Multilevel Block Factorization Preconditioners: Matrix-based Analysis and Algorithms for Solving Finite Element Equations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
2008
|
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780387715643 |
DOI: | 10.1007/978-0-387-71564-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV036492236 | ||
003 | DE-604 | ||
005 | 20221007 | ||
007 | cr|uuu---uuuuu | ||
008 | 100609s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780387715643 |9 978-0-387-71564-3 | ||
035 | |a (OCoLC)316262548 | ||
035 | |a (DE-599)BVBBV036492236 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 |a DE-29 |a DE-91 |a DE-384 |a DE-83 |a DE-739 | ||
082 | 0 | |a 512.5 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vasilevski, Panayot |e Verfasser |0 (DE-588)12078372X |4 aut | |
245 | 1 | 0 | |a Multilevel Block Factorization Preconditioners |b Matrix-based Analysis and Algorithms for Solving Finite Element Equations |c by Panayot S. Vassilevski |
264 | 1 | |a New York, NY |b Springer New York |c 2008 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Matrix theory | |
650 | 0 | 7 | |a Gebietszerlegungsmethode |0 (DE-588)4309232-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mehrgitterverfahren |0 (DE-588)4038376-3 |D s |
689 | 0 | 1 | |a Gebietszerlegungsmethode |0 (DE-588)4309232-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-71564-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020414826 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-0-387-71564-3 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-71564-3 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-71564-3 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-71564-3 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-71564-3 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-71564-3 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804143054413627392 |
---|---|
any_adam_object | |
author | Vasilevski, Panayot |
author_GND | (DE-588)12078372X |
author_facet | Vasilevski, Panayot |
author_role | aut |
author_sort | Vasilevski, Panayot |
author_variant | p v pv |
building | Verbundindex |
bvnumber | BV036492236 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)316262548 (DE-599)BVBBV036492236 |
dewey-full | 512.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.5 |
dewey-search | 512.5 |
dewey-sort | 3512.5 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-71564-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02370nmm a2200553zc 4500</leader><controlfield tag="001">BV036492236</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221007 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387715643</subfield><subfield code="9">978-0-387-71564-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)316262548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492236</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vasilevski, Panayot</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12078372X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multilevel Block Factorization Preconditioners</subfield><subfield code="b">Matrix-based Analysis and Algorithms for Solving Finite Element Equations</subfield><subfield code="c">by Panayot S. Vassilevski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gebietszerlegungsmethode</subfield><subfield code="0">(DE-588)4309232-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrgitterverfahren</subfield><subfield code="0">(DE-588)4038376-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gebietszerlegungsmethode</subfield><subfield code="0">(DE-588)4309232-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020414826</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-71564-3</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV036492236 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:41:34Z |
institution | BVB |
isbn | 9780387715643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020414826 |
oclc_num | 316262548 |
open_access_boolean | |
owner | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer New York |
record_format | marc |
spelling | Vasilevski, Panayot Verfasser (DE-588)12078372X aut Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations by Panayot S. Vassilevski New York, NY Springer New York 2008 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Informatik Mathematik Differential equations, partial Computational Mathematics and Numerical Analysis Computer science / Mathematics Mathematics Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Matrix theory Gebietszerlegungsmethode (DE-588)4309232-9 gnd rswk-swf Mehrgitterverfahren (DE-588)4038376-3 gnd rswk-swf Mehrgitterverfahren (DE-588)4038376-3 s Gebietszerlegungsmethode (DE-588)4309232-9 s 1\p DE-604 https://doi.org/10.1007/978-0-387-71564-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vasilevski, Panayot Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations Informatik Mathematik Differential equations, partial Computational Mathematics and Numerical Analysis Computer science / Mathematics Mathematics Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Matrix theory Gebietszerlegungsmethode (DE-588)4309232-9 gnd Mehrgitterverfahren (DE-588)4038376-3 gnd |
subject_GND | (DE-588)4309232-9 (DE-588)4038376-3 |
title | Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations |
title_auth | Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations |
title_exact_search | Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations |
title_full | Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations by Panayot S. Vassilevski |
title_fullStr | Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations by Panayot S. Vassilevski |
title_full_unstemmed | Multilevel Block Factorization Preconditioners Matrix-based Analysis and Algorithms for Solving Finite Element Equations by Panayot S. Vassilevski |
title_short | Multilevel Block Factorization Preconditioners |
title_sort | multilevel block factorization preconditioners matrix based analysis and algorithms for solving finite element equations |
title_sub | Matrix-based Analysis and Algorithms for Solving Finite Element Equations |
topic | Informatik Mathematik Differential equations, partial Computational Mathematics and Numerical Analysis Computer science / Mathematics Mathematics Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Matrix theory Gebietszerlegungsmethode (DE-588)4309232-9 gnd Mehrgitterverfahren (DE-588)4038376-3 gnd |
topic_facet | Informatik Mathematik Differential equations, partial Computational Mathematics and Numerical Analysis Computer science / Mathematics Mathematics Linear and Multilinear Algebras, Matrix Theory Partial Differential Equations Matrix theory Gebietszerlegungsmethode Mehrgitterverfahren |
url | https://doi.org/10.1007/978-0-387-71564-3 |
work_keys_str_mv | AT vasilevskipanayot multilevelblockfactorizationpreconditionersmatrixbasedanalysisandalgorithmsforsolvingfiniteelementequations |