Micro- and nanoscale fluid mechanics: transport in microfluidic devices
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2010
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 512 S. Ill., graph. Darst. |
ISBN: | 9780521119030 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV036732941 | ||
003 | DE-604 | ||
005 | 20150824 | ||
007 | t | ||
008 | 101021s2010 ad|| |||| 00||| eng d | ||
020 | |a 9780521119030 |c (hardback) |9 978-0-521-11903-0 | ||
020 | |z 0521119030 |c (hardback) |9 0-521-11903-0 | ||
035 | |a (OCoLC)705919330 | ||
035 | |a (DE-599)BVBBV036732941 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-29T |a DE-703 | ||
084 | |a UF 4000 |0 (DE-625)145577: |2 rvk | ||
100 | 1 | |a Kirby, Brian J. |d 1973- |e Verfasser |0 (DE-588)1075728193 |4 aut | |
245 | 1 | 0 | |a Micro- and nanoscale fluid mechanics |b transport in microfluidic devices |c Brian J. Kirby |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2010 | |
300 | |a XXII, 512 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Microfluidic devices | |
650 | 4 | |a Microfluidics | |
650 | 4 | |a Nanofluids | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikrofluidik |0 (DE-588)4803438-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mikrofluidik |0 (DE-588)4803438-1 |D s |
689 | 0 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020650569&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020650569 |
Datensatz im Suchindex
_version_ | 1804143386911834112 |
---|---|
adam_text | Contents
Preface
page
xv
Nomenclature
xvii
Introduction
1
Kinematics, Conservation Equations, and Boundary Conditions for
Incompressible Flow
............................................6
1.1
Fluid statics
6
1.2
Kinematics of a fluid velocity field
7
1.2.1
Important geometric definitions
7
1.2.2
Strain rate and rotation rate tensors
10
1.3
Governing equations for incompressible flow
13
1.3.1
Conservation of mass: continuity equation
13
1.3.2
Conservation of momentum: the Navier-Stokes equations
14
1.4
Constitutive relations
17
1.4.1
Relation between strain rate and stress
17
1.4.2
Non-Newtonian fluids
19
1.5
Surface tension
20
1.5.1
Definition of surface tension and
interfacial
energy
20
1.5.2
Young-Laplace equation
20
1.5.3
Contact angle
21
1.5.4
Capillary height
22
1.5.5
Dynamic contact angle
24
1.6
Velocity and stress boundary conditions at interfaces
24
1.6.1
Kinematic boundary condition for continuity of normal velocity
24
1.6.2
Dynamic boundary condition for continuity of tangential velocity
25
1.6.3
Dynamic boundary conditions for stresses
26
1.6.4
The physics of the tangential velocity boundary condition
30
1.7
Solving the governing equations
32
1.8
Flow regimes
33
1.9
A word on terminology and the microfluidics literature
33
1.10
Summary
34
1.11
Supplementary reading
36
1.12
Exercises
36
2
Unidirectional Flow
............................................41
2.1
Steady pressure-and boundary-driven flow through long channels
41
2.1.1
Couette
flow
41
2.1.2
Poiseuille flow
46
Contents
2.2
Startup and development of unidirectional flows
49
2.3
Summary
50
2.4
Supplementary reading
51
2.5
Exercises
51
3
Hydraulic Circuit Analysis
........................................60
3.1
Hydraulic circuit analysis
60
3.2
Hydraulic circuit equivalents for fluid flow in microchannels
62
3.2.1
Analytic representation of sinusoidal pressures and flow rates
68
3.2.2
Hydraulic impedance
69
3.2.3
Hydraulic circuit relations
70
3.2.4
Series and parallel component rules
70
3.3
Solution techniques
72
3.4
Summary
74
3.5
Supplementary reading
75
3.6
Exercises
75
4
Passive Scalar Transport: Dispersion, Patterning, and Mixing
.................79
4.1
Passive scalar transport equation
80
4.1.1
Scalar fluxes and constitutive properties
80
4.1.2
Scalar conservation equation
80
4.2
Physics of mixing
82
4.3
Measuring and quantifying mixing and related parameters
84
4.4
The low-Reynolds-number, high-Peclet-number limit
87
4.4.1
The high-Peclet-number limit
87
4.4.2
The low-Reynolds-number limit
87
4.5
Laminar flow patterning in microdevices
88
4.6
Taylor-Aris dispersion
89
4.7
Summary
91
4.8
Supplementary reading
92
4.9
Exercises
92
5
Electrostatics and Electrodynamics
.................................97
5.1
Electrostatics in matter
97
5.1.1
Electrical potential and electric field
97
5.1.2
Coulomb s law, Gauss s law for electricity in a material, curl
of electric field
98
Polarization of matter and electric permittivity
100
Material, frequency, and electric-field dependence of electrical
permittivity
102
Poisson
and Laplace equations
104
Classification of material types
105
Electrostatic boundary conditions
105
Solution of electrostatic equations
107
Maxwell stress tensor
107
Effects of electrostatic fields on multipoles
108
5.2
Electrodynamics
109
5.2.1
Charge conservation equation
110
5.2.2
Electrodynamic boundary conditions
110
5.2.3
Field lines at substrate walls
112
5.1
.3
5.1
.4
5.1
.5
5.1
.6
5.1
.7
5.1
.8
5.1
.9
5.1
.10
Contents
5.3
Analytic representations of electrodynamic quantities: complex
permittivity and conductivity
112
5.3.1
Complex description of dielectric loss
115
5.4
Electrical circuits
116
5.4.1
Components and properties
117
5.4.2
Electrical impedance
119
5.4.3
Circuit relations
119
5.4.4
Series and parallel component rules
120
5.5
Equivalent circuits for current in electrolyte-filled microchannels
122
5.5.1
Electrical circuit equivalents of hydraulic components
122
5.6
Summary
126
5.7
Supplementary reading
127
5.8
Exercises
127
6
Electroosmosis
.............................................131
6.1
Matched asymptotics in electroosmotic flow
132
6.2
Integral analysis of Coulomb forces on the EDL
132
6.3
Solving the Navier-Stokes equations for electroosmotic flow
in the thin-EDL limit
135
6.3.1
Outer solution
136
6.3.2
Replacing the EDL with an effective slip boundary condition
136
6.3.3
Replacing the Navier-Stokes equations with the Laplace equation:
flow-current similitude
137
6.3.4
Reconciling the no-slip condition with irrotational flow
138
6.4
Electroosmotic mobility and the electrokinetic potential
138
6.4.1
Electrokinetic coupling matrix representation of electroosmosis
140
6.5
Electrokinetic pumps
140
6.5.1
A planar electrokinetic pump
140
6.5.2
Types of electrokinetic pumps
143
6.6
Summary
145
6.7
Supplementary reading
145
6.8
Exercises
146
7
Potential Fluid Flow
...........................................153
7.1
Approach for finding potential flow solutions to the Navier-Stokes equations
153
7.2
Laplace equation for velocity potential and stream function
154
7.2.1
Laplace equation for the velocity potential
154
7.2.2
No-slip condition
156
7.3
Potential flows with plane symmetry
156
7.3.1
Complex algebra and its use in plane-symmetric potential flow
157
7.3.2 Monopolar
flow: plane-symmetric (line) source with volume outflow
per unit depth
Λ
160
7.3.3
Plane-symmetric vortex with counterclockwise circulation per unit
depth
Γ
163
7.3.4
Dipolar flow: plane-symmetric doublet with
dipole
moment
к
165
7.3.5
Uniform flow with speed
U
168
7.3.6
Flow around a corner
170
7.3.7
Flow over a circular cylinder
171
7.3.8
Conformai
mapping
171
Contents
7.4 Potential
flow in axisymmetric systems in spherical coordinates
172
7.5
Summary
173
7.6
Supplementary reading
173
7.7
Exercises
174
8
Stokes Flow
...............................................178
8.1
Stokes flow equation
178
8.1.1
Different forms of the Stokes flow equations
179
8.1.2
Analytical versus numerical solutions of the Stokes flow equations
180
8.2
Bounded Stokes flows
180
8.2.1
Hele-Shaw flows
181
8.2.2
Numerical solution of general bounded Stokes flow problems
182
8.3
Unbounded Stokes flows
182
8.3.1
Stokes flow over a sphere in an infinite domain
182
8.3.2
General solution for Stokes flow over a sphere in an infinite domain
187
8.3.3
Flow over prolate ellipsoids
188
8.3.4
Stokes flow over particles in finite domains
189
8.3.5
Stokes flow over multiple particles
189
8.4
Micro-PIV
189
8.4.1
Deterministic particle lag
191
8.4.2
Brownian motion
191
8.5
Summary
191
8.6
Supplementary reading
192
8.7
Exercises
193
9
The Diffuse Structure of the Electrical Double Layer
.......................199
9.1
The Gouy-Chapman EDL
199
9.1.1
Boltzmann statistics for ideal solutions of ions
200
9.1.2
Ion distributions and potential: Boltzmann relation
201
9.1.3
Ion distributions and potential: Poisson-Boltzmann equation
202
9.1.4
Simplified forms of the nonlinear Poisson-Boltzmann equation
203
9.1.5
Solutions of the Poisson-Boltzmann equation
204
9.2
Fluid flow in the Gouy-Chapman EDL
208
9.3
Convective surface conductivity
210
9.4
Accuracy of the ideal-solution and Debye-Hiickel approximations
211
9.4.1
Debye-Hiickel approximation
212
9.4.2
Limitations of the ideal solution approximation
213
9.5
Modified Poisson-Boltzmann equations
213
9.5.1
Steric correction to ideal solution statistics
213
9.5.2
Modified Poisson-Boltzmann equation
215
9.5.3
Importance and limitations of Poisson-Boltzmann modifications
216
9.6
Stern layer
217
9.7
Summary
217
9.8
Supplementary reading
218
9.9
Exercises
218
1
0
Zeta
Potential in
Microchannels.............................. 225
10.1
Definitions and notation
225
10.2
Chemical and physical origins of equilibrium
interfacial
charge
226
10.2.1
Electrochemical potentials
226
Contents
10.2.2
Potential-determining ions
227
10.2.3
Nernstian and non-Nernstian surfaces
230
10.3
Expressions relating the surface charge density, surface potential, and
zeta
potential
232
10.3.1
Extended interface models: modifications to tpo
234
10.3.2
Fluid inhomogeneity models: relation between
φο
and
ζ
234
10.3.3
Slip and multiphase interface models: hydrophobic surfaces
236
10.4
Observed electrokinetic potentials on microfluidic substrates
237
10.4.1
Electrolyte concentration
237
10.4.2 pH
dependence
238
10.5
Modifying the
zeta
potential
238
10.5.1
Indifferent electrolyte concentrations
238
10.5.2
Surface-active agents
239
10.5.3
Chemical functionalizations
240
10.6
Chemical and fluid-mechanical techniques for measuring
interfacial
properties
240
10.6.1
Charge titration
240
10.6.2
Electroosmotic flow
241
10.6.3
Streaming current and potential
242
10.7
Summary
245
10.8
Supplementary reading
246
10.9
Exercises
247
11
Species and Charge Transport
....................................250
11.1
Modes of species transport
250
11.1.1
Species diffusion
250
11.1.2
Convection
250
11.1.3
Relating diffusivity and electrophoretic mobility:
the viscous mobility
252
11.2
Conservation of species: Nernst-Planck equations
253
11.2.1
Species fluxes and constitutive properties
253
11.2.2
Nernst-Planck equations
254
11.3
Conservation of charge
256
11.3.1
Charge conservation equation
256
11.3.2
Diffusivity, electrophoretic mobility, and molar conductivity
258
11.4
Logarithmic transform of the Nernst-Planck equations
258
11.5
Microfluidic application: scalar-image velocimetry
259
11.5.1
SIV
using caged-dye imaging
259
11.5.2
SIV
using photobleaching
259
11.6
Summary
259
11.7
Supplementary reading
261
11.8
Exercises
261
12
Microchip Chemical Separations
..................................265
12.1
Microchip separations: experimental realization
265
12.1.1
Sample injection
266
12.1.2
Resolution
267
12.2
ID Band broadening
268
12.2.1
Analyte transport: quiescent flow, no electric field
268
12.2.2
Transport of analytes: electroosmotic flow and electrophoresis
269
Contents
12.3 Microchip electrophoresis:
motivation and experimental issues
270
12.3.1
Thermal dissipation
270
12.3.2
Compact, folded, long-pathlength channels
270
12.4
Experimental challenges
270
12.4.1
Pressure-driven flow
271
12.4.2
Analyte band dispersion in turns and expansions
271
12.5
Protein and
peptide
separation
273
12.5.1
Protein properties
273
12.5.2
Protein separation techniques
273
12.6
Multidimensional separations
275
12.7
Summary
276
12.8
Supplementary reading
276
12.9
Exercises
277
13
Particle
Electrophoresis........................................281
13.1
Introduction to electrophoresis: electroosmosis with a moving
boundary and quiescent bulk fluid
281
13.2
Electrophoresis of particles
283
13.3
Electrophoretic velocity dependence on particle size
286
13.3.1
Smoluchowski velocity: large particles, small surface potential
287
13.3.2
Henry s function: effect of finite double layers for small
φο
287
13.3.3
Large surface potential
-
effect of
counterion
distribution
289
13.4
Summary
292
13.5
Supplementary reading
294
13.6
Exercises
295
14 DNA
Transport and Analysis
.....................................298
14.1
Physicochemical structure of
DNA 299
14.1.1
Chemical structure of
DNA 299
14.1.2
Physical properties of dsDNA
300
14.2 DNA
transport
303
14.2.1 DNA
transport in bulk aqueous solution
303
14.3
Ideal chain models for bulk
DNA
physical properties
308
14.3.1
Idealized models for bulk
DNA
properties
309
14.3.2
Dependence of transport properties on contour length
320
14.4
Real polymer models
320
14.5
dsDNA in confining geometries
323
14.5.1
Energy and entropy of controlled polymer extension
323
14.5.2
Energy and entropy of confinement for ideal polymers
326
14.5.3 DNA
transport in confined geometries
327
14.6 DNA
analysis techniques
328
14.6.1 DNA
amplification
328
14.6.2 DNA
separation
328
14.6.3 DNA microarrays 329
14.7
Summary
329
14.8
Supplementary reading 33I
14.9
Exercises
332
15
Nanofluidics: Fluid and Current Flow in Molecular-Scale and Thick-EDL Systems
.... 336
15.1
Unidirectional transport in infinitely long nanochannels
336
15.1.1
Fluid transport
337
Contents
15.1.2 Electrokinetic
coupling matrix for thick-EDL transport
337
15.1.3
Circuit models for nanoscale channels
344
15.2
Transport through nanostructures with interfaces or
nonuniform
cross-sectional area
345
15.2.1
ID equilibrium model
346
15.2.2
Large molecule and particle transport
349
15.3
Supplementary reading
350
15.4
Exercises
351
16
AC Electrokinetics and the Dynamics of Diffuse Charge
....................355
16.1
Electroosmosis with temporally varying
interfacial
potential
356
16.2
Equivalent circuits
356
16.2.1
The double layer as a capacitor
357
16.3
Induced-charge flow phenomena
363
16.3.1
Induced-charge double layers
363
16.3.2
Flow due to induced-charge double layers
-
induced-charge
electroosmosis
364
16.3.3
Flow due to induced-charge double layers
-
AC electroosmosis
364
16.4
Electrothermal fluid flow
365
16.5
Summary
367
16.6
Supplementary reading
368
16.7
Exercises
369
17
Particle and Droplet Actuation: Dielectrophoresis, Magnetophoresis,
and Digital Microfluidics
........................................373
17.1
Dielectrophoresis
373
17.1.1
Inferring the Coulomb force on an enclosed volume from
the electric field outside the volume
375
17.1.2
The force on an uncharged, uniform,
isotropie
sphere in a linearly
varying electric field with uniform,
isotropie
phase
375
17.1.3
Maxwellian equivalent body for inhomogeneous, spherically
symmetric particles
380
17.1.4
Dielectrophoresis of charged spheres
382
17.1.5
Dielectrophoresis of nonspherical objects or objects in nonlinearly
varying fields
382
17.1.6
Nonuniform
and anisotropic phase effects
385
17.2
Particle magnetophoresis
389
17.2.1
Origin of magnetic fields in materials
390
17.2.2
Attributes of magnetism
391
17.2.3
Magnetic properties of superparamagnetic beads
392
17.2.4
Magnetophoretic forces
392
17.2.5
DC magnetophoresis of spheres
-
linear limit
393
17.3
Digital microfluidics
393
17.3.1
Electrocapillarity and electrowetting
394
17.4
Summary
395
17.5
Supplementary reading
396
17.6
Exercises
397
appendix A. Units and Fundamental Constants
............................405
A.I Units
405
A.2 Fundamental physical constants
406
Contents
Appendix
в.
Properties of Electrolyte Solutions
............................407
B.I Fundamental properties of water
407
B.2 Aqueous solutions and key parameters
407
B.3 Chemical reactions, rate constants, and equilibrium
408
B.3.1 Henderson-Hasselbach equation
409
B.3.2 Conjugate acids and bases; buffers
411
B.3.3 Ionization of water
411
B.3.4 Solubility product of weakly soluble salts
412
B.3.5 Ideal solution limit and activity
412
B.3.6 Electrochemical potentials
413
B.4 Effects of solutes
413
B.4.1 Dielectric increments
413
B.5 Summary
415
B.6 Supplementary reading
415
B.7 Exercises
416
appendix c. Coordinate Systems and Vector Calculus
.......................418
C.I Coordinate systems
418
C.I.I
3D
coordinate systems
418
C.I.
2
2D coordinate systems
419
C.2 Vector calculus
420
C.2.1 Scalars, vectors, and tensors
420
C.2.
2
Vector operations
423
C.2.3 Del or
nabla
operations
426
C.2.4 Biharmonic and E4 operators
431
C.2.5 Vector identities
431
C.2.6 Dyadic operations
433
C.3 Summary
433
C.4 Supplementary reading
433
C.5 Exercises
434
appendix D. Governing Equation Reference
...............................436
D.I Scalar Laplace equation
436
D.2 Poisson-Boltzmann equation
437
D.3 Continuity equation
437
D.4 Navier-Stokes equations
438
D.5 Supplementary reading
439
appendix E. Nondimensionalization and Characteristic Parameters
..............440
E.I Buckingham
Π
theorem
440
E.2 Nondimensionalization of governing equations
440
E.2.1 Nondimensionalization of the Navier-Stokes equations:
Reynolds number
440
E.2.
2
Nondimensionalization of the passive scalar transfer equation:
Peclet number
443
E.2.3 Nondimensionalization of the Poisson-Boltzmann equation: Debye
length and thermal voltage
445
E.3 Summary
447
E.4 Supplementary reading
44g
E.
5
Exercises
44g
Contents
Appendix f. Multipolar Solutions
to the Laplace and Stokes Equations
............450
F.I Laplace equation
450
F.I.I Laplace equation solutions for axisymmetric spherical coordinates:
separation of variables and
multipolar
expansions
450
F.I.
2
Systems with plane symmetry: 2D cylindrical coordinates
456
F.2 Stokes equations
458
F.2.1 The Green s function for Stokes flow with a point source
458
F.3 Stokes multipoles: stresslet and rotlet
459
F.4 Summary
461
F.5 Supplementary reading
462
F.6 Exercises
462
appendix G. Complex Functions
.......................................465
G.I Complex numbers and basic operations
465
G.I.I Arithmetic operations
466
G.1.2 Calculus operations
466
G.2 Using complex variables to combine orthogonal parameters
468
G.3 Analytic representation of harmonic parameters
469
G.3.1 Applicability of the analytic representation
470
G.3.2 Mathematical rules for using the analytic representation of
harmonic parameters
470
G.4
Kramers-Krönig
relations
471
G.5
Conformai
mapping
472
G.5.1 Joukowski transform
472
G.5.2 Schwarz-Christoffel transform
473
G.6 Summary
473
G.7 Supplementary reading
473
G.8 Exercises
474
appendix H. Interaction Potentials: Atomistic Modeling of Solvents and Solutes
.....475
H.I Thermodynamics of intermolecular potentials
475
H.I.I
Monopole pair
potentials
476
H.1.2 Spherically symmetric multipole pair potentials
477
H.2 Liquid-state theories
478
H.2.1 Integral techniques for concentration profiles
479
H.2.2 Why the direct correlation function does not describe
concentration profiles
482
H.2.3 Total correlation functions and the Ornstein-Zernike equation
482
H.3 Excluded volume calculations
483
H.4 Atomistic simulations
483
H.4.1 Defining atomic forces and accelerations
485
H.4.2 Water models
485
H.4.3 Nondimensionalization in MD simulations
490
H.5 Summary
491
H.6 Supplementary reading
492
H.7 Exercises
492
Bibliography
495
Index
505
|
any_adam_object | 1 |
author | Kirby, Brian J. 1973- |
author_GND | (DE-588)1075728193 |
author_facet | Kirby, Brian J. 1973- |
author_role | aut |
author_sort | Kirby, Brian J. 1973- |
author_variant | b j k bj bjk |
building | Verbundindex |
bvnumber | BV036732941 |
classification_rvk | UF 4000 |
ctrlnum | (OCoLC)705919330 (DE-599)BVBBV036732941 |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01563nam a2200397 c 4500</leader><controlfield tag="001">BV036732941</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150824 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">101021s2010 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521119030</subfield><subfield code="c">(hardback)</subfield><subfield code="9">978-0-521-11903-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">0521119030</subfield><subfield code="c">(hardback)</subfield><subfield code="9">0-521-11903-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)705919330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036732941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4000</subfield><subfield code="0">(DE-625)145577:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirby, Brian J.</subfield><subfield code="d">1973-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1075728193</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Micro- and nanoscale fluid mechanics</subfield><subfield code="b">transport in microfluidic devices</subfield><subfield code="c">Brian J. Kirby</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 512 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfluidic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfluidics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanofluids</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020650569&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020650569</subfield></datafield></record></collection> |
id | DE-604.BV036732941 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:46:51Z |
institution | BVB |
isbn | 9780521119030 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020650569 |
oclc_num | 705919330 |
open_access_boolean | |
owner | DE-634 DE-29T DE-703 |
owner_facet | DE-634 DE-29T DE-703 |
physical | XXII, 512 S. Ill., graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Kirby, Brian J. 1973- Verfasser (DE-588)1075728193 aut Micro- and nanoscale fluid mechanics transport in microfluidic devices Brian J. Kirby 1. publ. Cambridge [u.a.] Cambridge Univ. Press 2010 XXII, 512 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Microfluidic devices Microfluidics Nanofluids Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Mikrofluidik (DE-588)4803438-1 gnd rswk-swf Mikrofluidik (DE-588)4803438-1 s Strömungsmechanik (DE-588)4077970-1 s DE-604 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020650569&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kirby, Brian J. 1973- Micro- and nanoscale fluid mechanics transport in microfluidic devices Microfluidic devices Microfluidics Nanofluids Strömungsmechanik (DE-588)4077970-1 gnd Mikrofluidik (DE-588)4803438-1 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4803438-1 |
title | Micro- and nanoscale fluid mechanics transport in microfluidic devices |
title_auth | Micro- and nanoscale fluid mechanics transport in microfluidic devices |
title_exact_search | Micro- and nanoscale fluid mechanics transport in microfluidic devices |
title_full | Micro- and nanoscale fluid mechanics transport in microfluidic devices Brian J. Kirby |
title_fullStr | Micro- and nanoscale fluid mechanics transport in microfluidic devices Brian J. Kirby |
title_full_unstemmed | Micro- and nanoscale fluid mechanics transport in microfluidic devices Brian J. Kirby |
title_short | Micro- and nanoscale fluid mechanics |
title_sort | micro and nanoscale fluid mechanics transport in microfluidic devices |
title_sub | transport in microfluidic devices |
topic | Microfluidic devices Microfluidics Nanofluids Strömungsmechanik (DE-588)4077970-1 gnd Mikrofluidik (DE-588)4803438-1 gnd |
topic_facet | Microfluidic devices Microfluidics Nanofluids Strömungsmechanik Mikrofluidik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020650569&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kirbybrianj microandnanoscalefluidmechanicstransportinmicrofluidicdevices |