A first course in machine learning:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
Chapman & Hall/CRC
2012
|
Schriftenreihe: | Chapman & Hall, CRC machine learning & pattern recognition series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 285 S. Ill., graph. Darst. |
ISBN: | 9781439824146 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV036884837 | ||
003 | DE-604 | ||
005 | 20170419 | ||
007 | t | ||
008 | 110103s2012 ad|| |||| 00||| eng d | ||
020 | |a 9781439824146 |c (hbk.) £34.99 |9 978-1-4398-2414-6 | ||
035 | |a (OCoLC)706853305 | ||
035 | |a (DE-599)HBZHT016555455 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-91 |a DE-91G | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ST 302 |0 (DE-625)143652: |2 rvk | ||
084 | |a DAT 708f |2 stub | ||
100 | 1 | |a Rogers, Simon |d 1979- |e Verfasser |0 (DE-588)1129383253 |4 aut | |
245 | 1 | 0 | |a A first course in machine learning |c Simon Rogers ; Mark Girolami |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b Chapman & Hall/CRC |c 2012 | |
300 | |a XX, 285 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall, CRC machine learning & pattern recognition series | |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
653 | |a Machine learning. | ||
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Girolami, Mark |d 1963- |e Verfasser |0 (DE-588)12096595X |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020800138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020800138 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804143595116036096 |
---|---|
adam_text | Titel: A first course in machine learning
Autor: Rogers, Simon
Jahr: 2012
Contents
List of Tables xi
List of Figures xiii
Preface xix
1 Linear Modelling: A Least Squares Approach 1
1.1 Linear modelling......................... 1
1.1.1 Defining the model.................... 2
1.1.2 Modelling assumptions.................. 3
1.1.3 Defining what a good model is.............. 4
1.1.4 The least squares solution - a worked example .... 6
1.1.5 Worked example..................... 9
1.1.6 Least squares fit to the Olympics data......... 10
1.1.7 Summary......................... 11
1.2 Making predictions ....................... 12
1.2.1 A second Olympics dataset............... 12
1.2.2 Summary......................... 15
1.3 Vector/matrix notation ..................... 15
1.3.1 Example .......................... 22
1.3.2 Numerical example.................... 23
1.3.3 Making predictions.................... 24
1.3.4 Summary......................... 24
1.4 Nonlinear response from a linear model ............ 25
1.5 Generalisation and over-fitting ................. 28
1.5.1 Validation data...................... 29
1.5.2 Cross-validation ..................... 29
1.5.3 Computational scaling of K-iold cross-validation ... 32
1.6 Regularised least squares .................... 33
1.7 Exercises ............................. 35
Further reading ............................ 37
2 Linear Modelling: A Maximum Likelihood Approach 39
2.1 Errors as noise.......................... 39
2.1.1 Thinking generatively.................. 40
2.2 Random variables and probability ............... 41
viii Contents
5.2.1.4 Making predictions .............. 173
5.2.1.5 The naive Bayes assumption......... 175
5.2.1.6 Example - classifying text .......... 175
5.2.1.7 Smoothing................... 177
5.2.2 Logistic regression.................... 179
5.2.2.1 Motivation................... 180
5.2.2.2 Nonlinear decision functions......... 181
5.2.2.3 Nonparametric models - the Gaussian process 182
5.3 Nonprobabilistic classifiers ................... 183
5.3.1 X-nearest neighbours.................. 183
5.3.1.1 Choosing K .................. 184
5.3.2 Support vector machines and other kernel methods . . 186
5.3.2.1 The margin................... 186
5.3.2.2 Maximising the margin............ 187
5.3.2.3 Making predictions .............. 190
5.3.2.4 Support vectors................ 191
5.3.2.5 Soft margins.................. 192
5.3.2.6 Kernels..................... 193
5.3.3 Summary......................... 197
5.4 Assessing classification performance .............. 198
5.4.1 Accuracy - 0/1 loss ................... 198
5.4.2 Sensitivity and specificity................ 198
5.4.3 The area under the ROC curve............. 199
5.4.4 Confusion matrices.................... 201
5.5 Discriminative and generative classifiers............ 203
5.6 Summary............................. 203
5.7 Exercises ............................. 203
Further reading ............................ 205
6 Clustering 207
6.1 The general problem....................... 207
6.2 if-means clustering ....................... 208
6.2.1 Choosing the number of clusters............ 210
6.2.2 Where tf-means fails................... 212
6.2.3 Kernelised if-means................... 212
6.2.4 Summary......................... 214
6.3 Mixture models ......................... 215
6.3.1 A generative process................... 216
6.3.2 Mixture model likelihood ................ 217
6.3.3 The EM algorithm.................... 219
6.3.3.1 Updating 7Tfc.................. 220
6.3.3.2 Updating/xfc.................. 221
6.3.3.3 Updating Sfe.................. 222
6.3.3.4 Updating qnk.................. 223
6.3.3.5 Some intuition................. 224
Contents ix
6.3.4 Example.......................... 225
6.3.5 EM finds local optima.................. 226
6.3.6 Choosing the number of components.......... 228
6.3.7 Other forms of mixture components.......... 230
6.3.8 MAP estimates with EM ................ 232
6.3.9 Bayesian mixture models ................ 233
6.4 Summary............................. 234
6.5 Exercises ............................. 234
Further reading ............................ 237
7 Principal Components Analysis and Latent Variable Models 239
7.1 The general problem....................... 239
7.1.1 Variance as a proxy for interest............. 239
7.2 Principal components analysis ................. 242
7.2.1 Choosing D........................ 247
7.2.2 Limitations of PCA ................... 247
7.3 Latent variable models ..................... 248
7.3.1 Mixture models as latent variable models....... 248
7.3.2 Summary......................... 249
7.4 Variational Bayes ........................ 249
7.4.1 Choosing Q(0)...................... 251
7.4.2 Optimising the bound.................. 252
7.5 A probabilistic model for PCA................. 252
7.5.1 Qt{t)........................... 254
7.5.2 £x (xn).......................... 256
7.5.3 QWm(wm)......................... 257
7.5.4 The required expectations................ 258
7.5.5 The algorithm ...................... 258
7.5.6 An example........................ 260
7.6 Missing values .......................... 260
7.6.1 Missing values as latent variables............ 262
7.6.2 Predicting missing values................ 264
7.7 Non-real-valued data ...................... 264
7.7.1 Probit PPCA....................... 264
7.7.2 Visualising parliamentary data............. 268
7.7.2.1 Aside - relationship to classification..... 272
7.8 Summary............................. 273
7.9 Exercises ............................. 273
Further reading ........................¦••••. 275
Glossary 277
Index 283
|
any_adam_object | 1 |
author | Rogers, Simon 1979- Girolami, Mark 1963- |
author_GND | (DE-588)1129383253 (DE-588)12096595X |
author_facet | Rogers, Simon 1979- Girolami, Mark 1963- |
author_role | aut aut |
author_sort | Rogers, Simon 1979- |
author_variant | s r sr m g mg |
building | Verbundindex |
bvnumber | BV036884837 |
classification_rvk | ST 300 ST 302 |
classification_tum | DAT 708f |
ctrlnum | (OCoLC)706853305 (DE-599)HBZHT016555455 |
discipline | Informatik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01660nam a2200397zc 4500</leader><controlfield tag="001">BV036884837</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170419 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">110103s2012 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781439824146</subfield><subfield code="c">(hbk.) £34.99</subfield><subfield code="9">978-1-4398-2414-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706853305</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT016555455</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 302</subfield><subfield code="0">(DE-625)143652:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rogers, Simon</subfield><subfield code="d">1979-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1129383253</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A first course in machine learning</subfield><subfield code="c">Simon Rogers ; Mark Girolami</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 285 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall, CRC machine learning & pattern recognition series</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Machine learning.</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girolami, Mark</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12096595X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020800138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020800138</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV036884837 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:50:09Z |
institution | BVB |
isbn | 9781439824146 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020800138 |
oclc_num | 706853305 |
open_access_boolean | |
owner | DE-20 DE-91 DE-BY-TUM DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-91 DE-BY-TUM DE-91G DE-BY-TUM |
physical | XX, 285 S. Ill., graph. Darst. |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | Chapman & Hall/CRC |
record_format | marc |
series2 | Chapman & Hall, CRC machine learning & pattern recognition series |
spelling | Rogers, Simon 1979- Verfasser (DE-588)1129383253 aut A first course in machine learning Simon Rogers ; Mark Girolami Boca Raton, Fla. [u.a.] Chapman & Hall/CRC 2012 XX, 285 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chapman & Hall, CRC machine learning & pattern recognition series Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Machine learning. 1\p (DE-588)4151278-9 Einführung gnd-content Maschinelles Lernen (DE-588)4193754-5 s DE-604 Girolami, Mark 1963- Verfasser (DE-588)12096595X aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020800138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Rogers, Simon 1979- Girolami, Mark 1963- A first course in machine learning Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4151278-9 |
title | A first course in machine learning |
title_auth | A first course in machine learning |
title_exact_search | A first course in machine learning |
title_full | A first course in machine learning Simon Rogers ; Mark Girolami |
title_fullStr | A first course in machine learning Simon Rogers ; Mark Girolami |
title_full_unstemmed | A first course in machine learning Simon Rogers ; Mark Girolami |
title_short | A first course in machine learning |
title_sort | a first course in machine learning |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Maschinelles Lernen Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020800138&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT rogerssimon afirstcourseinmachinelearning AT girolamimark afirstcourseinmachinelearning |