An Introduction to Manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer Science+Business Media, LLC
2008
|
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBT01 UER01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780387481012 |
DOI: | 10.1007/978-0-387-48101-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV036492232 | ||
003 | DE-604 | ||
005 | 20190731 | ||
007 | cr|uuu---uuuuu | ||
008 | 100609s2008 |||| o||u| ||||||eng d | ||
020 | |a 9780387481012 |9 978-0-387-48101-2 | ||
035 | |a (OCoLC)695853933 | ||
035 | |a (DE-599)BVBBV036492232 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-634 |a DE-703 |a DE-29 |a DE-91 |a DE-384 |a DE-83 |a DE-739 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 580f |2 stub | ||
084 | |a MAT 570f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tu, Loring W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a An Introduction to Manifolds |c by Loring W. Tu |
264 | 1 | |a New York, NY |b Springer Science+Business Media, LLC |c 2008 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Mathematik | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 0 | 7 | |a Vektorfeld |0 (DE-588)4139571-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialform |0 (DE-588)4149772-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tangentialraum |0 (DE-588)4792364-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Differentialform |0 (DE-588)4149772-7 |D s |
689 | 0 | 1 | |a Tangentialraum |0 (DE-588)4792364-7 |D s |
689 | 0 | 2 | |a Vektorfeld |0 (DE-588)4139571-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mannigfaltigkeit |0 (DE-588)4037379-4 |D s |
689 | 1 | 1 | |a Differenzierbare Mannigfaltigkeit |0 (DE-588)4012269-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-0-387-48101-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-020414822 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/978-0-387-48101-2 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-48101-2 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-48101-2 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-48101-2 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-48101-2 |l UER01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-0-387-48101-2 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804143054420967424 |
---|---|
any_adam_object | |
author | Tu, Loring W. |
author_facet | Tu, Loring W. |
author_role | aut |
author_sort | Tu, Loring W. |
author_variant | l w t lw lwt |
building | Verbundindex |
bvnumber | BV036492232 |
classification_rvk | SK 240 SK 370 |
classification_tum | MAT 580f MAT 570f MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)695853933 (DE-599)BVBBV036492232 |
discipline | Mathematik |
doi_str_mv | 10.1007/978-0-387-48101-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02857nmm a2200685zc 4500</leader><controlfield tag="001">BV036492232</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190731 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">100609s2008 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387481012</subfield><subfield code="9">978-0-387-48101-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)695853933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV036492232</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 580f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 570f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tu, Loring W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An Introduction to Manifolds</subfield><subfield code="c">by Loring W. Tu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer Science+Business Media, LLC</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tangentialraum</subfield><subfield code="0">(DE-588)4792364-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialform</subfield><subfield code="0">(DE-588)4149772-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Tangentialraum</subfield><subfield code="0">(DE-588)4792364-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Vektorfeld</subfield><subfield code="0">(DE-588)4139571-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4037379-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Differenzierbare Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4012269-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020414822</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-0-387-48101-2</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Einführung Lehrbuch |
id | DE-604.BV036492232 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T22:41:34Z |
institution | BVB |
isbn | 9780387481012 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020414822 |
oclc_num | 695853933 |
open_access_boolean | |
owner | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
owner_facet | DE-634 DE-703 DE-29 DE-91 DE-BY-TUM DE-384 DE-83 DE-739 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer Science+Business Media, LLC |
record_format | marc |
spelling | Tu, Loring W. Verfasser aut An Introduction to Manifolds by Loring W. Tu New York, NY Springer Science+Business Media, LLC 2008 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Mathematik Cell aggregation / Mathematics Global analysis Global differential geometry Mathematics Differential Geometry Global Analysis and Analysis on Manifolds Manifolds and Cell Complexes (incl. Diff.Topology) Vektorfeld (DE-588)4139571-2 gnd rswk-swf Differentialform (DE-588)4149772-7 gnd rswk-swf Mannigfaltigkeit (DE-588)4037379-4 gnd rswk-swf Tangentialraum (DE-588)4792364-7 gnd rswk-swf Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content (DE-588)4123623-3 Lehrbuch gnd-content Differentialform (DE-588)4149772-7 s Tangentialraum (DE-588)4792364-7 s Vektorfeld (DE-588)4139571-2 s DE-604 Mannigfaltigkeit (DE-588)4037379-4 s Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 s 1\p DE-604 https://doi.org/10.1007/978-0-387-48101-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tu, Loring W. An Introduction to Manifolds Mathematik Cell aggregation / Mathematics Global analysis Global differential geometry Mathematics Differential Geometry Global Analysis and Analysis on Manifolds Manifolds and Cell Complexes (incl. Diff.Topology) Vektorfeld (DE-588)4139571-2 gnd Differentialform (DE-588)4149772-7 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Tangentialraum (DE-588)4792364-7 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
subject_GND | (DE-588)4139571-2 (DE-588)4149772-7 (DE-588)4037379-4 (DE-588)4792364-7 (DE-588)4012269-4 (DE-588)4151278-9 (DE-588)4123623-3 |
title | An Introduction to Manifolds |
title_auth | An Introduction to Manifolds |
title_exact_search | An Introduction to Manifolds |
title_full | An Introduction to Manifolds by Loring W. Tu |
title_fullStr | An Introduction to Manifolds by Loring W. Tu |
title_full_unstemmed | An Introduction to Manifolds by Loring W. Tu |
title_short | An Introduction to Manifolds |
title_sort | an introduction to manifolds |
topic | Mathematik Cell aggregation / Mathematics Global analysis Global differential geometry Mathematics Differential Geometry Global Analysis and Analysis on Manifolds Manifolds and Cell Complexes (incl. Diff.Topology) Vektorfeld (DE-588)4139571-2 gnd Differentialform (DE-588)4149772-7 gnd Mannigfaltigkeit (DE-588)4037379-4 gnd Tangentialraum (DE-588)4792364-7 gnd Differenzierbare Mannigfaltigkeit (DE-588)4012269-4 gnd |
topic_facet | Mathematik Cell aggregation / Mathematics Global analysis Global differential geometry Mathematics Differential Geometry Global Analysis and Analysis on Manifolds Manifolds and Cell Complexes (incl. Diff.Topology) Vektorfeld Differentialform Mannigfaltigkeit Tangentialraum Differenzierbare Mannigfaltigkeit Einführung Lehrbuch |
url | https://doi.org/10.1007/978-0-387-48101-2 |
work_keys_str_mv | AT tuloringw anintroductiontomanifolds |