The quantum theory of fields: 3 Supersymmetry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 3rd pr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXII, 419 S. |
ISBN: | 0521670551 9780521670555 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV036861189 | ||
003 | DE-604 | ||
005 | 20190918 | ||
007 | t | ||
008 | 101209s2010 |||| 00||| eng d | ||
020 | |a 0521670551 |9 0-521-67055-1 | ||
020 | |a 9780521670555 |9 978-0-521-67055-5 | ||
035 | |a (OCoLC)706055991 | ||
035 | |a (DE-599)BVBBV036861189 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-355 |a DE-91G | ||
100 | 1 | |a Weinberg, Steven |d 1933-2021 |e Verfasser |0 (DE-588)11562855X |4 aut | |
245 | 1 | 0 | |a The quantum theory of fields |n 3 |p Supersymmetry |c Steven Weinberg |
250 | |a 3rd pr. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a XXII, 419 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenfeldtheorie |0 (DE-588)4047984-5 |D s |
689 | 0 | |5 DE-604 | |
773 | 0 | 8 | |w (DE-604)BV010519919 |g 3 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776945&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020776945 |
Datensatz im Suchindex
_version_ | 1804143560881078272 |
---|---|
adam_text | Contents
Sections
marked with an asterisk are somewhat out of the book s main line of
development and may be omitted in a first reading.
PREFACE TO VOLUME HI
xvi
NOTATION
xx
24
HISTORICAL INTRODUCTION
1
24.1
Unconventional Symmetries and No-Go Theorems
1
S
(7(6)
symmetry
D
Elementary no-go theorem for unconventional semi-simple
compact Lie algebras
D Role
of relativity
242
The Birth of Supersymmetry
4
Bosonic string theory
D
Fermionic coordinates
□
Woridsheet supersymmetry
о
Wess-Zumino model
О
Precursors
Appendix
A S
Щ6)
Symmetry of Non-RelatWistic Quark Modeb
8
Appendix
В
The Coleman-Mandula Theorem
12
Problems
22
References
22
25
SUPERSYMMETRY ALGEBRAS
25
25.1
Graded Lie Algebras and Graded Parameters
25
Fermionic and bosonic generators
□
Super-Jacobi identity
Π
Grassmann
par¬
ameters
D
Structure constants from supergroup multiplication rules
О
Complex
conjugates
25.2
Supersymmetry Algebras
29
Haag-Lopuszanski-Sohnius theorem
O Lorentz
transformation of fermionic gen¬
erators
□
Central charges
D
Other bosonic symmetries
D Ä-symmetry D
Simple
vii
viii Contents
and extended supersymmetry
□
Four-component notation
ü
Superconformal
algebra
253
Space Inversion Properties of Supersymmetry Generators
40
Parity phases in simple supersymmetry
D
Fermions
have imaginary parity
□
Parity matrices in extended supersymmetry
D
Dirac notation
25.4
Masskss Particle Supermultiplets
43
Known particles are massless for unbroken supersymmetry
O Helicity
raising and
lowering operators
о
Simple supersymmetry doublets
O Squarks,
sleptons, and
gauginos
□
Gravitino
О
Extended supersymmetry
multiplets
О
Chirality problem
for extended supersymmetry
253
Massive Particle Supermahiplets
48
Raising and lowering operators for spin 3-component
O
General massive
multi¬
plets
for simple supersymmetry
□
Collapsed
supermultiplet
О
Mass bounds in
extended supersymmetry
о
BPS
states and short supermultiplets
Problems
S3
References
54
26
SUPERSYMMETRIC FIELD THEORIES
55
26.1
Direct Construction of Field Supermultiplets
55
Construction of simplest
N = 1
field
multiplet
О
Auxiliary field
о
Infinitesi¬
mal supersymmetry transformation rules
о
Four-component notation
D
Wess-
Zumino supermultiplets regained
26.2
General Superfields
59
Superspace spinor coordinates
D
Supersymmetry generators as superspace dif¬
ferential operators
□
Supersymmetry transformations in superspace
О
General
superfields
□
Multiplication rules
D
Supersymmetric differential operators in su¬
perspace
Π
Supersymmetric actions for general superfields
□
Parity of component
fields
о
Counting fermionic and bosonic components
263
Chiral and Linear Superfields
68
Chirality conditions on a general superfield
D
Left- and right-chiral superfields
α
Coordinates xf±
О
Differential constraints
D
Product rules
D
Supersymmetric
&-
terms
D
^-terms equivalent to D-terms
D
Superpotentials
о
Kahler
potentials
D
Partial integration in superspace
D
Space inversion of chiral superfields
α
R-symmetry
again
□
Linear superfields
26.4
Renonnalizable Theories of Chiral Superfields
75
Counting powers
α
Kinematic Lagrangian
D
^-term of the
superpotential O
Complete Lagrangian
D
Elimination of auxiliary fields
α
On-shell superalgebra
о
Vacuum solutions
о
Masses and couplings
D
Wess-Zumino Lagrangian regained
Contents ix
263
Spontaneous Supersymmetry Breaking in the Tree
Approximation 83
O Raifeartaigh mechanism
ü
R-symmetry constraints
Π
Flat directions
D
Gold¬
stino
26.6
Superspace Integrals, Field Equations, and the Current Superfield
86
Berezin integration
D D-
and ^-terms as superspace integrals
D
Potential su-
perfields
ü
Superspace field equations
□
Conserved currents as components of
linear superfields
□
Conservation conditions in superspace
26.7
The Supercurrent
90
Supersymmetry current
ü
Superspace transformations generated by the super-
symmetry current
□
Local supersymmetry transformations
ü
Construction of
the supercurrent
о
Conservation of the supercurrent
□
Energy-momentum ten¬
sor and R-current
□
Scale
invariance
and
R
conservation
□
Non-uniqueness of
supercurrent
26.8
General
Kahler
Potentials*
102
Non-renormalizable non-derivative actions
α
ß-term
of
Kahler
potential
ü
Kahler
metric
ü
Lagrangian density
o Non-linear
σ
-models
from spontaneous
internal symmetry breaking
α
Kahler
manifolds
ü
Complexified coset spaces
Appendix
Majorana Spinors
107
Problems 111
References
112
27
SUPERSYMMETRIC GAUGE THEORIES
113
27.1
Gauge-Invariant Actions for Cbiral Superfields
113
Gauge transformation of chiral superfields
□
Gauge superfield V
□
Extended
gauge
invariance
О
Wess-Zumino gauge
O Supersymmetric
gauge-invariant kine¬
matic terms for chiral superfields
27.2
Gauge-Invariant Action for Abelian Gauge Superfields
122
Field strength supermultiplet
D
Kinematic Lagrangian density for Abelian gauge
supermultiplet
□
Fayet-Iliopoulos terms
D
Abelian field-strength spinor super¬
field Wa
О
Left- and right-chiral parts of W^
□
Wa as a superspace derivative of
V o
Gauge
invariance
of Wa
O Bianchi
identities in superspace
273
Gauge-Invariant Action for General Gauge Superfields
127
Kinematic Lagrangian density for non-Abelian gauge supermultiplet
Π Νοη-
Abelian field-strength spinor superfield WAaL
□
Left- and right-chiral parts of
W
a,,
О
0-term
Π
Complex coupling parameter
τ
27.4
Renormalizable Gauge Theories with Chiral Superfields
132
Supersymmetric Lagrangian density
О
Elimination of auxiliary fields
Π
Condi¬
tions for unbroken supersymmetry
О
Counting independent conditions and field
χ
Contents
variables
D
Unitarity
gauge
□
Masses for spins
0, 1/2,
and
1 □
Supersymmetry
current
Π
Non-Abelian gauge theories with general
Kahler
potentials
О
Gaugino
mass
27.5
Sepersymroetry
Breaking in the Tree Approximation Resumed
144
Supersymmetry breaking in supersymmetric quantum electrodynamics
D
General
case: masses for spins
0,1/2,
and
1
α
Mass sum rule
Π
Goldstino
component of
gaugino and chiral fermion fields
27.6
Perturbarhe
Non-Renormalizatíon
Theorems
148
Non-renormalization of Wilsonian
superpotential
□
One-loop renormalization
of terms quadratic in gauge superfields
π
Proof using holomorphy and new
symmetries with external superfields
Ρ
Non-renormalization of Fayet-Iliopoulos
constants
ξ,Λ
□
For
ϊ,α
= 0,
supersymmetry breaking depends only on super-
potential
O Non-renormalizable
theories
27.7
Soft Supersymmetry Breaking*
155
Limitation on supersymmetry-breaking radiative corrections
О
Quadratic diver¬
gences in tadpole graphs
27.8
Another Approach: Gauge-Invariant Supersymmetry Transformations
157
De Wit-Freedman
transformation rules
α
Preserving Wess-Zumino gauge with
combined supersymmetry and extended gauge transformations
27
J
Gange
Theories with Extended Supersymmetry*
160
N = 2
supersymmetry from
N = 1
supersymmetry and R-symmetry
D La-
grangian for
N = 2
supersymmetric gauge theory
D
Eliminating auxiliary fields
G
Supersymmetry currents
О
Witten-Olive calculation of central charge
G Non-
renormalization of masses
D
BPS monopoles
□
Adding hypermultiplets
D N
= 4
supersymmetry
D
Calculation of beta function
O N
= 4
theory is finite
D
Montonen-Olive duality
ProHeins 175
References
176
28
SUPERSYMMETRIC VERSIONS OF THE STANDARD MODEL
179
28.1
Superfields, Anomalies, and Conservation Laws
180
Quark,
lepton,
and gauge superfields
Π
At least two scalar doublet superfields
D
.F-term Yukawa couplings
ü
Constraints from anomalies
D
Unsuppressed
violation of baryon and
lepton
numbers
D Ä-symmetry D R parity
□
μ
-term
D
Hierarchy problem
O Sparticle
masses
O
Cosmological constraints on lightest
superparticle
28.2
Supersymmetry and Strong-Electroweak Unification
188
Renormalization group equations for running gauge couplings
D
Effect of super-
Contents xi
symmetry on beta functions
G
Calculation of weak mixing angle and unification
mass
D
Just two scalar doublet superfields
D
Coupling at unification scale
283
Where is Supersymmetry Broken?
192
Tree approximation supersymmetry breakdown ruled out
Q
Hierarchy from non-
perturbative effects of asymptotically free gauge couplings
D
Gauge and grav¬
itational mediation of supersymmetry breaking
□
Estimates of supersymmetry-
breaking scale
G
Gravitino
mass
G Cosmological
constraints
28.4
The Minimal Supersymmetric Standard Model
198
Supersymmetry breaking by superrenormalizable terms
G
General Lagrangian
G
Flavor changing processes
□
Calculation of K°
*-*
K G
Degenerate squarks and
sleptons
G
CP
violation
G
Calculation of quark chromoelectric
dipole
moment
G
Naive dimensional analysis
α
Neutron electric
dipole
moment
G
Constraints
on masses and/or phases
28.5
The Sector of Zero
Baryon
and
Lepton
Number
209
D-term contribution to scalar potential
G
μ
-term
contribution to scalar poten¬
tial
G
Soft supersymmetry breaking terms
G
Vacuum stability constraint on
parameters
G
Finding a minimum of potential
Ο Β μ φ
0
G Masses
of CP-odd
neutral scalars
G
Masses of CP-even neutral scalars
G
Masses of charged scalars
α
Bounds on masses
G
Radiative corrections
α
Conditions for electroweak
symmetry breaking
G
Charginos and neutralinos
G
Lower bound on
|μ|
28.6
Gauge Mediation of Supersymmetry Breaking
220
Messenger superfields
α
Supersymmetry breaking in gauge
supermultiplet
prop¬
agators
О
Gaugino masses
О
Squark
and slepton masses
G
Derivation from
holomorphy
G
Radiative corrections
G
Numerical examples
G
Higgs scalar
masses
G
μ
problem
O A¡¡
and
C¡¡
parameters
G
Gravitino
as lightest
sparitele
G
Next-to-lightest
spaniele
28.7 Baryon
and
Lepton
Non-Conservation
235
Dimensionality five interactions
G
Gaugino exchange
G Gluino
exchange sup¬
pressed
G
Wino
and
bino
exchange effects
G
Estimate of proton lifetime
G
Favored modes of proton decay
Problems
240
References
241
29
BEYOND PERTURBATION THEORY
248
29.1
General Aspects of Supersymmetry Breaking
248
Finite volume
G
Vacuum energy and supersymmetry breaking
G
Partially broken
extended supersymmetry?
G
Pairing of bosonic and fermionic states
G
Pairing
of vacuum and one-goldstino state
□
Witten
index
G
Supersymmetry unbroken
xii Contents
in
the
Wess-Zumino
model D
Models
with unbroken supersymmetry and zero
Witten
index
α
Large field values
α
Weighted
Witten
indices
792
Supersymmetry Current Sum Rules
256
Sum rule for vacuum energy density
□
One-goldstino contribution
Q
The
supersymmetry-breaking parameter
F
□
Soft goldstino amplitudes
О
Sum rule
for supersymmetry current-fermion spectral functions
□
One-goldstino contribu¬
tion
D
Vacuum energy density in terms of SF and
D
vacuum values
О
Vacuum
energy sum rule for infinite volume
293
Noo-Perrorbative Corrections to the
Superpotential
266
Non-perturbative effects break external field translation and R-conservation
D
Remaining symmetry
□
Example: generalized supersymmetric quantum chromo-
dynamics
О
Structure of induced
superpotential
for C
>
Сг
D
Stabilizing the
vacuum with a bare
superpotential O
Vacuum moduli in generalized supersym¬
metric quantum chromodynamics for Nc
>
Nf
□
Induced
superpotential
is linear
in bare
superpotential
parameters for C
=
Сг О
One-loop renormalization of
[W.WJjr term for all Cu C2
29.4
Supersymmetry Breaking in Gauge Theories
276
Witten
index vanishes in supersymmetric quantum electrodynamics
O C-weighted
Witten
index
Q
Supersymmetry unbroken in supersymmetric quantum electro¬
dynamics
D
Counting zero-energy gauge field states in supersymmetric quantum
electrodynamics
О
Calculating
Witten
index for general supersymmetric pure
gauge theories
о
Counting zero-energy gauge field states for general supersym¬
metric pure gauge theories
Q Weyl
invariance
□
Supersymmetry unbroken in
general supersymmetric pure gauge theories
O Witten
index and
R
anomalies
Q
Adding chiral scalars
О
Model with spontaneously broken supersymmetry
29.5
The Seiberg-Wirten Solution*
287
Underlying
N = 2
supersymmetric Lagrangian
D
Vacuum modulus
□
Leading
non-renormalizable terms in the effective Lagrangian
□
Effective Lagrangian for
component fields
О
Kahler
potential and gauge coupling from a function
Л(Ф)
α
SU(2) R-symmetry
Q
Prepotential
G
Duality transformation
α
Я(Ф)
translation
G
üg
R-symmetry
G
ЅЦ2,
Z)-symmetry
G
Central charge
G
Charge and magnetic
monopole
moments
D
Perturbative behavior for large a
G
Monodramy
at
infinity
D
Singularities from dyons
G
Monodramy
at singularities
α
Seiberg-
Witten solution
G
Uniqueness proof
Problems
305
References
305
30
SUPERGRAPHS
307
30.1
Potential Superfiekk
308
Contents xiii
Problem
of chiral constraints
□
Corresponding problem in quantum electro¬
dynamics
D
Path integrals over potential superfields
30.2
Superpropagators
310
A troublesome
invariance
□
Change of variables
D
Defining property of super-
propagator
□
Analogy with quantum electrodynamics
□
Propagator for potential
superfields
G
Propagator for chiral superfields
303
Calculations with Supergraphs
313
Superspace quantum effective action
□
Locality in fermionic coordinates
α
D-
terms and ^ -terms in effective action
□
Counting superspace derivatives
D
No
renormalization of ^ -terms
Problems
316
References
316
31
SUPERGRAVITY
318
31.1
The Metric Superfield
319
Vierbein
formalism
□
Transformation of gravitational field
G
Transformation of
gravitino
field
α
Generalized transformation of metric superfield
Ημ
G
Interaction
of
Ημ
with supercurrent
G Invariance
of interaction
Q
Generalized transformation
of
Ημ
components
G
Auxiliary fields
G
Counting components
G
Interaction of
Ημ
component fields
G
Normalization of action
31.2
The Gravitational Action
326
Einstein superfield
Εμ α
Component fields of
Εμ
G
Lagrangian for
Ημ
G
Value of
к
G
Total Lagrangian
G
Vacuum energy density
G
Minimum vacuum energy
G
De
Sitter and anti-de Sitter spaces
G
Why vacuum energy is negative
G
Stability
of flat space
α
Weyl transformation
313
The
Gravitino
333
Irreducibility conditions on
gravitino
field
G
Gravitino
propagator
G
Gravitino
kinematic Lagrangian
G
Gravitino
field equation
G
Gravitino
mass from broken
supersymmetry
Q
Gravitino
mass from
s
and
p
31.4
Anomaly-Mediated Supersymmetry Breaking
337
First-order interaction with scale non-invariance superfield
X G
General formula
for X
G
General first-order interaction
G
Gaugino masses
G
Gluino mass
G B
parameter
G
Wino
and
bino
masses
G A
parameters
313
Local Supersymmetry Transformations
341
Wess-Zumino gauge for metric superfield
G
Local supersymmetry transforma¬
tions
G Invariance
of action
xiv Contents
31.6 Supergravity
to
АО
Orders
343
Local supersymmetry transformation of vierbein,
gravitino,
and auxiliary fields
D
Extended spin connection
ö
Local supersymmetry transformation of general
scalar
supermultiplet
D
Product rules for general superfields
D
Real matter
superfields
О
Chiral matter superfields
□
Product rules for chiral superfields
D
Cosmological constant and
gravitino
mass
о
Lagrangian for supergravity and
chiral fields with general
Kahler
potential and
superpotential D
Elimination of
auxiliary fields
О
Kahler
metric
□
Weyl transformation
D
Scalar field potential
О
Conditions for flat space and unbroken supersymmetry
□
Complete bosonic
Lagrangian
D
Canonical normalization
D
Combining
superpotential
and
Kahler
potential
О
No-scale models
31.7
Gravity-Mediated Supersymmetry Breaking
355
Early theories with hidden sectors
D
Hidden sector gauge coupling strong at
energy
Л
D
First version: Observable and hidden sectors
О
Separable bare
superpotential
D
General potential
О
Terms of order
к4Л8
»
m*
О Л
estimated
as
*
IO
GeV
D
μ-
and
Βμ
-terms
α
Squark
and slepton masses
O Gaugino
masses
D
^-parameters
D
Second version: Observable, hidden, and modular
sectors
О
Dynamically induced
superpotential
for modular superfields
□
Effective
superpotential
of observable sector
О
μ
-term
О
Potential of observable sector
scalars
О
Terms of order
к8Л12
»
nt*
О
Soft supersymmetry-breaking terms
о Л
estimated as
«
1013 GeV
α
Shifts in modular fields
π
Absence of
C¡j
terms
α
Squark
and slepton masses
□
Gaugino masses
Appendix Tbe Vierbein Formalism
375
Problems
378
References
379
32
SUPERSYMMETRY ALGEBRAS IN HIGHER DIMENSIONS
382
32.1
General Supersymmetry Algebras
382
Classification of fermionic generators
α
Definition of weight
D
Fermionic gen¬
erators in fundamental spinor representation
D
Fermionic generators commute
with
Ρμ
D
General form of
anticommutation
relations
D
Central charges
□
Anti-
commutation relations for odd dimensionality
α
Anticommutation
relations for
even dimensionality
D
/{-symmetry groups
312
Masskss
Multiplets
393
Little group O(d
- 2)
α
Definition of spin
;
α
Exclusion of
j
> 2
Π
Missing
fermionic generators
О
Number of fermionic generators
<, 32
Ο Ν
— 1
supersym¬
metry for
d
= 11
О
Three-form massless particle
D
Types IIA, IIB and heterotic
supersymmetry for
d
= 10
323
p-Branes
397
New conserved tensors
□
Fermionic generators still in fundamental spinor
repre-
Contents xv
sentation
D
Fermionic
generators
still
commute with
Ρμ
□
Symmetry conditions
on tensor central charges
О
2-form and 5-form central charges for
d
= 11
Appendix Spinors in Higher Dimensions
401
Problems
407
References
407
AUTHOR INDEX
411
SUBJECT INDEX
416
|
any_adam_object | 1 |
author | Weinberg, Steven 1933-2021 |
author_GND | (DE-588)11562855X |
author_facet | Weinberg, Steven 1933-2021 |
author_role | aut |
author_sort | Weinberg, Steven 1933-2021 |
author_variant | s w sw |
building | Verbundindex |
bvnumber | BV036861189 |
ctrlnum | (OCoLC)706055991 (DE-599)BVBBV036861189 |
edition | 3rd pr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01359nam a2200349 cc4500</leader><controlfield tag="001">BV036861189</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190918 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101209s2010 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521670551</subfield><subfield code="9">0-521-67055-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521670555</subfield><subfield code="9">978-0-521-67055-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)706055991</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036861189</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weinberg, Steven</subfield><subfield code="d">1933-2021</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11562855X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The quantum theory of fields</subfield><subfield code="n">3</subfield><subfield code="p">Supersymmetry</subfield><subfield code="c">Steven Weinberg</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3rd pr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 419 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV010519919</subfield><subfield code="g">3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776945&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020776945</subfield></datafield></record></collection> |
id | DE-604.BV036861189 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:49:37Z |
institution | BVB |
isbn | 0521670551 9780521670555 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020776945 |
oclc_num | 706055991 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-91G DE-BY-TUM |
physical | XXII, 419 S. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Weinberg, Steven 1933-2021 Verfasser (DE-588)11562855X aut The quantum theory of fields 3 Supersymmetry Steven Weinberg 3rd pr. Cambridge [u.a.] Cambridge Univ. Press 2010 XXII, 419 S. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf Quantenfeldtheorie (DE-588)4047984-5 s DE-604 (DE-604)BV010519919 3 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776945&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Weinberg, Steven 1933-2021 The quantum theory of fields Quantenfeldtheorie (DE-588)4047984-5 gnd |
subject_GND | (DE-588)4047984-5 |
title | The quantum theory of fields |
title_auth | The quantum theory of fields |
title_exact_search | The quantum theory of fields |
title_full | The quantum theory of fields 3 Supersymmetry Steven Weinberg |
title_fullStr | The quantum theory of fields 3 Supersymmetry Steven Weinberg |
title_full_unstemmed | The quantum theory of fields 3 Supersymmetry Steven Weinberg |
title_short | The quantum theory of fields |
title_sort | the quantum theory of fields supersymmetry |
topic | Quantenfeldtheorie (DE-588)4047984-5 gnd |
topic_facet | Quantenfeldtheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020776945&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV010519919 |
work_keys_str_mv | AT weinbergsteven thequantumtheoryoffields3 |