Sustainable industrial processes: [principles, tools and industrial examples]
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | NT: Sustainable industrial chemistry |
Beschreibung: | XXII, 599 S. Ill., graph. Darst. |
ISBN: | 9783527315529 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035730884 | ||
003 | DE-604 | ||
005 | 20091221 | ||
007 | t | ||
008 | 090918s2009 gw ad|| |||| 00||| eng d | ||
015 | |a 09,N21,1584 |2 dnb | ||
016 | 7 | |a 994010362 |2 DE-101 | |
020 | |a 9783527315529 |c GB. |9 978-3-527-31552-9 | ||
024 | 3 | |a 9783527315529 | |
028 | 5 | 2 | |a 1131552 000 |
035 | |a (OCoLC)463785650 | ||
035 | |a (DE-599)DNB994010362 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-703 |a DE-83 |a DE-91S |a DE-92 |a DE-634 |a DE-29T |a DE-11 |a DE-19 | ||
082 | 0 | |a 660.0286 |2 22/ger | |
084 | |a VN 9200 |0 (DE-625)147637:253 |2 rvk | ||
084 | |a VN 9250 |0 (DE-625)147638:253 |2 rvk | ||
084 | |a CHE 050f |2 stub | ||
084 | |a 660 |2 sdnb | ||
084 | |a CIT 300f |2 stub | ||
245 | 1 | 0 | |a Sustainable industrial processes |b [principles, tools and industrial examples] |c ed. by Fabrizio Cavani ... |
246 | 1 | 3 | |a Sustainable industrial chemistry |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2009 | |
300 | |a XXII, 599 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a NT: Sustainable industrial chemistry | ||
650 | 0 | 7 | |a Grüne Chemie |0 (DE-588)7563215-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Chemie |0 (DE-588)4078178-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Technische Chemie |0 (DE-588)4078178-1 |D s |
689 | 0 | 1 | |a Grüne Chemie |0 (DE-588)7563215-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Cavani, Fabrizio |0 (DE-588)139525025 |4 edt | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018007472&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018007472 |
Datensatz im Suchindex
_version_ | 1804140010919690240 |
---|---|
adam_text | IMAGE 1
CONTENTS
PREFECE XV LIST OF CONTRIBUTORS XIX
1 FROM GREEN TO SUSTAINABLE INDUSTRIAL CHEMISTRY 1 GABRIELE CENTI AND
SIGLINDA PERATHONER 1.1 INTRODUCTION 1
1.1.1 GREEN VERSUS SUSTAINABLE CHEMISTRY 5 1.1.2 SUSTAINABILITY THROUGH
CHEMISTRY AND THE F 3 -FACTORY 6 1.1.3 ROLE OF CATALYSIS 8 1.1.4
SUSTAINABLE INDUSTRIAL CHEMISTRY 10 1.2 PRINCIPLES OF GREEN CHEMISTRY,
SUSTAINABLE CHEMISTRY AND RISK 11 1.2.1 SUSTAINABLE RISK: REFLECTIONS
ARISING FROM THE BHOPAL ACCIDENT 14 1.2.2 RISK ASSESSMENT AND
SUSTAINABLE VERSUS GREEN CHEMISTRY 20 1.2.3 INHERENTLY SAFER PROCESS
DESIGN 21 1.2.4 ON-DEMAND SYNTHESIS AND PROCESS MINIMIZATION 23 1.2.5
REPLACEMENT OF HAZARDOUS CHEMICALS AND RISK REDUCTION 26 1.2.6
REPLACEMENT OF HAZARDOUS CHEMICALS: THE CASE OF DMC 26
1.2.7 FINAL REMARKS ON SUSTAINABLE RISK 35 1.3 SUSTAINABLE CHEMICAL
PRODUCTION AND REACH 36 1.3.1 HOW DOES REACH WORKS 38 1.3.2 REACH AND
SUSTAINABLE INDUSTRIAL CHEMISTRY 40
1.3.3 SAFETY AND SUSTAINABILITY OF CHEMICALS 41 1.4 INTERNATIONAL
CHEMICALS POLICY AND SUSTAINABILITY 43 1.5 SUSTAINABLE CHEMISTRY AND
INHERENTLY SAFER DESIGN 47 1.6 A VISION AND ROADMAP FOR SUSTAINABILITY
THROUGH CHEMISTRY 56 1.6.1 BIO-BASED ECONOMY 59 1.6.2 ENERGY 62
1.6.3 HEALTHCARE 63 1.6.4 INFORMATION AND COMMUNICATION TECHNOLOGIES 64
1.6.5 NANOTECHNOLOGY 65 1.6.6 SUSTAINABLE QUALITY OF LIFE 66
BIBLIOGRAFISCHE INFORMATIONEN HTTP://D-NB.INFO/994010362
DIGITALISIERT DURCH
IMAGE 2
VI CONTENTS
1.6.7 SUSTAINABLE PRODUCT AND PROCESS DESIGN 66
1.6.8 TRANSPORT 67
1.6.9 RISK ASSESSMENT AND MANAGEMENT STRATEGIES 68 1.7 CONCLUSIONS 69
REFERENCES 69
2 METHODS AND TOOLS OF SUSTAINABLE INDUSTRIAL CHEMISTRY: CATALYSIS 73
GABRIELE CENTI AND SIGLINDA PERATHONER 2.1 INTRODUCTION 73
2.2 CATALYSIS AS ENABLING FACTOR OF SUSTAINABLE CHEMICAL PRODUCTION 74
2.3 HOMOGENEOUS CATALYSIS AND THE ROLE OF MULTIPHASE OPERATIONS 77 2.3.1
MULTIPHASE OPERATIONS: GENERAL ASPECTS 79 2.3.2 AQUEOUS BIPHASE
OPERATIONS 79 2.3.3 ORGANIC BIPHASE OPERATIONS 84 2.3.4 CATALYSTS ON
SOLUBLE SUPPORTS 87 2.3.5 FLUOROUS LIQUIDS 88 2.3.6 IONIC LIQUIDS 90
2.3.7 SUPERCRITICAL SOLVENTS 95 2.3.8 SUPPORTED LIQUID FILMS 97 2.3.9
CONCLUSIONS ON MULTIPHASE HOMOGENEOUS CATALYSIS FOR SUSTAINABLE
PROCESSES 102
2.4 BIO- AND BIOINSPIRED-CATALYSTS 103 2.4.1 INDUSTRIAL USES OF
BIOCATALYSIS 104 2.4.2 ADVANTAGES AND LIMITS OF BIOCATALYSIS AND TRENDS
IN RESEARCH 205 2.4.3 BIOCATALYSIS FOR THE PHARMACEUTICAL INDUSTRY 107
2.4.4 BIOCATALYSIS FOR SUSTAINABLE CHEMICAL PRODUCTION 108 2.4.5
BIOCATALYSIS IN NOVEL POLYMERS FROM BIO-RESOURCES 112 2.4.6 PROGRESSES
IN BIOCATALYSIS 114 2.4.7 BIOMIMETIC CATALYSIS 117 2.5 SOLID ACIDS AND
BASES 120 2.5.1 CLASSES OF SOLID ACID/BASE CATALYSIS 120 2.5.2
ALKYLATION WITH SOLID ACID CATALYSTS 125 2.5.3 SYNTHESIS OF CUMENE 130
2.5.4 FRIEDEL-CRAFTS ACYLATION 132 2.5.5 SYNTHESIS OF METHYLENEDIANILINE
133 2.5.6 SYNTHESIS OF CAPROLACTAM 235 2.5.7 GREEN TRAFFIC FUELS 140
2.5.8 SOLID BASE CATALYSTS 244 2.5.8.1 HYDROTALCITES 145 2.5.8.2 OTHER
SOLID BASES 254 2.6 REDOX CATALYSIS 258 2.6.1 HYDROGENATION 158 2.6.2
ASYMMETRIC HYDROGENATION 262
IMAGE 3
CONTENTS VII
2.6.3 SELECTIVE OXIDATION 267
2.6.3.1 SELECTIVE OXIDATION: LIQUID PHASE 270 2.6.3.2 SELECTIVE
OXIDATION: VAPOR PHASE 272 2.6.3.3 SELECTIVE OXIDATION: EXAMPLES OF
DIRECTIONS TO IMPROVE SUSTAINABILITY 272
2.7 CASCADE AND DOMINO CATALYTIC REACTIONS 284 2.8 MULTICOMPONENT
CATALYTIC REACTIONS 286 2.9 ORGANOCATALYSIS 287
2.10 CONCLUSIONS 188
REFERENCES 288
3 METHODS AND TOOLS OF SUSTAINABLE INDUSTRIAL CHEMISTRY: PROCESS
INTENSIFICATION 299 GABRIELE CENTI AND SIGLINDA PERATHONER 3.1
INTRODUCTION 299
3.1.1 OPPORTUNITIES AND PERSPECTIVES FOR A SUSTAINABLE PROCESS DESIGN
200 3.1.2 PROCESS INTENSIFICATION AND INHERENTLY SAFER PROCESSES 203
3.1.3 A CRITICAL TOOLBOX FOR A SUSTAINABLE INDUSTRIAL CHEMISTRY 204
3.1.4 FUNDAMENTS OF PI 220
3.1.5 METHODOLOGIES 223
3.1.5.1 HYBRID UNIT OPERATIONS 223 3.1.5.2 NEW OPERATING MODES OF
PRODUCTION 228 3.1.5.3 MICROENGINEERING AND MICROTECHNOLOGY 225 3.1.6
ROLE FOR THE REDUCTION OF EMISSIONS OF GREENHOUSE GASES 228 3.2
ALTERNATIVE SOURCES AND FORMS OF ENERGY FOR PROCESS
INTENSIFICATION 230
3.2.1 HIGH-GRAVITY FIELDS 230 3.2.2 ELECTRIC FIELDS 232
3.2.3 MICROWAVES 232
3.2.4 LIGHT 234
3.2.5 ACOUSTIC ENERGY 237
3.2.6 ENERGY OF FLOW 242
3.3 MICROFSTRUCTUREDJ-REACTORS 243 3.3.1 MICROREACTOR MATERIALS AND
FABRICATION METHODS 244 3.3.2 MICROREACTORS FOR CATALYTIC GAS-PHASE
REACTIONS 245 3.3.3 MICROREACTORS FOR CATALYTIC MULTIPHASE SYSTEMS 246
3.3.4 INDUSTRIAL MICROREACTORS FOR FINE AND FUNCTIONAL CHEMISTRY 247
3.3.4.1 PHENYL BORONIC ACID SYNTHESIS (CLARIANT) 248 3.3.4.2 AZO PIGMENT
YELLOW 12 (TRUST CHEM/HANGZHOU) 248 3.3.4.3 HYDROGEN PEROXIDE SYNTHESIS
(UOP) 248 3.3.4.4 FSJ-2-ACETYLTETRAHYDROFURAN SYNTHESIS (SK
CORPORATION/DAEJEON) 250
REFERENCES 250
IMAGE 4
VILI CONTENTS
4 MEMBRANE TECHNOLOGIES AT THE SERVICE OF SUSTAINABLE DEVELOPMENT
THROUGH PROCESS INTENSIFICATION 257 GILBERT M. RIOS, MARIE-PIERRE
BELLEVILLE, DELPHINE PAOLUCCI-JEANJEAN, AND JOSE SANCHEZ 4.1
INTRODUCTION 257
4.2 FROM DEFINITIONS TO FUNCTION: A FEW FUNDAMENTAL IDEAS 258 4.2.1
MEMBRANE OPERATION 258 4.2.2 OVERALL PERFORMANCE: A BALANCE BETWEEN
MATERIAL AND FLUID LIMITATIONS 259
4.2.3 MEMBRANE MATERIAL AS A HIGH TECH PRODUCT CONTACTING DEVICE 260
4.2.4 A CLEAR DISTINCTION BETWEEN THE FUNCTION AND THE MATERIAL 262
4.2.5 ENLARGED USES OF MEMBRANE CONCEPTS 262 4.3 THE NEED FOR MORE
INTEGRATED VIEWS ON MATERIALS AND PROCESS
CONDITIONS 262
4.3.1 WHEN DENSE OR MICROPOROUS MATERIALS CONTROL THE OVERALL PROCESS
PERFORMANCE 262 4.3.2 OTHER OPERATIONS USING MESO- OR MACROPOREUS
MEMBRANES 264 4.3.3 TWO IMPORTANT REMARKS 266
4.3.3.1 NANO- AND MICRO-ENGINEERING FOR NEW POROUS THIN LAYERS 266
4.3.3.2 MEMBRANE PROCESSES AND SOLID BED TECHNOLOGIES: A COMPARISON 267
4.4 USE OF HYBRID PROCESSES AND NEW OPERATING MODES:
THE KEY TO MANY PROBLEMS 267 A A.I NANOFILTRATION-COUPLED CATALYSIS 267
4.4.2 SUPERCRITICAL FLUID-ASSISTED MEMBRANE SEPARATION AND/OR REACTION
269 4.4.3 MEMBRANE-ASSISTED FLUIDIZED BED REACTORS 270 4.4.4
ELECTRODIALYSIS WITH A NON-STATIONARY FIELD 272 4.5 SAFE MANAGEMENT OF
MEMBRANE INTEGRATION IN INDUSTRIAL PROCESSES:
A HUGE CHALLENGE 273 4.6 CONCLUSIONS 276
REFERENCES 277
5 ACCOUNTING FOR CHEMICAL SUSTAINABILITY 279 GABRIELE CENTI AND SIGLINDA
PERATHONER 5.1 INTRODUCTION 279
5.2 ECOLOGICAL FOOTPRINT 282 5.3 ECOLOGICAL INDICATORS 283 5.4 METRICS
FOR ENVIRONMENTAL ANALYSIS AND ECO-EFFICIENCY 283 5.5 SUSTAINABILITY
ACCOUNTING 292 5.5.1 SYSTEM BOUNDARY 295 5.6 E-FACTOR AND ATOM ECONOMY
296 5.6.1 LIMITS TO THEIR USE 298 5.6.2 APPLICABILITY TO EVALUATING THE
SUSTAINABILITY OF CHEMICAL INDUSTRIAL
PROCESSES 299
IMAGE 5
CONTENTS IX
5.7 ENERGY INTENSITY 304
5.8 ENVIRONMENTAL IMPACT INDICATORS 305 5.9 SUSTAINABLE CHEMICAL
PRODUCTION METRICS 306 5.10 UFE CYCLE TOOLS 310
5.11 CONCLUSIONS 325
REFERENCES 326
6 SYNTHESIS OF PROPENE OXIDE: A SUCCESSFUL EXAMPLE OF SUSTAINABLE
INDUSTRIAL CHEMISTRY 329 FABRIZIO CAVANI AND ANNE M. GAFFNEY
6.1 INTRODUCTION: CURRENT INDUSTRIAL PROPENE OXIDE PRODUCTION 319 6.1.1
CHPO (CHLOROHYDRIN) TECHNOLOGY 322 6.1.2 PO/TBA TECHNOLOGY 322 6.1.3
PO/SM TECHNOLOGY 322
6.2 PO-ONLY ROUTES: SEVERAL APPROACHES FOR SUSTAINABLE ALTERNATIVES 323
6.2.1 THE FIRST INDUSTRIAL PO-ONLY SYNTHESIS: THE SUMITOMO PROCESS 325
6.2.2 HPPO PROCESSES: HP GENERATION BY REDOX CYCLES ON
ORGANIC O CARRIERS 329 6.2.2.1 ENICHEM APPROACH: TS-1 ALLOWS THE
INTEGRATION OF HP AND PO SYNTHESIS 330 6.2.2.2 FROM THE DREAM REACTION
TO THE REAL PROCESS: THE IMPLEMENTED
HPPO PROCESS 333
6.2.2.3 OTHER INTEGRATED HPPO PROCESSES 339 6.2.3 HPPO AND IN SITU HPPO
PROCESSES: HP GENERATION BY DIRECT OXIDATION OF H 2 (DSHP) 342 6.2.3.1
SEVERAL TECHNOLOGIES FOR IN SITU HPPO WITH TS-1-SUPPORTED
PD CATALYSTS 342
6.2.3.2 DSHP-HPPO TECHNOLOGY DEVELOPED BY DEGUSSA EVONIK/HEADWATERS 344
6.2.4 AN ALTERNATIVE APPROACH: GAS-PHASE REACTION BETWEEN PROPENE AND HP
VAPORS 346 6.2.5 AN EFFICIENT ALTERNATIVE REDUCTANT FOR O 2 : METHANOL
346 6.2.6 POTENTIAL FUTURE SOLUTIONS FOR PO SYNTHESIS: DIRECT GAS-PHASE
OXIDATION OF PROPENE WITH OXYGEN (DOPO) 347 6.2.7 POTENTIAL FUTURE
SOLUTIONS FOR PO SYNTHESIS: GAS-PHASE HYDRO-OXIDATION OF PROPENE WITH
OXYGEN AND HYDROGEN (HOPO) 350 6.2.8 ALTERNATIVES FOR GAS-PHASE PO
SYNTHESIS 356
6.2.8.1 GAS-PHASE OXIDATION WITH N 2 O 356 6.2.8.2 GAS-PHASE OXIDATION
WITH O 3 357 6.2.9 THE ULTIMATE CHALLENGE: DIRECT OXIDATION OF PROPANE
TO PO 358
6.3 CONCLUSIONS 358
REFERENCES 359
IMAGE 6
X CONTENTS
7 SYNTHESIS OF ADIPIC ACID: ON THE WAY TO MORE SUSTAINABLE
PRODUCTION 367 FABRIZIO CAVANI AND STEFANO ALINI 7.1 INTRODUCTION: THE
ADIPIC ACID MARKET 367 7.2 CURRENT TECHNOLOGIES FOR AA PRODUCTION 368
7.2.1 TWO-STEP TRANSFORMATION OF CYDOHEXANE TO AA: OXIDATION OF
CYDOHEXANE TO OL/ONE WITH AIR 369 7.2.2 ALTERNATIVES FOR THE SYNTHESIS
OF OL/ONE 372 7.2.3 ALTERNATIVE HOMOGENEOUS CATALYSTS FOR CYDOHEXANE
OXIDATION TO OL/ONE 374 7.2.4 TWO-STEP TRANSFORMATION OF CYDOHEXANE TO
AA: OXIDATION OF
OL/ONE TO AA WITH NITRIC ADD 3 75 7.2.5 ENVIRONMENTAL ISSUES IN AA
PRODUCTION 378 7.2.6 TECHNOLOGIES FOR N 2 O ABATEMENT 379 7.2.6.1
CATALYTIC ABATEMENT 380 7.2.6.2 THERMAL ABATEMENT 382 7.2.7 N 2 O: FROM
A WASTE COMPOUND TO A REACTANT FOR DOWNSTREAM
APPLICATIONS 383
7.3 ALTERNATIVES FOR AA PRODUCTION 385 7.3.1 OXIDATION OF KA OIL WITH
AIR 385 7.3.2 DIRECT OXIDATION OF CYDOHEXANE WITH AIR 389
7.3.2.1 HOMOGENEOUS AUTOXIDATION OF CYDOHEXANE CATALYZED BY CO, MN OR CU
389 7.3.2.2 HETEROGENEOUS CATALYSIS FOR CYDOHEXANE OXIDATION TO EITHER
OL/ONE OR AA (VARIOUS OXIDANTS INDUDED) 393
7.3.2.3 N-HYDROXYPHTHALIMIDE AS THE CATALYST FOR THE OXIDATION OF
CYDOHEXANE TO AA WITH OXYGEN 395 7.3.3 BUTADIENE AS THE STARTING REAGENT
399 7.3.4 DIMERIZATION OF METHYL ACRYLATE 402 7.4 EMERGING AND
DEVELOPING TECHNOLOGIES FOR AA PRODUCTION 402 7.4.1 AN ALTERNATIVE RAW
MATERIAL FOR AA SYNTHESIS: CYDOHEXENE 402 7.4.1.1 SINGLE-STEP OXIDATION
OF CYDOHEXENE TO AA 403 7.4.1.2 TWO-STEP OXIDATION OF CYDOHEXENE TO AA
VIA 1,2-CYDOHEXANDIOL 406 7.4.1.3 THREE-STEP OXIDATION OF CYDOHEXENE TO
AA VIA EPOXIDE 408 7. 4.1.4 AN ALTERNATIVE OXIDANT FOR CYDOHEXENE:
OXYGEN 409 7.4.2 THE GREENEST WAY EVER TWO-STEP TRANSFORMATION OF
GLUCOSE
TOAA 422
7.4.3 THE ULTIMATE CHALLENGE: DIRECT OXIDATION OF W-HEXANE TO AA 422 7.5
AN OVERVIEW: SEVERAL POSSIBLE GREEN ROUTES TO AA, SOME SUSTAINABLE,
OTHERS NOT 423 REFERENCES 414
IMAGE 7
CONTENTS XI
8 ECOFINING: NEW PROCESS FOR CREEN DIESEL PRODUCTION FROM
VEGETABLE OIL 427 FRANCO BALDIRAGHI, MARCO DI STANISLAO, GIOVANNI FARAD,
CARIO PEREGO, TERRY MARKER, CHRIS GOSLING PETER KOKAYEFF, TOM KALNES,
AND RICH MARINANGELI
8.1 INTRODUCTION 427
8.2 FROM VEGETABLE OIL TO GREEN DIESEL 428 8.3 UOP/ENI ECOFINING PROCESS
434 8.4 LIFE CYDE ASSESSMENT 435 8.5 CONDUSION 437
REFERENCES 438
9 A NEW PROCESS FOR THE PRODUCTION OF BIODIESEL BY TRANSESTERIFICATION
OF VEGETABLE OILS WITH HETEROGENEOUS CATALYSIS 439 EDOUARD FREUND
9.1 INTRODUCTION 439
9.2 DIRECT USE OF VEGETABLE OILS 441 9.3 METHYL ESTER DERIVED FROM
VEGETABLE OILS 442 9.4 HOMOGENEOUS PROCESS FOR THE PRODUCTION OF
BIODIESEL 442 9.5 IMPROVING THE TRANSESTERIFICATION ROUTE: ESTERTIP-H
445 9.6 FUTURE IMPROVEMENTS OF THE PROCESS 447 9.6.1 CATALYST
IMPROVEMENT 447 9.6.2 EXTENSION OF THE PROCESS TO OTHER FEEDS 447 9.6.3
DEVELOPMENT OF A PROCESS FOR THE PRODUCTION OF ETHYL ESTERS 447 9.7
CONDUSION 448
REFERENCES 448
10 HIGHLY SOUR GAS PROCESSING IN A MORE SUSTAINABLE WORLD 449 FRANCOIS
LALLEMAND AND AN MINKKINEN 10.1 INTRODUCTION 449 10.1.1 BACKGROUND 450
10.2 USE OF ACTIVATED MDEA FOR ADD GAS REMOVAL 452 10.3 PROCESS
PERFORMANCE HIGHLIGHTS 454 10.4 CASE STUDY OF THE USE OF ACTIVATED MDEA
FOR TREATMENT OF
VERY SOUR GAS 454
10.5 ADD GAS REMOVAL FOR CYCLING AND/OR DISPOSAL 456 10.6 BULK H 2 S
REMOVAL FOR DISPOSAL 458 10.7 SPREX PERFORMANCE 459 10.8 CAPITAL COST
AND ENERGY BALANCE COMPARISON 460 10.9 CONDUSIONS 461
REFERENCES 462
IMAGE 8
XII CONTENTS
11 BIOETBE: A NEW COMPONENT FOR GASOLINE 463
MARCO DI CIMIAMO AND DOMENICO SANSSLIPPO 11.1 INTRODUCTION 463 11.2 HIGH
QUALITY OXYGENATED AS GASOLINE COMPONENTS 463 11.3 ETBE TECHNOLOGY 466
11.3.1 ETBE PROPERTIES 466
11.3.2 ETBE SYNTHESIS 467 11.3.3 ETBE REACTORS 469 11.3.4 ETBE PROCESS
472 REFERENCES 474
12 OLEFIN/PARAFFIN ALLEVIATION: EVOLUTION OF A GREEN TECHNOLOGY 475
ANNE M. GAFFHEY AND PHILIP J. ANGEVINE 12.1 INTRODUCTION 475 12.2 LIQUID
ADD CATALYSTS 476 12.2.1 REACTION MECHANISM 479
12.2.2 OPERATING VARIABLES 481 12.2.3 ADVANTAGES VERSUS DISADVANTAGES
484 12.3 ZEOLITE CATALYSTS 484 12.3.1 ZEOLITE FACTORS IMPACTING
ALKYLATION PERFORMANCE 485
12.3.2 IMPACT OF REACTION CONDITIONS FOR ZEOLITES 486 12.3.3 OVERVIEW OF
ZEOLITES IN ALKYLATION 488 12.4 ALKYCLEAN ALKYLATION PROCESS: A TRUE
SOLID ADD CATALYST (SAC) PROCESS 488
12.4.1 CATALYST SELECTION AND DEVELOPMENT 489 12.4.2 PROCESS DEVELOPMENT
ACTIVITIES 489 12.4.3 OPTIMIZATION OF PROCESS CONDITIONS 492 12.4.4
EFFECT OF FEEDSTOCK VARIATION 493 12.4.5 EFFECT OF IMPURITIES 494
12.4.6 REACTOR SYSTEM/CATALYST REGENERATION 495 12.4.7 ALKYCLEAN PROCESS
DEMONSTRATION UNIT 496 12.4.8 DEMO UNIT OPERATION 497 12.4.9
COMPETITIVENESS VERSUS LIQUID ADD TECHNOLOGIES 501 12.4.10
ENVIRONMENTAL, CROSS-MEDIA EFFECTS 503 12.5 CONDUSION 504
REFERENCES 504
13 TOWARDS THE DIRECT OXIDATION OF BENZENE TO PHENOL 507 MARCO RICCI,
DANIELE BIANCHI, AND ROSSELLA BORTOLO 13.1 INTRODUCTION 507 13.2 CUMENE
PROCESS 508 13.2.1 ALKYLATION 508 13.2.2 OXIDATION AND CONCENTRATION 520
IMAGE 9
CONTENTS XIII
13.2.3 CLEAVAGE AND WORKUP 522
13.2.4 CUMENE PROCESS: FINAL CONSIDERATIONS 522 13.3 SOLUTIA PROCESS 524
13.4 DIRECT OXIDATION OF BENZENE TO PHENOL WITH HYDROGEN PEROXIDE 526
13.4.1 DEFINITION OF THE PROBLEM AND FIRST ATTEMPTS 526 13.4.2
HOMOGENEOUS CATALYSIS BY IRON COMPLEXES: A BIPHASE FENTON REAGENT 527
13.4.3 HETEROGENEOUS CATALYSIS BY TITANIUM SILICALITE 529 13.5
PERSPECTIVES 525
13.6 CONDUSIONS 525
REFERENCES 526
14 FRIEDEL-CRAFTS ACYLATION OF AROMATIC ETHERS USING ZEOLITES 529 ROLAND
JACQUOT AND PHILIPPE MARION 14.1 INTRODUCTION 529
14.2 LITERATURE BACKGROUND 530
14.3 ACYLATION OF ANISOLE BY ACETIC ANHYDRIDE 530 14.3.1 INDUSTRIAL
PROCESSES 532 14.4 ACYLATION OF VERATROLE BY ACETIC ANHYDRIDE OVER HY
ZEOLITE 533 14.5 DEACTIVATION OF THE CATALYSTS 534 14.6 BENZOYLATION OF
PHENOL ETHER 536 14.7 CONDUDING REMARKS 539
REFERENCES 539
15 GREEN SUSTAINABLE CHEMISTRY IN THE PRODUCTION OF NICOTINATES 542
RODERICK CHUCK 15.1 REQUIREMENTS FOR GREEN PROCESSES 542 15.2
SIGNIFICANCE OF NIADN 542
15.3 GREEN PRINDPLES IN THE MANUFACTURE OF NIACIN 542 15.3.1 CHOICE OF
FEEDSTOCK 542 15.3.2 REACTION PATHS FOR PRODUDNG NIACIN 543 15.3.2.1
LIQUID-PHASE OXIDATION OF NICOTINE WITH PERMANGANATE, CHROMIC
ADD, ETC. 543
15.3.2.2 LIQUID-PHASE OXIDATION OF 3-PICOLINE WITH PERMANGANATE, CHROMIC
ADD OR NITRIC ADD 544 15.3.2.3 LIQUID-PHASE OXIDATION OF MEP WITH NITRIC
ADD 545 15.3.2.4 DIRECT OXIDATION OF 3-PICOLINE TO NIACIN 546 15.3.3
CHOICE OF CATALYST (EFFICIENCY, SEPARATION, RECYCLING) 547 15.3.4
DOWN-STREAM PROCESSING/UNIT OPERATIONS 547 15.3.5 MINIMIZATION OF
POLLUTANTS AND WASTE STREAM VOLUME 547 15.3.6 RECYCLING OF AUXILIARY,
SIDE AND INTERMEDIATE PRODUCTS 548 15.4 GREEN PRINCIPLES IN LONZA S
NIADNAMIDE PROCESS (5000 MTPA) 548
IMAGE 10
XIV CONTENTS
16 INTRODUCING GREEN METRICS EARLY IN PROCESS DEVELOPMENT
COMPARATIVE ASSESSMENT OF ALTERNATIVE INDUSTRIAL ROUTES TO ELLIOTT S
ALCOHOL, A KEY INTERMEDIATE IN THE PRODUCTION OF RESMETHRINS 552
PAOLO RIGHI, GOFFREDO ROSINI, AND VALERIO BORZATTA 16.1 INTRODUCTION 552
16.2 ELLIOTT S ALCOHOL 552 16.3 AN ALTERNATIVE SYNTHESIS OF ELLIOTT S
ALCOHOL 554 16.4 COMPARATIVE ASSESSMENT OF THE TWO ALTERNATIVE ROUTES TO
ELLIOTT S
ALCOHOL 555
16.4.1 COMPARISON OF E-FADORS 556 16.4.2 COMPARISON OF WASTE
ENVIRONMENTAL IMPACT 557 16.4.3 COMPARISON OF FEEDSTOCK ENVIRONMENTAL
IMPACT 559 16.5 DRIVING THE GREEN IMPROVEMENT 561 16.6 CONDUSIONS 562
REFERENCES 562
17 BASELL SPHERIZONE TECHNOLOGY 563 MAURIZIO DONNI AND GABRIELE MEI 17.1
INTRODUCTION 563 17.2 TECHNOLOGY EVOLUTION 563 17.3 SPHERIZONE
TECHNOLOGY 567
17.3.1 PROCESS DESCRIPTION 568 17.3.2 PROCESS DEVELOPMENT AND SCALE UP
572 17.3.3 MODULAR APPROACH 574 17 A TECHNOLOGY COMPARISON 575
17.5 ENVIRONMENTAL CONSIDERATIONS 576 REFERENCES 578
INDEX 579
|
any_adam_object | 1 |
author2 | Cavani, Fabrizio |
author2_role | edt |
author2_variant | f c fc |
author_GND | (DE-588)139525025 |
author_facet | Cavani, Fabrizio |
building | Verbundindex |
bvnumber | BV035730884 |
classification_rvk | VN 9200 VN 9250 |
classification_tum | CHE 050f CIT 300f |
ctrlnum | (OCoLC)463785650 (DE-599)DNB994010362 |
dewey-full | 660.0286 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.0286 |
dewey-search | 660.0286 |
dewey-sort | 3660.0286 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Chemie Chemie-Ingenieurwesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01812nam a2200481 c 4500</leader><controlfield tag="001">BV035730884</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091221 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090918s2009 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">09,N21,1584</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">994010362</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527315529</subfield><subfield code="c">GB.</subfield><subfield code="9">978-3-527-31552-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527315529</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1131552 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)463785650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB994010362</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91S</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.0286</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9200</subfield><subfield code="0">(DE-625)147637:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9250</subfield><subfield code="0">(DE-625)147638:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 050f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">660</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sustainable industrial processes</subfield><subfield code="b">[principles, tools and industrial examples]</subfield><subfield code="c">ed. by Fabrizio Cavani ...</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Sustainable industrial chemistry</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 599 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">NT: Sustainable industrial chemistry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Chemie</subfield><subfield code="0">(DE-588)4078178-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Technische Chemie</subfield><subfield code="0">(DE-588)4078178-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Grüne Chemie</subfield><subfield code="0">(DE-588)7563215-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cavani, Fabrizio</subfield><subfield code="0">(DE-588)139525025</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018007472&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018007472</subfield></datafield></record></collection> |
id | DE-604.BV035730884 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:53:11Z |
institution | BVB |
isbn | 9783527315529 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018007472 |
oclc_num | 463785650 |
open_access_boolean | |
owner | DE-703 DE-83 DE-91S DE-BY-TUM DE-92 DE-634 DE-29T DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-83 DE-91S DE-BY-TUM DE-92 DE-634 DE-29T DE-11 DE-19 DE-BY-UBM |
physical | XXII, 599 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Sustainable industrial processes [principles, tools and industrial examples] ed. by Fabrizio Cavani ... Sustainable industrial chemistry Weinheim Wiley-VCH 2009 XXII, 599 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier NT: Sustainable industrial chemistry Grüne Chemie (DE-588)7563215-9 gnd rswk-swf Technische Chemie (DE-588)4078178-1 gnd rswk-swf Technische Chemie (DE-588)4078178-1 s Grüne Chemie (DE-588)7563215-9 s DE-604 Cavani, Fabrizio (DE-588)139525025 edt DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018007472&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Sustainable industrial processes [principles, tools and industrial examples] Grüne Chemie (DE-588)7563215-9 gnd Technische Chemie (DE-588)4078178-1 gnd |
subject_GND | (DE-588)7563215-9 (DE-588)4078178-1 |
title | Sustainable industrial processes [principles, tools and industrial examples] |
title_alt | Sustainable industrial chemistry |
title_auth | Sustainable industrial processes [principles, tools and industrial examples] |
title_exact_search | Sustainable industrial processes [principles, tools and industrial examples] |
title_full | Sustainable industrial processes [principles, tools and industrial examples] ed. by Fabrizio Cavani ... |
title_fullStr | Sustainable industrial processes [principles, tools and industrial examples] ed. by Fabrizio Cavani ... |
title_full_unstemmed | Sustainable industrial processes [principles, tools and industrial examples] ed. by Fabrizio Cavani ... |
title_short | Sustainable industrial processes |
title_sort | sustainable industrial processes principles tools and industrial examples |
title_sub | [principles, tools and industrial examples] |
topic | Grüne Chemie (DE-588)7563215-9 gnd Technische Chemie (DE-588)4078178-1 gnd |
topic_facet | Grüne Chemie Technische Chemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018007472&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cavanifabrizio sustainableindustrialprocessesprinciplestoolsandindustrialexamples AT cavanifabrizio sustainableindustrialchemistry |