Viscoelastic materials:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2009
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 461 S. Ill., graph. Darst. |
ISBN: | 9780521885683 9781107459786 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV035492293 | ||
003 | DE-604 | ||
005 | 20150317 | ||
007 | t | ||
008 | 090515s2009 xxkad|| |||| 00||| eng d | ||
010 | |a 2009000949 | ||
020 | |a 9780521885683 |c hardback |9 978-0-521-88568-3 | ||
020 | |a 9781107459786 |c paperback |9 978-1-107-45978-6 | ||
035 | |a (OCoLC)286432282 | ||
035 | |a (DE-599)BVBBV035492293 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-703 |a DE-634 |a DE-706 |a DE-91 |a DE-898 | ||
050 | 0 | |a TA418.2 | |
082 | 0 | |a 620.1/1232 | |
084 | |a UF 3000 |0 (DE-625)145570: |2 rvk | ||
084 | |a MTA 070f |2 stub | ||
100 | 1 | |a Lakes, Roderic S. |d 1948- |e Verfasser |0 (DE-588)139648763 |4 aut | |
245 | 1 | 0 | |a Viscoelastic materials |c Roderic Lakes |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2009 | |
300 | |a XVIII, 461 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Viscoelastic materials | |
650 | 4 | |a Viscoelasticity | |
650 | 0 | 7 | |a Viskoelastisches Medium |0 (DE-588)4426217-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Viskoelastizität |0 (DE-588)4063621-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Viskoelastisches Medium |0 (DE-588)4426217-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Viskoelastizität |0 (DE-588)4063621-5 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017548668&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017548668 |
Datensatz im Suchindex
_version_ | 1804139107254796288 |
---|---|
adam_text | Contents
Preface
page
xvii
1
Introduction: Phenomena
.............................1
1.1
Viscoelastic Phenomena
1
1.2
Motivations for Studying Viscoelasticity
3
1.3
Transient Properties: Creep and Relaxation
3
1.3.1
Viscoelastic Functions
ƒ (/). £(0 3
1.3.2
Solids and Liquids
7
1.4
Dynamic Response to Sinusoidal Load: E*,
taná
8
1.5
Demonstration of Viscoelastic Behavior
10
1.6
Historical Aspects
10
1.7
Summary
11
1.8
Examples
11
1.9
Problems
12
Bibliography
12
2
Constitutive Relations
..............................14
2.1
Introduction
14
2.2
Prediction of the Response of Linearly Viscoelastic Materials
14
2.2.1
Prediction of Recovery from Relaxation E{t)
14
2.2.2
Prediction of Response to Arbitrary Strain History
15
2.3
Restrictions on the Viscoelastic Functions
17
2.3.1
Roles of Energy and Passivity
17
2.3.2
Fading Memory
18
2.4
Relation between Creep and Relaxation
19
2.4.1
Analysis by Laplace Transforms: J(t) -o- E{t)
19
2.4.2
Analysis by Direct Construction: J{t)
<*■
E{t)
20
2.5
Stress versus Strain for Constant Strain Rate
20
2.6
Particular Creep and Relaxation Functions
21
2.6.1
Exponentials and Mechanical Models
21
viii Contents
2.6.2
Exponentials and Internal Causal Variables
26
2.6.3
Fractional Derivatives
27
2.6.4
Power-Law Behavior
28
2.6.5
Stretched Exponential
29
2.6.6
Logarithmic Creep;
Kuhn
Model
29
2.6.7
Distinguishing among Viscoelastic Functions
30
2.7
Effect of Temperature
30
2.8
Three-Dimensional Linear Constitutive Equation
33
2.9
Aging Materials
35
2.10
Dielectric and Other Forms of Relaxation
35
2.11
Adaptive and Smart Materials
36
2.12
Effect of Nonlinearity
37
2.12.1
Constitutive Equations
37
2.12.2
Creep-Relaxation Interrelation: Nonlinear
40
2.13
Summary
43
2.14
Examples
43
2.15
Problems
51
Bibliography
52
3
Dynamic Behavior
.................................55
3.1
Introduction and Rationale
55
3.2
The Linear Dynamic Response Functions E*,
taná
56
3.2.1
Response to Sinusoidal Input
57
3.2.2
Dynamic Stress-Strain Relation
59
3.2.3
Standard Linear Solid
62
3.3
Kramers-Kronig Relations
63
3.4
Energy Storage and Dissipation
65
3.5
Resonance of Structural Members
67
3.5.1
Resonance, Lumped System
67
3.5.2
Resonance, Distributed System
71
3.6
Decay of Resonant Vibration
74
3.7
Wave Propagation and Attenuation
77
3.8
Measures of Damping
79
3.9
Nonlinear Materials
79
3.10
Summary
81
3.11
Examples
81
3.12
Problems
88
Bibliography
89
4
Conceptual Structure of Linear Viscoelasticity
...............91
4.1
Introduction
91
4.2
Spectra in Linear Viscoelasticity
92
4.2.1
Definitions
Η(τ),
L(z) and Exact Interrelations
92
4.2.2
Particular Spectra
93
Contents ix
4.3
Approximate Interrelations of Viscoelastic Functions
95
4.3.1
Interrelations Involving the Spectra
95
4.3.2
Interrelations Involving Measurable Functions
98
4.3.3
Summary, Approximate Relations
101
4.4
Conceptual Organization of the Viscoelastic Functions
101
4.5
Summary
104
4.6
Examples
104
4.7
Problems
109
Bibliography
109
5
Viscoelastic Stress and Deformation Analysis
...............
Ill
5.1
Introduction 111
5.2
Three-Dimensional Constitutive Equation 111
5.3
Pure Bending by Direct Construction
112
5.4
Correspondence Principle
114
5.5
Pure Bending by Correspondence
116
5.6
Correspondence Principle in Three Dimensions
116
5.6.1
Constitutive Equations
116
5.6.2
Rigid Indenter on a Semi-Infinite Solid
117
5.6.3
Viscoelastic Rod Held at Constant Extension
119
5.6.4
Stress Concentration
119
5.6.5
Saint Venant s Principle
120
5.7
Poisson s Ratio v(/)
121
5.7.1
Relaxation in Tension
121
5.7.2
Creep in Tension
123
5.8
Dynamic Problems: Effects of Inertia
124
5.8.1
Longitudinal Vibration and Waves in a Rod
124
5.8.2
Torsionai
Waves and Vibration in a Rod
125
5.8.3
Bending Waves and Vibration
128
5.8.4
Waves in Three Dimensions
129
5.9
Noncorrespondence Problems
131
5.9.1
Solution by Direct Construction: Example
131
5.9.2
A Generalized Correspondence Principle
132
5.9.3
Contact Problems
132
5.10
Bending in Nonlinear Viscoelasticity
133
5.11
Summary
134
5.12
Examples
134
5.13
Problems
142
Bibliography
142
6
Experimental Methods
.............................145
6.1
Introduction and General Requirements
145
6.2
Creep
146
6.2.1
Creep: Simple Methods to Obtain
/(/) 146
Contents
6.2.2
Effect
of Risetime in Transient Tests
146
6.2.3
Creep in
Anisotropie
Media
148
6.2.4
Creep in Nonlinear Media
148
6.3
Inference of Moduli
150
6.3.1
Use of Analytical Solutions
150
6.3.2
Compression of a Block
151
6.4
Displacement and Strain Measurement
152
6.5
Force Measurement
156
6.6
Load Application
157
6.7
Environmental Control
157
6.8
Subresonant Dynamic Methods
158
6.8.1
Phase Determination
158
6.8.2
Nonlinear Materials
160
6.8.3
Rebound Test
161
6.9
Resonance Methods
161
6.9.1
General Principles
161
6.9.2
Particular Resonance Methods
163
6.9.3
Methods for Low-Loss or High-Loss Materials
166
6.9.4
Resonant Ultrasound Spectroscopy
168
6.10
Achieving a Wide Range of Time or Frequency
171
6.10.1
Rationale
171
6.10.2
Multiple Instruments and Long Creep
172
6.10.3
Time-Temperature Superposition
172
6.11
Test Instruments for Viscoelasticity
173
6.11.1
Servohydraulic Test Machines
173
6.11.2
A Relaxation Instrument
174
6.11.3
Driven Torsion Pendulum Devices
174
6.11.4
Commercial Viscoelastic Instrumentation
178
6.11.5
Instruments for a Wide Range of Time and Frequency
179
6.11.6
Fluctuation-Dissipation Relation
182
6.11.7
Mapping Properties by Indentation
183
6.12
Wave Methods
184
6.13
Summary
188
6.14
Examples
188
6.15
Problems
200
Bibliography
201
Viscoelastic Properties of Materials
.....................207
7.1
Introduction
207
7.1.1
Rationale
207
7.1.2
Overview: Some Common Materials
207
7.2
Polymers
208
7.2.1
Shear and Extension in Amorphous Polymers
208
7.2.2
Bulk Relaxation in Amorphous Polymers
212
Contents xi
7.2.3
Crystalline
Polymers 213
7.2.4
Aging and other Relaxations
214
7.2.5
Piezoelectric Polymers
214
7.2.6
Asphalt
214
7.3
Metals
215
7.3.1
Linear Regime of Metals
215
7.3.2
Nonlinear Regime of Metals
217
7.3.3
High-Damping Metals and Alloys
219
7.3.4
Creep-Resistant Alloys
224
7.3.5
Semiconductors and Amorphous Elements
225
7.3.6
Semiconductors and Acoustic Amplification
226
7.3.7
Nanoscale Properties
226
7.4
Ceramics
227
7.4.1
Rocks
227
7.4.2
Concrete
229
7.4.3
Inorganic Glassy Materials
231
7.4.4
Ice
231
7.4.5
Piezoelectric Ceramics
232
7.5
Biological Composite Materials
233
7.5.1
Constitutive Equations
234
7.5.2
Hard Tissue: Bone
234
7.5.3
Collagen, Elastin, Proteoglycans
236
7.5.4
Ligament and Tendon
237
7.5.5
Muscle
240
7.5.6
Fat
243
7.5.7
Brain
243
7.5.8
Vocal Folds
244
7.5.9
Cartilage and Joints
244
7.5.10
Kidney and Liver
246
7.5.11
Uterus and Cervix
246
7.5.12
Arteries
247
7.5.13
Lung
248
7.5.14
The Ear
248
7.5.15
The Eye
249
7.5.16
Tissue Comparison
251
7.5.17
Plant Seeds
252
7.5.18
Wood
252
7.5.19
Soft Plant Tissue: Apple, Potato
253
7.6
Common Aspects
253
7.6.1
Temperature Dependence
253
7.6.2
High-Temperature Background
254
7.6.3
Negative Damping and Acoustic Emission
255
7.7
Summary
255
7.8
Examples
255
xii
Contents
7.9
Problems
256
Bibliography
257
8
Causal Mechanisms
...............................271
8.1
Introduction
271
8.1.1
Rationale
271
8.1.2
Survey of Viscoelastic Mechanisms
271
8.1.3
Coupled Fields
273
8.2
Thermoelastic Relaxation
274
8.2.1
Thermoelasticity in One Dimension
274
8.2.2
Thermoelasticity in Three Dimensions
275
8.2.3
Thermoelastic Relaxation Kinetics
276
8.2.4
Heterogeneity and Thermoelastic Damping
278
8.2.5
Material Properties and Thermoelastic Damping
280
8.3
Relaxation by Stress-Induced Fluid Motion
280
8.3.1
Fluid Motion in One Dimension
280
8.3.2
Biot Theory: Fluid Motion in Three Dimensions
281
8.4
Relaxation by Molecular Rearrangement
286
8.4.1
Glassy Region
286
8.4.2
Transition Region
287
8.4.3
Rubbery Behavior
289
8.4.4
Crystalline Polymers
291
8.4.5
Biological Macromolecules
292
8.4.6
Polymers and Metals
292
8.5
Relaxation by Interface Motion
292
8.5.1
Grain Boundary Slip in Metals
292
8.5.2
Interface Motion in Composites
294
8.5.3
Structural Interface Motion
294
8.6
Relaxation Processes in Crystalline Materials
294
8.6.1
Snoek
Relaxation: Interstitial Atoms
294
8.6.2
Zener Relaxation in Alloys: Pairs of Atoms
298
8.6.3
Gorsky Relaxation
299
8.6.4
Granato-Liicke Relaxation: Dislocations
300
8.6.5
Bordoni
Relaxation: Dislocation Kinks
303
8.6.6
Relaxation Due to Phase Transformations
305
8.6.7
High-Temperature Background
314
8.6.8
Nonremovable Relaxations
315
8.6.9
Damping Due to Wave Scattering
316
8.7
Magnetic and Piezoelectric Materials
316
8.7.1
Relaxation in Magnetic Media
316
8.7.2
Relaxation in Piezoelectric Materials
318
8.8
Nonexponential Relaxation
322
8.9
Concepts for Material Design
323
8.9.1
Multiple Causes: Deformation Mechanism Maps
323
Contents xiii
8.9.2
Damping Mechanisms in High-Loss Alloys
326
8.9.3
Creep Mechanisms in Creep-Resistant Alloys
326
8.10
Relaxation at Very Long Times
327
8.11
Summary
327
8.12
Examples
328
8.13
Problems and Questions
332
Bibliography
332
9
Viscoelastic Composite Materials
.......................341
9.1
Introduction
341
9.2
Composite Structures and Properties
341
9.2.1
Ideal Structures
341
9.2.2
Anisotropy due to Structure
342
9.3
Prediction of Elastic and Viscoelastic Properties
344
9.3.1
Basic Structures: Correspondence Solutions
344
9.3.2 Voigt
Composite
345
9.3.3
Reuss Composite
345
9.3.4
Hashin-Shtrikman Composite
346
9.3.5
Spherical Particulate Inclusions
347
9.3.6
Fiber Inclusions
349
9.3.7
Platelet Inclusions
349
9.3.8
Stiffness-Loss Maps
350
9.4
Bounds on the Viscoelastic Properties
353
9.5
Extremal Composites
354
9.6
Biological Composite Materials
356
9.7
Poisson s Ratio of Viscoelastic Composites
357
9.8
Particulate and Fibrous Composite Materials
358
9.8.1
Structure
358
9.8.2
Particulate Polymer Matrix Composites
359
9.8.3
Fibrous Polymer Matrix Composites
361
9.8.4
Metal-Matrix Composites
362
9.9
Cellular Solids
363
9.10
Piezoelectric Composites
366
9.11
Dispersion of Waves in Composites
366
9.12
Summary
367
9.13
Examples
367
9.14
Problems
370
Bibliography
370
10
Applications and Case Studies
.........................377
10.1
Introduction
377
10.2
A Viscoelastic Earplug: Use of Recovery
377
10.3
Creep and Relaxation of Materials and Structures
378
10.3.1
Concrete
378
xiv
Contents
10.3.2
Wood
378
10.3.3
Power Lines
379
10.3.4
Glass Sag: Flowing Window Panes
380
10.3.5
Indentation: Road Rutting
380
10.3.6
Leather
381
10.3.7
Creep-Resistant Alloys and Turbine Blades
381
10.3.8
Loosening of Bolts and Screws
382
10.3.9
Computer Disk Drive: Case Study of Relaxation
384
10.3.10
Earth, Rock, and Ice
385
10.3.11
Solder
386
10.3.12
Filaments in Light Bulbs and Other Devices
387
10.3.13
Tires: Flat-Spotting and Swelling
388
10.3.14
Cushions for Seats and Wheelchairs
388
10.3.15
Artificial Joints
389
10.3.16
Dental Fillings
389
10.3.17
Food Products
389
10.3.18
Seals and Gaskets
390
10.3.19
Relaxation in Musical Instrument Strings
390
10.3.20
Winding of Tape
391
10.4
Creep and Recovery in Human Tissue
391
10.4.1
Spinal Discs: Height Change
391
10.4.2
The Nose
392
10.4.3
Skin
392
10.4.4
The Head
393
10.5
Creep Damage and Creep Rupture
394
10.5.1
Vajont Slide
394
10.5.2
Collapse of a Tunnel Segment
394
10.6
Vibration Control and Waves
394
10.6.1
Analysis of Vibration Transmission
394
10.6.2
Resonant (Tuned) Damping
397
10.6.3
Rotating Equipment Vibration
397
10.6.4
Large Structure Vibration: Bridges and Buildings
398
10.6.5
Damping Layers for Plate and Beam Vibration
399
10.6.6
Structural Damping Materials
400
10.6.7
Piezoelectric Transducers
402
10.6.8
Aircraft Noise and Vibration
402
10.6.9
Solid Fuel Rocket Vibration
404
10.6.10
Sports Equipment Vibration
404
10.6.11
Seat Cushions and Automobiles: Protection of People
404
10.6.12
Vibration in Scientific Instruments
406
10.6.13
Waves
406
10.7
Smart Materials and Structures
407
10.7.1
Smart Materials
407
10.7.2
Shape Memory Materials
408
Contents xv
10.7.3 Self-Healing Materials 409
10.7.4 Piezoelectric Solid
Damping
409
10.7.5 Active Vibration
Control:
Smart
Structures
409
10.8
Rolling Friction
409
10.8.1
Rolling Analysis
410
10.8.2
Rolling of Tires
411
10.9
Uses of Low-Loss Materials
412
10.9.1
Timepieces
412
10.9.2
Frequency Stabilization and Control
413
10.9.3
Gravitational Measurements
413
10.9.4
Nanoscale Resonators
414
10.10
Impulses, Rebound, and Impact Absorption
414
10.10.1
Rationale
414
10.10.2
Analysis
415
10.10.3
Bumpers and Pads
418
10.10.4
Shoe Insoles, Athletic Tracks, and Glove Liners
419
10.10.5
Toughness of Materials
419
10.10.6
Tissue Viscoelasticity in Medical Diagnosis
420
10.11
Rebound of a Ball
421
10.11.1
Analysis
421
10.11.2
Applications in Sports
422
10.12
Applications of Soft Materials
424
10.12.1
Viscoelastic Gels in Surgery
424
10.12.2
Hand Strength Exerciser
424
10.12.3
Viscoelastic Toys
424
10.12.4
No-Slip Flooring, Mats, and Shoe Soles
425
10.13
Applications Involving Thermoviscoelasticity
425
10.14
Satellite Dynamics and Stability
426
10.15
Summary
428
10.16
Examples
429
10.17
Problems
431
Bibliography
431
A: Appendix
......................................441
A.I Mathematical Preliminaries
441
A.
1.1
Introduction
441
A.1.2 Functionals and Distributions
441
A.
1.3
Heaviside Unit Step Function
442
A.1.4 Dirac Delta
442
A.1.5 Doublet
443
A.1.6 Gamma Function
445
A.1.7 Liebnitz Rule
445
A.2 Transforms
445
A.2.1 Laplace Transform
446
xvi Contents
A.2.2
Fourier
Transform
446
A.2.3
Hartley Transform
447
A.2.4 Hubert Transform
447
A.3 Laplace Transform Properties
448
A.4 Convolutions
449
A.5 Interrelations in Elasticity Theory
451
A.6 Other Works on Viscoelasticity
451
Bibliography
452
B: Symbols
.......................................455
B.I Principal Symbols
455
Index
457
|
any_adam_object | 1 |
author | Lakes, Roderic S. 1948- |
author_GND | (DE-588)139648763 |
author_facet | Lakes, Roderic S. 1948- |
author_role | aut |
author_sort | Lakes, Roderic S. 1948- |
author_variant | r s l rs rsl |
building | Verbundindex |
bvnumber | BV035492293 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.2 |
callnumber-search | TA418.2 |
callnumber-sort | TA 3418.2 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UF 3000 |
classification_tum | MTA 070f |
ctrlnum | (OCoLC)286432282 (DE-599)BVBBV035492293 |
dewey-full | 620.1/1232 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1232 |
dewey-search | 620.1/1232 |
dewey-sort | 3620.1 41232 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01679nam a2200457zc 4500</leader><controlfield tag="001">BV035492293</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20150317 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090515s2009 xxkad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2009000949</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521885683</subfield><subfield code="c">hardback</subfield><subfield code="9">978-0-521-88568-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107459786</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-107-45978-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)286432282</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035492293</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1232</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 3000</subfield><subfield code="0">(DE-625)145570:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 070f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lakes, Roderic S.</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139648763</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Viscoelastic materials</subfield><subfield code="c">Roderic Lakes</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 461 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelastic materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Viscoelasticity</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskoelastisches Medium</subfield><subfield code="0">(DE-588)4426217-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Viskoelastizität</subfield><subfield code="0">(DE-588)4063621-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Viskoelastisches Medium</subfield><subfield code="0">(DE-588)4426217-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Viskoelastizität</subfield><subfield code="0">(DE-588)4063621-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017548668&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017548668</subfield></datafield></record></collection> |
id | DE-604.BV035492293 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:38:49Z |
institution | BVB |
isbn | 9780521885683 9781107459786 |
language | English |
lccn | 2009000949 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017548668 |
oclc_num | 286432282 |
open_access_boolean | |
owner | DE-703 DE-634 DE-706 DE-91 DE-BY-TUM DE-898 DE-BY-UBR |
owner_facet | DE-703 DE-634 DE-706 DE-91 DE-BY-TUM DE-898 DE-BY-UBR |
physical | XVIII, 461 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Lakes, Roderic S. 1948- Verfasser (DE-588)139648763 aut Viscoelastic materials Roderic Lakes 1. publ. Cambridge Cambridge Univ. Press 2009 XVIII, 461 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Viscoelastic materials Viscoelasticity Viskoelastisches Medium (DE-588)4426217-6 gnd rswk-swf Viskoelastizität (DE-588)4063621-5 gnd rswk-swf Viskoelastisches Medium (DE-588)4426217-6 s DE-604 Viskoelastizität (DE-588)4063621-5 s Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017548668&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Lakes, Roderic S. 1948- Viscoelastic materials Viscoelastic materials Viscoelasticity Viskoelastisches Medium (DE-588)4426217-6 gnd Viskoelastizität (DE-588)4063621-5 gnd |
subject_GND | (DE-588)4426217-6 (DE-588)4063621-5 |
title | Viscoelastic materials |
title_auth | Viscoelastic materials |
title_exact_search | Viscoelastic materials |
title_full | Viscoelastic materials Roderic Lakes |
title_fullStr | Viscoelastic materials Roderic Lakes |
title_full_unstemmed | Viscoelastic materials Roderic Lakes |
title_short | Viscoelastic materials |
title_sort | viscoelastic materials |
topic | Viscoelastic materials Viscoelasticity Viskoelastisches Medium (DE-588)4426217-6 gnd Viskoelastizität (DE-588)4063621-5 gnd |
topic_facet | Viscoelastic materials Viscoelasticity Viskoelastisches Medium Viskoelastizität |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017548668&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lakesroderics viscoelasticmaterials |