Physics of condensed matter:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a]
Elsevier
2012
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 664 S. Ill., graph. Darst. |
ISBN: | 9780123849540 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV037236217 | ||
003 | DE-604 | ||
005 | 20111219 | ||
007 | t | ||
008 | 110218s2012 ad|| |||| 00||| eng d | ||
020 | |a 9780123849540 |c Hbk. |9 978-0-12-384954-0 | ||
035 | |a (OCoLC)731785082 | ||
035 | |a (DE-599)BSZ329806424 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-20 |a DE-634 |a DE-83 |a DE-355 |a DE-19 | ||
082 | 0 | |a 530.4/1 | |
084 | |a UP 1000 |0 (DE-625)146338: |2 rvk | ||
100 | 1 | |a Misra, Prasanta K. |e Verfasser |0 (DE-588)1011514222 |4 aut | |
245 | 1 | 0 | |a Physics of condensed matter |c Prasanta K. Misra |
264 | 1 | |a Amsterdam [u.a] |b Elsevier |c 2012 | |
300 | |a XXIII, 664 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Festkörperphysik |0 (DE-588)4016921-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Festkörperphysik |0 (DE-588)4016921-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021149802&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-021149802 |
Datensatz im Suchindex
_version_ | 1804143843937878016 |
---|---|
adam_text | Contents
Preface
.......................................................................................xxi
CHAPTER
1
Basic Properties of Crystals
..................................................1
1.1
Crystal Lattices
.................................................................2
1.1.1
Primitive Cell
.............................................................3
1.1.2
Unit Cell
.................................................................3
1.1.3
Wigner-Seitz Cell
..........................................................3
1.1.4
Lattice Point Group
........................................................3
1.2
Bravais
Lattices in Two and Three Dimensions
..................................4
1.2.1
Simple Cubic (sc) Lattice
...................................................4
1.2.2
Lattice Constants
..........................................................5
1.2.3
Coordination Numbers
......................................................5
1.2.4
Body-Centered Cubic (bcc) Lattice
...........................................5
1.2.5
Face-Centered Cubic (fee) Lattice
............................................7
1.2.6
Other
Bravais
Lattices
......................................................9
1.3
Lattice Planes and Miller Indices
...............................................11
1.4
Bravais
Lattices and Crystal Structures
.........................................13
1.4.1
Crystal Structure
..........................................................13
1.4.2
Lattice with a Basis
.......................................................13
1.4.3
Packing Fraction
..........................................................14
1.5
Crystal Defects and Surface Effects
............................................14
1.5.1
Crystal Defects
...........................................................14
1.5.2
Surface Effects
...........................................................14
1.6
Some Simple Crystal Structures
................................................15
1.6.1
Sodium Chloride Structure
.................................................15
1.6.2
Cesium Chloride Structure
.................................................15
1.6.3
Diamond Structure
........................................................16
1.6.4
Zincblende Structure
......................................................17
1.6.5
Hexagonal Close-Packed (hep) Structure
.....................................17
1.7
Bragg Diffraction
..............................................................19
1.8 Laue
Method
..................................................................20
1.9
Reciprocal Lattice
.............................................................21
1.9.1
Definition
................................................................21
1.9.2
Properties of the Reciprocal Lattice
.........................................22
1.9.3
Alternative Formulation of the
Laue
Condition
................................25
VU
viii Contents
1.10
Brillouin
Zones
...............................................................27
1.10.1
Definition
...............................................................27
1.10.2
One-Dimensional Lattice
..................................................28
1.10.3
Two-Dimensional Square Lattice
...........................................28
1.10.4
bcc Lattice
..............................................................29
1.10.5
fee Lattice
..............................................................30
1.11
Diffraction by a Crystal Lattice with a Basis
...................................31
1.11.1
Theory
.................................................................31
1.11.2
Geometrical Structure Factor
..............................................32
1.11.3
Application to bcc Lattice
.................................................32
1.11.4
Application to fee Lattice
.................................................33
1.11.5
The Atomic Scattering Factor or Form Factor
...............................33
Problems
......................................................................34
References
....................................................................35
CHAPTER
2
Phonons and Lattice Vibrations
.............................................37
2.1
Lattice Dynamics
..............................................................37
2.1.
1 Theory
..................................................................37
2.1.2
Normal Modes of a One-Dimensional Monoatomic Lattice
.....................41
2.1.3
Normal Modes of a One-Dimensional Chain with a Basis
......................44
2.2
Lattice Specific Heat
..........................................................48
2.2.1
Theory
..................................................................48
2.2.2
The Debye Model of Specific Heat
..........................................49
2.2.3
The Einstein Model of Specific Heat
........................................52
2.3
Second Quantization
...........................................................53
2.3.1
Occupation Number Representation
.........................................53
2.3.2
Creation and Annihilation Operators
.........................................54
2.3.3
Field Operators and the Hamiltonian
........................................58
2.4
Quantization of Lattice Waves
.................................................61
2.4.1
Formulation
..............................................................61
2.4.2
Quantization of Lattice Waves
..............................................65
Problems
......................................................................66
References
....................................................................68
CHAPTER
3
Free Electron Model
........................................................71
3.1
The Classical
(Drude)
Model of a Metal
.......................................71
3.2 Sommerfeld
Model
............................................................73
3.2.
і
Introduction
..............................................................73
3.2.2
Fermi Distribution Function
................................................74
3.2.3
Density Operator
..........................................................75
3.2.4
Free Electron Fermi Gas
...................................................77
3.2.5
Ground-State Energy of the Electron Gas
....................................79
3.2.6
Density of Electron States
..................................................81
Contents
ix
3.3
Fermi Energy and the Chemical Potential
......................................82
3.4
Specific Heat of the Electron Gas
..............................................84
3.5
DC Electrical Conductivity
....................................................86
3.6
The Hall Effect
................................................................87
3.7
Failures of the Free Electron Model
............................................89
Problems
......................................................................90
References
....................................................................93
CHAPTER
4
Nearly Free Electron Model.
................................................95
4.1
Electrons in a Weak Periodic Potential
.........................................96
4.1.1
Introduction
..............................................................96
4.1.2
Plane Wave Solutions
.....................................................97
4.2
Bloch Functions and Bloch Theorem
...........................................99
4.3
Reduced, Repeated (Periodic), and Extended Zone Schemes
...................99
4.3.1
Reduced Zone Scheme
...................................................100
4.3.2
Repeated Zone Scheme
...................................................100
4.3.3
Extended Zone Scheme
...................................................101
4.4
Band Index
..................................................................101
4.5
Effective Hamiltonian
........................................................102
4.6
Proof of
Bloclťs
Theorem from Trunslutional Symmetry
......................103
4.7
Approximate Solution Near a Zone Boundary
.................................105
4.8
Different Zone Schemes
......................................................109
4.8.1
Reduced Zone Scheme
...................................................109
4.8.2
Extended Zone Scheme
...................................................110
4.8.3
Periodic Zone Scheme
....................................................
Ill
4.9
Elementary Band Theory of Solids
...........................................
Ill
4.9.1
Introduction
.............................................................
Ill
4.9.2
Energy Bands in One Dimension
..........................................112
4.9.3
Number of States in a Band
...............................................112
4.10
Metals, Insulators, and Semiconductors
.......................................112
4.11
Brillouin Zones
..............................................................117
4.12
Fermi Surface
................................................................119
4.12.1
Fermi Surface (in Two Dimensions)
.......................................119
4.12.2
Fermi Surface (in Three Dimensions)
......................................121
4.12.3
Harrison s Method of Construction of the Fermi Surface
.....................121
Problems
....................................................................124
References
...................................................................130
CHAPTER
5
Band-Structure Calculations
............................................... 131
5.1
Introduction
...........,......................................................131
5.2
Tight-Binding Approximation
................................................131
5.3
LCAO Method
...............................................................135
Contents
5.4 Wannier
Functions...........................................................
140
5.5
Cellular Method
..............................................................142
5.6
Orthogonalized Plane-Wave (OPW) Method
..................................145
5.7
Pseudopotentials
.............................................................147
5.8
Muffin-Tin Potential
.........................................................149
5.9
Augmented Plane-Wave (APW) Method
......................................150
5.10
Green s Function (KKR) Method
.............................................152
5.11
Model Pseudopotentials
......................................................156
5.12
Empirical Pseudopotentials
...................................................157
5.13
First-Principles Pseudopotentials
..............................................158
Problems
....................................................................160
References
...................................................................163
CHAPTER
6
Static and Transport Properties of Solids
...................................165
6.1
Band Picture
.................................................................166
6.2
Bond Picture
.................................................................167
6.3
Diamond Structure
...........................................................168
6.4
Si and Ge
....................................................................168
6.5
Zinc-Blende Semiconductors
.................................................170
6.6
Ionic Solids
..................................................................172
6.7
Molecular Crystals
...........................................................174
6.7.1
Molecular Solids
.........................................................174
6.7.2
Hydrogen-Bonded Structures
..............................................174
6.8
Cohesion of Solids
...........................................................174
6.8.1
Molecular Crystals: Noble Gases
...........................................174
6.8.2
Ionic Crystals
...........................................................176
6.8.3
Covalent Crystals
........................................................177
6.8.4
Cohesion in Metals
......................................................178
6.9
The Semiclassical Model
.....................................................179
6.10
Liouville s Theorem
..........................................................182
6.11
Boltzmann Equation
..........................................................183
6.12
Relaxation Time Approximation
..............................................184
6.13
Electrical Conductivity
.......................................................186
6.14
Thermal Conductivity
........................................................187
6.15
Weak Scattering Theory of Conductivity
......................................188
6.15.1
Relaxation Time and Scattering Probability
................................
Î88
6.15.2
The Collision Term
.....................................................188
6.15.3
Impurity Scattering
.....................................................
ł89
6.16
Resistivity Due to Scattering by Phonons
.....................................192
Problems
....................................................................194
References
...................................................................196
Contents xi
CHAPTER
7
Electron-Electron Interaction
..............................................199
7.1
Introduction
..................................................................199
7.2
Hartree
Approximation
.......................................................200
7.3
Hartree-Fock Approximation
.................................................203
7.3.1
General Formulation
.....................................................203
7.3.2
Hartree-Fock Theory for Jellium
...........................................204
7.4
Effect of Screening
...........................................................207
7.4.1
General Formulation
.....................................................207
7.4.2
Thomas-Fermi Approximation
.............................................208
7.4.3
Lindhard Theory of Screening
.............................................209
7.5
Friedel Sum Rule and Oscillations
............................................214
7.6
Frequency and Wave-Number-Dependent Dielectric Constant
..................217
7.7
Mott
Transition
..............................................................222
7.8
Density Functional Theory
...................................................223
7.8.
1 General Formulation
.....................................................223
7.8.2
Local Density Approximation
.............................................224
7.9
Fenrii Liquid Theory
.........................................................225
7.9.1
Quasiparticles
...........................................................225
7.9.2
Energy Functional
.......................................................227
7.9.3
Fermi Liquid Parameters
.................................... ..............230
7.Î0
Green s Function Method
....................................................232
7.10.1
General Formulation
....................................................232
7.10.2
Finite-Temperature Green s Function Formalism for Interacting Bloch
Electrons
..............................................................233
7.10.3
Exchange Self-Energy in the Band Model
..................................234
Problems
....................................................................235
References
...................................................................241
CHAPTER
8
Dynamics of Bloch Electrons
..............................................243
8.1
Semiclassical Model
..........................................................243
8.2
Velocity Operator
............................................................244
8.3
к
·
ρ
Perturbation Theory
.....................................................245
8.4
Quasiclassical Dynamics
.....................................................246
8.5
Effective Mass
...............................................................247
8.6
Bloch Electrons in External Fields
............................................248
8.6.
1 Time Evolution of Bioch Electrons in an Electric Field
.......................250
8.6.2
Alternate Derivation for Bloch Functions in an External Electric
and Magnetic Field
......................................................252
8.6.3
Motion in an Applied DC Field
............................................253
8.7
Bloch Oscillations
............................................................254
8.8
Holes
........................................................................255
8.9
Zener Breakdown (Approximate Method)
.....................................258
xii Contents
8.10
Rigorous Calculation of Zener Tunneling
.....................................261
8.11
Electron-Phonon Interaction
..................................................264
Problems
....................................................................271
References
...................................................................274
CHAPTER
9
Semiconductors
..........................................................275
9.1
Introduction
..................................................................275
9.2
Electrons and Holes
..........................................................278
9.3
Electron and Hole Densities in Equilibrium
...................................279
9.4
Intrinsic Semiconductors
.....................................................283
9.5
Extrinsic Semiconductors
.....................................................284
9.6
Doped Semiconductors
.......................................................285
9.7
Statistics of Impurity Levels in Thermal Equilibrium
..........................288
9.7.1
Donor Levels
...........................................................288
9.7.2
Acceptor Levels
.........................................................288
9.7.3
Doped Semiconductors
...................................................289
9.8
Diluted Magnetic Semiconductors
............................................290
9.8.1
Introduction
.............................................................290
9.8.2
Magnetization in Zero External Magnetic Field in DMS
......................291
9.8.3
Electron Paramagnetic Resonance Shift
.....................................291
9.8.4
I?··?? Model
............................................................295
9.9
Zinc Oxide
..................................................................296
9.10
Amorphous Semiconductors
..................................................296
9.10.1
Introduction
............................................................296
9.10.2
Linear Combination of Hybrids Model for Tetrahedral Semiconductors
........297
Problems
....................................................................300
References
...................................................................303
CHAPTER
10
Electronics
...............................................................305
10.1
Introduction
..................................................................305
10.2
p
-η
Junction
.................................................................306
10.2.1
Introduction
............................................................306
10.2.2
p
-η
Junction in Equilibrium
..............................................307
10.3
Rectification by a
p
-η
Junction
...............................................311
10.3.1
Equilibrium Case
.......................................................311
10.3.2
Nonequilibrium Case (V^0)
............................................313
10.4
Transistors
...................................................................318
10.4.1
Bipolar Transistors
......................................................318
10.4.2
Field-Effect Transistor
...................................................319
10.4.3
Single-Electron Transistor
................................................321
10.5
Integrated Circuits
............................................................325
Contents xiii
10.6
Optoelectronic
Devices.......................................................325
10.7 Graphene....................................................................329
10.8 Graphene-Based Electronics..................................................332
Problems....................................................................333
References
...................................................................336
CHAPTER
11 Spintronics...............................................................339
11.1
Introduction..................................................................
339
11.2 Magnetoresistance............................................................340
11.3
Giant
Magnetoresistance......................................................340
11.3.1
Metallic Multilayers
.....................................................340
11.4
Mott s
Theory of Spin-Dependent Scattering of Electrons
......................342
11.5
Camley-Barnas Model
.......................................................345
11.6
CPP-GMR
...................................................................348
11.6.1
Introduction
............................................................348
11.6.2
Theory of CPP-GMR of Multilayered Nanowires
...........................350
11.7
MTJ, TMR, and MRAM
.....................................................352
11.8
Spin Transfer Torques and Magnetic Switching
...............................356
11.9
Spintronics with Semiconductors
.............................................357
Π
.9.1
Introduction
............................................................357
11.9.2
Theory of an FM-T-N Junction
...........................................358
11.9.3
Injection Coefficient
....................................................361
Problems
....................................................................364
References
...................................................................367
CHAPTER
12
Điamagnetism
and Paramagnetism
.........................................369
12.1
Introduction
..................................................................370
12.2
Atomic (or Ionic) Magnetic Susceptibilities
...................................371
12.2.1
General Formulation
....................................................371
12.2.2
Larmor
Điamagnetism
...................................................372
12.2.3
Hund s Rules
..........................................................373
12.2.4
Van VIeck Paramagnetism
...............................................374
12.2.5
Lande g
Factor
.........................................................375
12.2.6
Curie s Law
............................................................377
12.3
Magnetic Susceptibility of Free Electrons in Metals
...........................378
12.3.1
General Formulation
....................................................378
12.3.2
Landau
Điamagnetism
and
Pauli
Paramagnetism
............................380
12.3.3
De Haas-van Alphen
Effect
..............................................383
12.4
Many-Body Theory of Magnetic Susceptibility of Bloch Electrons in Solids.
. . 388
12.4.1
Introduction
............................................................388
12.4.2
Equation of Motion in the Bloch Representation
............................388
xiv Contents
12.4.3 Thermodynamic Potential................................................390
12.4.4 General
Formula
for^...................................................
390
12.4.5 Exchange
Self-Energy in the
Band Model..................................393
12.4.6 Exchange Enhancement
of xs
.............................................394
12.4.7 Exchange
and Correlation Effects
onj0
....................................395
12.4.8 Exchange
and Correlation Effects on xso
...................................396
12.5
Quantum Hall Effect
.........................................................396
12.5.1
Introduction
............................................................396
12.5.2
Two-Dimensional Electron Gas
...........................................396
12.5.3
Quantum Transport of a Two-Dimensional Electron Gas in a Strong
Magnetic Field
.........................................................397
12.5.4
Quantum Hall Effect from Gauge
Invariance
...............................400
12.6
Fractional Quantum Hall Effect
...............................................400
Problems
....................................................................401
References
...................................................................407
CHAPTER
13
Magnetic Ordering
........................................................409
13.1
Introduction
..................................................................410
13.2
Magnetic
Dipole
Moments
...................................................411
13.3
Models for Ferromagnetism and Antiferromagnetism
..........................412
13.3.1
Introduction
............................................................412
13.3.2
Heitler-London Approximation
...........................................412
13.3.3
Spin Hamiitonian
.......................................................414
13.3.4 Heisenberg
Model
......................................................416
13.3.5
Direct, Indirect, and Superexchange
.......................................416
13.3.6
Spin Waves in Ferromagnets:
Magnons
....................................417
13.3.7 Schwinger
Representation
................................................417
13.3.8
Application to the
Heisenberg Hamiitonian.................................418
13.3.9
Spin Waves in Antiferromagnets
..........................................421
13.4
Ferromagnetism in Solids
.....................................................422
13.4.1
Ferromagnetism Near the Curie Temperature
...............................422
13.4.2
Comparison of Spin-Wave Theory with the Weiss Field Model
...............424
13.4.3
Ferromagnetic Domains
.................................................425
13.4.4
Hysteresis
.............................................................426
13.4.5
Ising Model
............................................................427
13.5
Ferromagnetism in Transition Metals
.........................................427
13.5.1
Introduction
............................................................427
13.5.2
Stoner
Model
..........................................................428
13.5.3
Ferromagnetism in Fe, Co, and
Ni
from Stoner s Model and
Konn-Snam Equations
..................................................430
13.5.4
Free Electron Gas Model
................................................431
13.5.5
Hubbard Model
........................................................433
Contents xv
13.6
Magnetization of Interacting Bloch Electrons
..................................434
13.6. !
Introduction
............................................................434
13.6.2
Theory of Magnetization
.................................................434
13.6.3
The Quasiparticle Contribution to Magnetization
............................435
13.6.4
Contribution of Correlations to Magnetization
..............................436
13.6.5
Single-Particle Spectrum and the Criteria for Ferromagnetic Ground State
......437
13.7
The Kondo Effect
............................................................439
13.8
Anderson Model
.............................................................439
13.9
The Magnetic Phase Transition
...............................................440
13.9.1 Introduction
............................................................440
13.9.2 The Order Parameter
....................................................441
13.9.3
Landau Theory of Second-Order Phase Transitions
..........................441
Problems
....................................................................443
References
...................................................................448
CHAPTER
14
Superconductivity
.........................................................451
14.1
Properties of Superconductors
................................................452
14.
1
.1
Introduction
............................................................452
14.1.2
Type I and Type II Superconductors
......................................453
14.1.3
Second-Order Phase Transition
...........................................454
14.1.4
Isotope Effect
..........................................................454
14.1.5
Phase Diagram
.........................................................454
14.2
Meissner-Ochsenfeld Effect
..................................................455
14.3
The London Equation
........................................................455
14.4
Ginzburg-Landau Theory
....................................................456
14.4.
1
Order Parameter
........................................................456
14.4.2
Boundary Conditions
....................................................457
14.4.3
Coherence Length
......................................................457
14.4.4
London Penetration Depth
...............................................458
14.5
Flux Quantization
............................................................459
14.6
Josephson
Effect
.............................................................460
14.6.1
Two Superconductors Separated by an Oxide Layer
.........................460
14.6.2
AC and DC
Josephson
Effects
............................................462
14.7
Microscopic Theory of Superconductivity
.....................................462
14.7.1
Introduction
............................................................462
14.7.2
Quasi-Electrons
.........................................................463
14.7.3
Cooper Pairs
...........................................................464
14.7.4
BCS Theory
...........................................................466
14.7.5
Ground State of the Superconducting Electron Gas
..........................466
14.7.6
Excited States at
Г=0
..................................................469
14.7.7
Excited States
al
T^O
..................................................470
xvi Contents
14.8
Strong-Coupling Theory
......................................................472
14.8.1
Introduction
............................................................472
14.8.2
Upper Limit of the Critical Temperature, Tc
................................472
14.9
High-Temperature Superconductors
...........................................473
14.9.1
Introduction
............................................................473
14.9.2
Properties of Novel Superconductors (Cuprates)
............................474
14.9.3
Brief Review of s-, p-, and d-wave Pairing
.................................474
14.9.4
Experimental Confirmation of d-wave Pairing
..............................476
14.9.5
Search for a Theoretical Mechanism of High Tc Superconductors
.............481
Problems
....................................................................481
References
...................................................................485
CHAPTER
15
Heavy
Fermions
...........................................................487
15.1
Introduction
..................................................................488
15.2
Kondo-Lattice, Mixed-Valence, and Heavy
Fermions
..........................490
15.2.1
Periodic Anderson and Kondo-Lattice Models
..............................490
15.2.2
Mixed-Valence Compounds
..............................................492
15.2.3
Slave Boson Method
....................................................493
15.2.4
Cluster Calculations
.....................................................494
15.3
Mean-Field Theories
.........................................................498
15.3.1
The Local Impurity Self-Consistent Approximation
..........................498
15.3.2
Application of LISA to Periodic Anderson Model
...........................499
15.3.3
RKKY Interaction
......................................................500
15.3.4
Extended Dynamical Mean-field Theory
...................................501
15.4
Fermi-Liquid Models
.........................................................502
15.4.1
Heavy Fermi Liquids
....................................................502
15.4.2
Fractionalized Fermi Liquids
.............................................505
15.5
Metamagnetism in Heavy
Fermions
...........................................506
15.6
Ce-
and U-Based Superconducting Compounds
...............................508
15.6.1
Ce-Based Compounds
...................................................508
15.6.2
U-Based Superconducting Compounds
....................................509
15.7
Other Heavy-Fermion Superconductors
.......................................513
15.7.1
PrtXtSb^
.............................................................513
15.7.2
PuCoGas
..............................................................513
15.7.3
PuRhGa5
..............................................................515
15.7.4
Comparison between Cu and
Pu
Containing High-rf Superconductors
.........516
15.8
Theories of Heavy-Fermion Superconductivity
................................516
15.9
Kondo Insulators
.............................................................516
15.9.1
Brief Review
...........................................................516
15.9.2
Theory of Kondo Insulators
..............................................517
Problems
....................................................................519
References
...................................................................524
Contents xvü
CHAPTER
16
Metallic
Nanoclusters.....................................................527
16.1
Introduction
..................................................................528
16.1.1 Nanoscience and Nanoclusters............................................528
16.1.2 Liquid Drop Model.....................................................528
16.1.3
Size and Surface/Volume
Ratio...........................................528
16.1.4 Geometrie and Electronic Shell
Structures
..................................530
16.2 Electronic Shell
Structure
.....................................................531
16.2.1
Spherical
Jellium Model (Phenomenological)...............................531
16.2.2
Self-Consistent Spherical
Jellium Model...................................532
16.2.3
Ellipsoidal
Shell Model..................................................535
16.2.4 Nonalkali
Clusters
......................................................535
16.2.5
Large Clusters
..........................................................535
16.3 Geometrie Shell
Structure....................................................
537
16.3.1
Close-Packing
..........................................................537
16.3.2 Wulff
Construction
.....................................................537
16.3.3
Polyhedra
..............................................................538
16.3.4
Filling between Complete Shells
..........................................540
16.4
Cluster Growth on Surfaces
..................................................540
16.4.1
Monte Carlo Simulations,
...............................................540
16.4.2
Mean-Field Rate Equations
..............................................541
16.5
Structure of Isolated Clusters
.................................................542
16.5.1
Theoretical Models
.....................................................542
16.5.2
Structure of Some Isolated Clusters
.......................................546
16.6
Magnetism in Clusters
........................................................ 547
16.6.1
Magnetism in Isolated Clusters
...........................................547
16.6.2
Experimental Techniques for Studying Cluster Magnetism
...................549
16.6.3
Magnetism in Embedded Clusters
.........................................553
16.6.4
Graphite Surfaces
.......................................................555
16.6.5
Study of Clusters by Scanning Tunneling Microscope
.......................555
16.6.6
Clusters Embedded in a Matrix
...........................................557
16.7
Superconducting State of Nanoclusters
........................................558
16.7.1
Qualitative Analysis
.....................................................558
16.7.2
Thermodynamie Green s Function Formalism for Nanoclusters
...............559
Problems
....................................................................562
References
...................................................................565
CHAPTER
17
Complex Structures
.......................................................567
17.1
Liquids
......................................................................568
17.1.1
Introduction
............................................................568
17.1.2
Phase Diagram
.........................................................568
17.1.3
Van Hove Pair Correlation Function
......................................569
17.1.4
Correlation Function for Liquids
..........................................570
xviii Contents
17.2 Superfluid 4He...............................................................570
17.2.1
Introduction
............................................................570
17.2.2 Phase Transition in 4He.................................................570
17.2.3
Two-Fluid
Model
for
Liquid 4He.........................................571
17.2.4
Theory of Superfluidity
in Liquid 4He.....................................571
17.3 Liquid 3He...................................................................573
17.3.1
Introduction
............................................................573
17.3.2
Possibility of Superfluidity in Liquid 3He
..................................574
17.3.3
Fermi Liquid Theory
....................................................574
17.3.4
Experimental Results of Superfluidity in Liquid 3He
.........................575
17.3.5
Theoretical Model for the A and
A¡
Phases
.................................575
17.3.6
Theoretical Model for the
В
Phase
........................................577
17.4
Liquid Crystals
...............................................................578
17.4.1
Introduction
............................................................578
17.4.2
Three Classes of Liquid Crystals
..........................................578
17.4.3
The Order Parameter
....................................................580
17.4.4
Curvature Strains
.......................................................581
17.4.5
Optical Properties of Cholesteric Liquid Crystals
............................581
17.5
Quasicrystals
.................................................................583
17.5.1
Introduction
............................................................583
17.5.2
Penrose Tiles
...........................................................583
17.5.3
Discovery of Quasicrystals
...............................................584
17.5.4
Quasiperiodic Lattice
....................................................584
17.5.5
Phonon and Phason Degrees of Freedom
..................................586
17.5.6
Dislocation in the Penrose Lattice
.........................................589
17.5.7
Icosahedral Quasicrystals
................................................589
17.6
Amorphous Solids
...........................................................590
17.6.1
Introduction
............................................................590
17.6.2
Energy Bands in One-Dimensional Aperiodic Potentials
.....................591
17.6.3
Density of States
.......................................................593
17.6.4
Amorphous Semiconductors
..............................................593
Problems
....................................................................594
References
...................................................................597
CHAPTER
18
Novel Materials
...........................................................599
18.1
Graphene
....................................................................600
18.1.1
Introduction
............................................................600
18.Í.2
Graphene Lattice
.......................................................601
18.1.3
Tight-Binding Approximation
............................................602
18.1.4
Dirac
Fermions
.........................................................606
18.1.5
Comprehensive View of Graphene
........................................608
Contents xix
18.2
Fullerenes
....................................................................608
18.2.1
introduction
............................................................608
18.2.2
Discovery of Cbti
.......................................................609
18.3
Fullerenes
and Tubules
.......................................................613
18.3.1
Introduction
............................................................613
18.3.2
Carbon Nanotubeles
.....................................................614
18.3.3
Three Types of Carbon Nanotubes
........................................614
18.3.4
Symmetry Properties of Carbon Nanotubes
.................................616
18.3.5
Band Structure of
a Fullerene Nanotube
...................................617
18.4
Polymers
....................................................................617
18.4.1
Introduction
............................................................617
18.4.2
Saturated and Conjugated Polymers
.......................................618
18.4.3
Transparent Metallic Polymers
............................................621
18.4.4
Electronic Polymers
.....................................................621
18.5 Solitons in
Conducting Polymers
.............................................622
18.5.1
Introduction
............................................................622
18.5.2
Electronic Structure
.....................................................623
18.5.3
Tight-Binding Model
....................................................623
18.5.4
Soliton Excitations
......................................................624
18.5.5 Solitons,
Polarons,
und
Polarnu
Excitations
.................................626
18.6.6
Polarons and Bipolarons
.................................................626
18.6
Photoinduced
Electron Transfer
...............................................627
Problems
....................................................................627
References
...................................................................630
APPEHDIX A Elements of Group
Theory
.................................................633
A.1
Symmetry and Its Consequences
..............................................633
АЛЛ
Symmetry of Crystals
....................................................633
A.
1.2
Definition of a Group
....................................................633
A.
1.3
Symmetry Operations in Crystal Lattices
...................................634
A.2 Space Groups
................................................................634
A.2.1 Introduction
............................................................634
A.2.2 Space Group Operations
..................................................634
A.3 Point Group Operations
......................................................636
A.3.
1
Introduction
............................................................636
A.3.2 Description of Point Groups
..............................................636
A.3.3 The Cubic Group O,,
....................................................638
APPENDIX
В
Massbauer
Effect
.........................................................641
B.1 Introduction
..................................................................641
B.2 Recoilless Fraction
...........................................................642
B.3 Average Transferred Energy
..................................................643
Reference
....................................................................644
xx Contents
APPENDIX
С
Introduction
to Renormalization Group Approach
............................645
СИ
Critical Behavior
.............................................................645
C.2 Theory for Scaling
...........................................................646
C.3 Renormalization Group Approach
.............................................648
References
...................................................................649
Index
....................................................................................651
|
any_adam_object | 1 |
author | Misra, Prasanta K. |
author_GND | (DE-588)1011514222 |
author_facet | Misra, Prasanta K. |
author_role | aut |
author_sort | Misra, Prasanta K. |
author_variant | p k m pk pkm |
building | Verbundindex |
bvnumber | BV037236217 |
classification_rvk | UP 1000 |
ctrlnum | (OCoLC)731785082 (DE-599)BSZ329806424 |
dewey-full | 530.4/1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/1 |
dewey-search | 530.4/1 |
dewey-sort | 3530.4 11 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01247nam a2200325 c 4500</leader><controlfield tag="001">BV037236217</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20111219 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110218s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123849540</subfield><subfield code="c">Hbk.</subfield><subfield code="9">978-0-12-384954-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)731785082</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ329806424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/1</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 1000</subfield><subfield code="0">(DE-625)146338:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Misra, Prasanta K.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1011514222</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physics of condensed matter</subfield><subfield code="c">Prasanta K. Misra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 664 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörperphysik</subfield><subfield code="0">(DE-588)4016921-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021149802&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-021149802</subfield></datafield></record></collection> |
id | DE-604.BV037236217 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:54:07Z |
institution | BVB |
isbn | 9780123849540 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-021149802 |
oclc_num | 731785082 |
open_access_boolean | |
owner | DE-11 DE-20 DE-634 DE-83 DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
owner_facet | DE-11 DE-20 DE-634 DE-83 DE-355 DE-BY-UBR DE-19 DE-BY-UBM |
physical | XXIII, 664 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Elsevier |
record_format | marc |
spelling | Misra, Prasanta K. Verfasser (DE-588)1011514222 aut Physics of condensed matter Prasanta K. Misra Amsterdam [u.a] Elsevier 2012 XXIII, 664 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Festkörperphysik (DE-588)4016921-2 gnd rswk-swf Festkörperphysik (DE-588)4016921-2 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021149802&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Misra, Prasanta K. Physics of condensed matter Festkörperphysik (DE-588)4016921-2 gnd |
subject_GND | (DE-588)4016921-2 |
title | Physics of condensed matter |
title_auth | Physics of condensed matter |
title_exact_search | Physics of condensed matter |
title_full | Physics of condensed matter Prasanta K. Misra |
title_fullStr | Physics of condensed matter Prasanta K. Misra |
title_full_unstemmed | Physics of condensed matter Prasanta K. Misra |
title_short | Physics of condensed matter |
title_sort | physics of condensed matter |
topic | Festkörperphysik (DE-588)4016921-2 gnd |
topic_facet | Festkörperphysik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=021149802&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT misraprasantak physicsofcondensedmatter |