Scientific computing with MATLAB and Octave: with 12 tables
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2010
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Texts in computational science and engineering
2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 360 S. graph. Darst. |
ISBN: | 9783642124297 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV036563747 | ||
003 | DE-604 | ||
005 | 20121123 | ||
007 | t | ||
008 | 100714s2010 d||| |||| 00||| eng d | ||
020 | |a 9783642124297 |c pbk |9 978-3-642-12429-7 | ||
035 | |a (OCoLC)658232857 | ||
035 | |a (DE-599)BVBBV036563747 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-11 |a DE-29T |a DE-91G |a DE-573 |a DE-19 |a DE-188 | ||
082 | 0 | |a 518 |2 22/ger | |
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
084 | |a ST 351 |0 (DE-625)143668: |2 rvk | ||
084 | |a ST 601 |0 (DE-625)143682: |2 rvk | ||
084 | |a MAT 650f |2 stub | ||
084 | |a DAT 306f |2 stub | ||
100 | 1 | |a Quarteroni, Alfio |d 1952- |e Verfasser |0 (DE-588)120370158 |4 aut | |
240 | 1 | 0 | |a Introduzione al calcolo scientifico |
245 | 1 | 0 | |a Scientific computing with MATLAB and Octave |b with 12 tables |c Alfio Quarteroni ; Fausto Saleri ; Paola Gervasio |
250 | |a 3. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2010 | |
300 | |a XVI, 360 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Texts in computational science and engineering |v 2 | |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wissenschaftliches Rechnen |0 (DE-588)4338507-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 0 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |5 DE-101 | |
689 | 1 | 0 | |a Wissenschaftliches Rechnen |0 (DE-588)4338507-2 |D s |
689 | 1 | 1 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
700 | 1 | |a Saleri, Fausto |d 1965-2007 |e Verfasser |0 (DE-588)120434571 |4 aut | |
700 | 1 | |a Gervasio, Paola |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-642-12430-3 |
830 | 0 | |a Texts in computational science and engineering |v 2 |w (DE-604)BV016971315 |9 2 | |
856 | 4 | 2 | |m OEBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020485028&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020485028 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804143141473746944 |
---|---|
adam_text | CONTENTS 1 WHAT CAN T BE IGNORED. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . 1 1.1 THE MATLAB AND OCTAVE ENVIRONMENTS 1 1.2
REAL NUMBERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . .. . . . 3 1.2.1 HOW WE REPRESENT THEM 3 1.2.2 HOW WE OPERATE WITH
FLOATING-POINT NUMBERS . . . . . 6 1.3 COMPLEX NUMBERS . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4
MATRICES.......................................... 10 1.4.1
VECTORS..................................... 14 1.5 REAL FUNCTIONS 16
1.5.1 THE ZEROS 18 1.5.2 POLYNOMIALS . . . . . . . . . . . . . . . . . .
. . . . . . . . .. 20 1.5.3 INTEGRATION AND DIFFERENTIATION 22 1.6 TO
ERR IS NOT ONLY HUMAN . . . . . . . . . . . . .. . . . . . . . . . . . .
.. 25 1.6.1 TALKING ABOUT COSTS . . . . . . . . . . . . . . . . . . . .
. . . . . .. 29 1.7 THE MATLAB LANGUAGE . . . . . . . . . . . . . . . .
. . . . . . . . . . .. 30 1.7.1 MATLAB STATEMENTS. . . . . . . . . . . .
. .. . . . . . .. 32 1.7.2 PROGRAMMING IN MATLAB . . . . . . .. . . ..
34 1.7.3 EXAMPLES OF DIFFERENCES BETWEEN MATLAB AND OCTAVE LANGUAGES . .
. . . . . . . . . . . . . . . . . . . . . .. 37 1.8 WHAT WE HAVEN T TOLD
YOU . . . . . . . . . . . . . . . . . . . . . . . . . .. 38 1.9
EXERCISES.......................................... 38 2 NONLINEAR
EQUATIONS 41 2.1 SOME REPRESENTATIVE PROBLEMS. . . . . . . . . . . . . .
. . . . . . . . .. 41 2.2 THE BISECTION METHOD . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . .. 43 2.3 THE NEWTON METHOD . . . . . ..
.. . . .. . . . . . . . .. . . . . .. . . .. 47 2.3.1 HOW TO TERMINATE
NEWTON S ITERATIONS . . . . . . . . . .. 49 2.3.2 THE NEWTON METHOD FOR
SYSTEMS OF NONLINEAR EQUATIONS . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . .. . . .. 51 2.4 FIXED POINT ITERATIONS . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .. 54 2.4.1 HOW TO TERMINATE
FIXED POINT ITERATIONS 60 XII CONTENTS 2.5 AECELERATION USING AITKEN S
METHOD . . . . . . . . . . . .. . . . . .. 60 2.6 ALGEBRAIC POLYNOMIALS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 65 2.6.1
HOERNER S ALGORITHM 66 2.6.2 THE NEWTON-HOERNER METHOD . . . . . . . . . .
. . . . . . . .. 68 2.7 WHAT WE HAVERI T TOLD YOU , . . . . . . . . . .
. . . . .. 70 2.8 EXERCISES.......................................... 72
3 APPROXIMATION OF FUNCTIONS AND DATA . . . . . . . . . . . . . .. .. 75
3.1 SOME REPRESENTATIVE PROBLEMS. . . . . . . . . . . . . . . . . . . .
. . .. 75 3.2 APPROXIMATION BY TAYLOR S POLYNOMIALS ..... . . . . . . .
. .. 77 3.3 INTERPOLATION....................................... 78
3.3.1 LAGRANGIAN POLYNOMIAL INTERPOLATION. . . . . . . . . . .. 79 3.3.2
STABILITY OF POLYNOMIAL INTERPOLATION. . .. . . . . . . .. 84 3.3.3
INTERPOLATION AT CHEBYSHEV NODES ,.... 86 3.3.4 TRIGONOMETRIE
INTERPOLATION AND FFT . . . . . . . . . .. 88 3.4 PIECEWISE LINEAR
INTERPOLATION . . . . . . . . . . . . . . . . . . . . . . .. 93 3.5
APPROXIMATION BY SPLINE FUNCTIONS , . . .. 94 3.6 THE LEAST-SQUARES
METHOD. . .. . . . . . . . . . . . . . . . . . . . . . . .. 99 3.7 WHAT
WE HAVEN T TOLD YOU 103 3.8 EXERCISES 105 4 N UMERICAL DIFFERENTIATION
AND INTEGRATION . . . . . .. . . . . . . 107 4.1 SOME REPRESENTATIVE
PROBLEMS 107 4.2 APPROXIMATION OF FUNCTION DERIVATIVES 109 4.3 NUMERICAL
INTEGRATION 111 4.3.1 MIDPOINT FORMULA 112 4.3.2 TRAPEZOIDAI FORRNULA
114 4.3.3 SIMPSON FORRNULA 115 4.4 INTERPOLATORY QUADRATURES 117 4.5
SIMPSON ADAPTIVE FORMULA . . . . . . . . . . . . . . . . . . . . . . . .
. .. 121 4.6 WHAT WE HAVERI T TOLD YOU , 125 4.7 EXERCISES 126 5 LINEAR
SYSTEMS , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . 129 5.1 SOME REPRESENTATIVE PROBLEMS 129 5.2 LINEAR
SYSTEM AND COMPLEXITY 134 5.3 THE LU FACTORIZATION METHOD 135 5.4 THE
PIVOTING TECHNIQUE 144 5.5 HOW ACCURATE IS THE SOLUTION OF A LINEAR
SYSTEM? 147 5.6 HOW TO SOLVE A TRIDIAGONAL SYSTEM 150 5.7 OVERDETERMINED
SYSTEMS , 152 5.8 WHAT IS HIDDEN BEHIND THE LVIATLAB COMMAND 154 5.9
ITERATIVE METHODS 157 5.9.1 HOW TO CONSTRUCT AN ITERATIVE METHOD 158
CONTENTS XIII 5.10 RICHARDSON AND GRADIENT METHOCLS 162 5.11 THE
CONJUGATE GRADIENT METHAD 166 5.12 WHEN SHAULD AN ITERATIVE METHAD BE
STAPPED? 169 5.13 TA WRAP-UP: DIRECT OR ITERATIVE? , 171 5.14 WHAT WE
HAVENT TOLD YOU , 177 5.15 EXERCISES 1.77 6 EIGENVALUES AND EIGENVEETORS
181 6.1 SOME REPRESENTATIVE PROBLEMS 182 6.2 THE POWER METHOD , 184
6.2.1 CONVERGENCE ANALYSIS , 187 6.3 GENERALIZATION OF THE POWER METHOD
188 6.4 HOW TO COMPUTE THE SHIFT , 190 6.5 COMPUTATION OF ALL THE
EIGENVALUES 193 6.6 WHAT WE HAVEN T TOLD YOU 197 6.7 EXERCISES , , , 197
7 ORDINARY DIFFERENTIAL EQUATIONS 201 7.1 SOME REPRESENTATIVE PROBLEMS ,
201 7.2 THE CAUCHY PROBLERN , , , 204 7.3 EULER METHODS , . . . . . . .
. . . . 205 7.3.1 CONVERGENCE ANALYSIS 208 7.4 THE CRANK-NICOLSON METHOD
212 7.5 ZERO-STABILITY., 214 7.6 STABILITY ON UNBOUNDED INTERVALS 216
7.6.1 THE REGION OF ABSOLUTE STABILITY 219 7.6.2 ABSOLUTE STABILITY
CONTROLS PERTURBATIONS 220 7.7 HIGH ORDER METHODS. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . 228 7.8 THE
PREDICTOR-CORRECTOR METHODS 234 7.9 SYSTEMS OF DIFFERENTIAL EQUATIONS
236 7.10 SOME EXAMPLES 242 7.10.1 THE SPHERICAL PENDULUM 242 7.10.2 THE
THREE-BODY PROBLEM 246 7.10.3 SOME STIFF PROBLEMS 248 7.11 WHAT WE
HAVEN T TOLD YOU .. , 252 7.12 EXERCISES , 252 8 NUMERICAL APPROXIMATION
OF BOUNDARY-VALUE PROBLEMS 255 8.1 SOME REPRESENTATIVE PROBLEMS 256 8.2
APPROXIMATION OF BOUNDARY-VALUE PROBLEMS 258 8.2.1 FINITE DIFFERENCE
APPROXIMATION OF THE ONE-DIMENSIONAL POISSON PROBLEM 259 8.2.2 FINITE
DIFFERENCE APPROXIMATION OF A CONVECTION-DOMINATED PROBLEM 262 XIV
CONTENTS 8.2.3 FINITE ELEMENT APPROXIMATION OF THE ONE-DIMENSIONAL
POISSON PROBLEM 263 8.2.4 FINITE DIFFERENCE APPROXIMATION OF THE
TWO-DIMENSIONAL POISSON PROBLEM 267 8.2.5 CONSISTENCY AND CONVERGENCE OF
FINITE DIFFERENCE DISCRETIZATION OF THE POISSON PROBLEM 272 8.2.6 FINITE
DIFFERENCE APPROXIMATION OF THE ONE-DIMENSIONAL HEAT EQUATION .. . . . .
. . . . . . . . . .. 274 8.2.7 FINITE ELEMENT APPROXIMATION OF THE
ONE-DIMENSIONAL HEAT EQUATION .. . . . . . . . . . . . . . . . 278 8.3
HYPERBOLIC EQUATIONS: A SCALAR PURE ADVECTION PROBLEM .. 281 8.3.1
FINITE DIFFERENCE DISCRETIZATION OF THE SCALAR TRANSPORT EQUATION. . . .
. . . . . . . . . . . . . . . . . . . . . . . . 283 8.3.2 FINITE
DIFFERENCE ANALYSIS FOR THE SCALAR TRANSPORT EQUATION 285 8.3.3 FINITE
ELEMENT SPACE DISCRETIZATION OF THE SCALAR ADVECTION EQUATION 292 8.4
THE WAVE EQUATION 293 8.4.1 FINITE DIFFERENCE APPROXIMATION OF THE WAVE
EQUATION 295 8.5 WHAT WE HAVEN T TOLD YOU 299 8.6 EXERCISES 300 9
SOLUTIONS OF THE EXERCISES 303 9.1 CHAPTER 1 303 9.2 CHAPTER 2 - - 306
9.3 CHAPTER 3 312 9.4 CHAPTER 4 315 9.5 CHAPTER 5 320 9.6 CHAPTER 6 327
9.7 CHAPTER 7 - - 330 9.8 CHAPTER 8 - 339 REFERENCES . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. 347 INDEX 353
|
any_adam_object | 1 |
author | Quarteroni, Alfio 1952- Saleri, Fausto 1965-2007 Gervasio, Paola |
author_GND | (DE-588)120370158 (DE-588)120434571 |
author_facet | Quarteroni, Alfio 1952- Saleri, Fausto 1965-2007 Gervasio, Paola |
author_role | aut aut aut |
author_sort | Quarteroni, Alfio 1952- |
author_variant | a q aq f s fs p g pg |
building | Verbundindex |
bvnumber | BV036563747 |
classification_rvk | SK 900 ST 351 ST 601 |
classification_tum | MAT 650f DAT 306f |
ctrlnum | (OCoLC)658232857 (DE-599)BVBBV036563747 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02299nam a2200541 cb4500</leader><controlfield tag="001">BV036563747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100714s2010 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642124297</subfield><subfield code="c">pbk</subfield><subfield code="9">978-3-642-12429-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)658232857</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036563747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 351</subfield><subfield code="0">(DE-625)143668:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 650f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 306f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Quarteroni, Alfio</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120370158</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Introduzione al calcolo scientifico</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scientific computing with MATLAB and Octave</subfield><subfield code="b">with 12 tables</subfield><subfield code="c">Alfio Quarteroni ; Fausto Saleri ; Paola Gervasio</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 360 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Texts in computational science and engineering</subfield><subfield code="v">2</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wissenschaftliches Rechnen</subfield><subfield code="0">(DE-588)4338507-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-101</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wissenschaftliches Rechnen</subfield><subfield code="0">(DE-588)4338507-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Saleri, Fausto</subfield><subfield code="d">1965-2007</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120434571</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gervasio, Paola</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-642-12430-3</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Texts in computational science and engineering</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV016971315</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">OEBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020485028&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020485028</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV036563747 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:42:57Z |
institution | BVB |
isbn | 9783642124297 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020485028 |
oclc_num | 658232857 |
open_access_boolean | |
owner | DE-11 DE-29T DE-91G DE-BY-TUM DE-573 DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-11 DE-29T DE-91G DE-BY-TUM DE-573 DE-19 DE-BY-UBM DE-188 |
physical | XVI, 360 S. graph. Darst. |
publishDate | 2010 |
publishDateSearch | 2010 |
publishDateSort | 2010 |
publisher | Springer |
record_format | marc |
series | Texts in computational science and engineering |
series2 | Texts in computational science and engineering |
spelling | Quarteroni, Alfio 1952- Verfasser (DE-588)120370158 aut Introduzione al calcolo scientifico Scientific computing with MATLAB and Octave with 12 tables Alfio Quarteroni ; Fausto Saleri ; Paola Gervasio 3. ed. Berlin [u.a.] Springer 2010 XVI, 360 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Texts in computational science and engineering 2 MATLAB (DE-588)4329066-8 gnd rswk-swf Wissenschaftliches Rechnen (DE-588)4338507-2 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 s MATLAB (DE-588)4329066-8 s DE-101 Wissenschaftliches Rechnen (DE-588)4338507-2 s 1\p DE-604 Saleri, Fausto 1965-2007 Verfasser (DE-588)120434571 aut Gervasio, Paola Verfasser aut Erscheint auch als Online-Ausgabe 978-3-642-12430-3 Texts in computational science and engineering 2 (DE-604)BV016971315 2 OEBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020485028&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Quarteroni, Alfio 1952- Saleri, Fausto 1965-2007 Gervasio, Paola Scientific computing with MATLAB and Octave with 12 tables Texts in computational science and engineering MATLAB (DE-588)4329066-8 gnd Wissenschaftliches Rechnen (DE-588)4338507-2 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
subject_GND | (DE-588)4329066-8 (DE-588)4338507-2 (DE-588)4042805-9 |
title | Scientific computing with MATLAB and Octave with 12 tables |
title_alt | Introduzione al calcolo scientifico |
title_auth | Scientific computing with MATLAB and Octave with 12 tables |
title_exact_search | Scientific computing with MATLAB and Octave with 12 tables |
title_full | Scientific computing with MATLAB and Octave with 12 tables Alfio Quarteroni ; Fausto Saleri ; Paola Gervasio |
title_fullStr | Scientific computing with MATLAB and Octave with 12 tables Alfio Quarteroni ; Fausto Saleri ; Paola Gervasio |
title_full_unstemmed | Scientific computing with MATLAB and Octave with 12 tables Alfio Quarteroni ; Fausto Saleri ; Paola Gervasio |
title_short | Scientific computing with MATLAB and Octave |
title_sort | scientific computing with matlab and octave with 12 tables |
title_sub | with 12 tables |
topic | MATLAB (DE-588)4329066-8 gnd Wissenschaftliches Rechnen (DE-588)4338507-2 gnd Numerische Mathematik (DE-588)4042805-9 gnd |
topic_facet | MATLAB Wissenschaftliches Rechnen Numerische Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020485028&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV016971315 |
work_keys_str_mv | AT quarteronialfio introduzionealcalcoloscientifico AT salerifausto introduzionealcalcoloscientifico AT gervasiopaola introduzionealcalcoloscientifico AT quarteronialfio scientificcomputingwithmatlabandoctavewith12tables AT salerifausto scientificcomputingwithmatlabandoctavewith12tables AT gervasiopaola scientificcomputingwithmatlabandoctavewith12tables |