarbeitung Aufsatzsammlung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3554214&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021177494&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cristobalgabriel opticalanddigitalimageprocessingfundamentalsandapplications |