Towards mathematical philosophy: papers from the Studia Logica Conference Trends in Logic IV
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
[Dordrecht]
Springer Netherland
2009
|
Schriftenreihe: | Trends in Logic
28 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 343 S. graph. Darst. 235 mm x 155 mm |
ISBN: | 9781402090837 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035306381 | ||
003 | DE-604 | ||
005 | 20100604 | ||
007 | t | ||
008 | 090211s2009 gw d||| |||| 00||| eng d | ||
015 | |a 08,N34,0398 |2 dnb | ||
016 | 7 | |a 989847381 |2 DE-101 | |
020 | |a 9781402090837 |c Gb. : ca. EUR 155.10 (freier Pr.), ca. sfr 241.00 (freier Pr.) |9 978-1-402-09083-7 | ||
024 | 3 | |a 9781402090837 | |
028 | 5 | 2 | |a 12444885 |
035 | |a (OCoLC)465137241 | ||
035 | |a (DE-599)DNB989847381 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-12 |a DE-29 |a DE-11 |a DE-19 | ||
050 | 0 | |a QA9.A1 | |
082 | 0 | |a 511.3 |2 22 | |
084 | |a CC 2600 |0 (DE-625)17610: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 5,1 |2 ssgn | ||
245 | 1 | 0 | |a Towards mathematical philosophy |b papers from the Studia Logica Conference Trends in Logic IV |c David Makinson ... eds. |
264 | 1 | |a [Dordrecht] |b Springer Netherland |c 2009 | |
300 | |a XIII, 343 S. |b graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Trends in Logic |v 28 | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Philosophie | |
650 | 4 | |a Logic, Symbolic and mathematical |v Congresses | |
650 | 4 | |a Mathematics |x Philosophy |v Congresses | |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematische Logik |0 (DE-588)4037951-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Philosophie |0 (DE-588)4045791-6 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2006 |z Thorn |2 gnd-content | |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | 1 | |a Philosophie |0 (DE-588)4045791-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Logik |0 (DE-588)4037951-6 |D s |
689 | 1 | 1 | |a Philosophie |0 (DE-588)4045791-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Makinson, David |e Sonstige |4 oth | |
830 | 0 | |a Trends in Logic |v 28 |w (DE-604)BV011512969 |9 28 | |
856 | 4 | 2 | |m Digitalisierung UB Erlangen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017111173&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-017111173 |
Datensatz im Suchindex
_version_ | 1804138608854040576 |
---|---|
adam_text | CONTENTS 1 FROM LOGIC TO MATHEMATICA1 PHILOSOPHY, DAVID MAKINSON, J ACEK
MALINOWSKI AND HEINRICH WANSING 1 INTRODUETION . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 1 MODAL LOGIE . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 3 NON-CLASSICAL AND MANY- VALUED
LOGIES . . . . . . . . . . . . 4 BELIEF MANAGEMENT 6 2 COMMUTATIVITY OF
QUANTIFIERS IN VARYING-DOMAIN KRIPKE MODELS, ROBERT GOLDBLATT AND IAN
HODKINSON . . . . . . . . . . . . . . 9 INTRODUETION AND OVERVIEW . . .
. . . . . . . . . . . . . . . . . . 9 1 MODEL STRUCTURES . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 12 2 PREMODELS AND MODELS. . . .
. . . . . . . . . . . . . . . . . . .. 14 3 SOUNDNESS AND M-EQUIVALENEE
. . . . . . . . . . . . . . . . . . 1,7 4 VALIDATING CQ . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. 20 5 A COUNTERMODEL TO CQ . .
. . . . . . . . . . . . . . . . . . . .. 23 6 COMPLETENESS AND THE
BAREAN FORMULAS. . . . . . . . . . .. 28 REFERENEES. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. 30 3 THE METHOD OF
TREE-HYPERSEQUENTS FOR MODAL PROPOSITIONAL LOGIC, FRANCESCA POGGIOLESI
31 1 INTRODUETION . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. 31 2 THE CALEULI CSK* . . . . . . . . . . . . . . . . . . . . . .
. . . . . 34 3 ADMISSIBILITY OF THE STRUETURAL RULES . . . . . . . . . .
. . .. 37 4 THE ADEQUATENESS OF THE CALCULI . . . . . . . . . . . . . .
. . . 43 5 CUT-ELIMINATION THEOREM FOR CSK* 45 6 CONCLUSIONS AND FURTHER
WORK . . . . . . . . . . . . . . . . . . 49 REFERENEES. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . 50 4 ALL SPLITTING
LOGICS IN THE LATTICE NEXT(KTB), TOMASZ KOWALSKI AND YUTAKA MIYAZAKI
............*...... 53 1 INTRODUETION . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . 53 2 PRELIMINARIES . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 54 3 SPLITTING. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . 56 4 CONNEETED KTB-FRAMES.
. . . . . . . . . . . . . . . . . . . . . . 59 5 FEW SPLITTINGS THEOREM.
. . . . . . . . . . . . . . . . . . . . . . 61 6 SOME QUESTIONS AND
CONJEETURES. . . . . . . . . . . . . . . .. 65 REFERENEES. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 66 VI 5 A
TEMPORALLOGICOF NORMATIVE SYSTEMS, THOMAS AGOTNES, WIE BE VAN DER HOEK,
JUAN A. RODRIGUEZ-AGUILAR, CARLES SIERRA AND MICHAEL WOOLDRIDGE . . . .
. . . . . . . . . . . . .. 69 1 INTRODUCTION . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .. 69 2 NORMATIVE TEMPORAL LOGIC . . . . .
. . . . . . . . . . . . . . . . 70 3 SYMBOLIC REPRESENTATIONS. . . . . .
. . . . . . . . . . . . . . . . 80 4 MODEL CHECKING 86 5 CASE STUDY:
TRAFIIC CONTROL . . . . . . . . . . . . . . . . . . .. 93 6 DISCUSSION.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 100
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. 104 6 REASONING WITH JUSTIFICATIONS, MELVIN FITTING . . . . . . . . .
.. 107 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . .. 107 2 HINTIKKA S LOGICS OF KNOWLEDGE . . . . . . . . . . . .
. . . . .. 107 3 AWARENESS LOGIC . . . . . . . . . . . . . . . . . . . .
. . . . . . .. 110 4 EXPLICIT JUSTIFICATIONS O. 110 5 INTERNALIZATION. .
. . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 6 INFORMATION
HIDING AND RECOVERY. . . . . . . . . . . . . . .. 114 7 ORIGINAL INTENT
115 8 REALIZATIONS AS FIRST-CLASS OBJECTS . . . . . . . . . . . . . ..
116 9 GENERALIZATIONS . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. 120 10 THE GOAL 121 REFERENCESO . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .O 122 7 MONOTONE RELATIONS, FIXED POINTS AND
RECURSIVE DEFINITIONS, JANUSZ CZELAKOWSKI . . . . . . . . . . . . . . .
. . . . . . . . . . . . .. 125 1 PARTIALLY ORDERED SETS. . . . . . . . .
. . . . . . . . . . . . . .. 127 2 MONOTONE RELATIONS. . . . . . . . . .
. . . . . . . . . . . . . . .. 134 3 ARITHMETIC RECURSION AND
FIXED-POINTS . . . . . . . . . . .. 146 4 THE DOWNWARD
LOEWENHEIM-SKOLEM-TARSKI THEOREM. .. 161 REFERENCES. . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. 163 8 PROCESSING
INFORMATIONFROM A SET OF SOUREES, ARNON AVRON, JONATHAN BEN-NAIM AND
BEATA KONIKOWSKA .OO. . * * .* 165 1 INTRODUCTION . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . .. 165 2 THE FRAMEWORK. . . . . . .
. . . . . . . . . . . . . . . . . . . . .. 166 3 EXISTENTIAL STRATEGY
FOR STANDARD STRUCTURES 173 4 THE UNIVERSAL STRATEGY
..OO.O.....O...OO.O.... 179 5 PROOF SYSTEMS FOR THE EXISTENTIAL STRATEGY
. . . . . . . . .. 179 6 FUTURE RESEARCH O.............. 184 VII
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.. 185 9 THE CLASSICA1MODEL EXISTENCE THEOREM IN SUBCLASSICAL PREDICATE
LOGICS I, JUI-LIN LEE. . . . . . . . . . . . . . . . . . . . . . . . . .
. . .. 187 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . .. 187 2 CLASSICAL MODEL EXISTENCE THEOREM IN PROPOSITIONAL
LOGICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .. 189 3 A HERBRAND-HENKIN STYLE PROOF OF THE CLASSICAL MODEL
EXISTENCE THEOREM FOR PRENEX NORMAL FORM SENTENCES . 191 4 PRENEX NORMAL
FORM THEOREM HOLDS IN LOGICS WEAKER THAN FIRST ORDER LOGIC . . . . . . .
. . . . . . . . . . . . . . . .. 195 5 CONCLUDING REMARKS . . . . . . .
. . . . . . . . . . . . . . . . .. 197 REFERENCES. . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .. 198 10 WEAK IMPLICATIONAL
LOGICS RELATED TO THE LAMBEK CALCULUS-GENTZEN VERSUS HILBERT FORMALISMS,
WOJCIECH ZIELONKA . . . . . . . . . . . . . . . . . . . . . . . * . . .
. . . . . . . . . .. 201 1 INTRODUCTION . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . .. 201 2 PRELIMINARIES . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .. 203 3 THE ASSOCIATIVE CASE . . . .
. . . . . . . . . . . . . . . . . . . .. 205 4 THE NON-ASSOCIATIVE CASE
. . . . . . . . . . . . . . . . . . . .. 207 5 HILBERT-STYLE FORMALISM .
. . . . . . . . . . . . . . . . . . . . .. 209 REFERENCES. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. 211 11 FAITHFUL AND
INVARIANT CONDITIONAL PROBABILITY IN LUKASIEWICZ LOGIC, DANIELE MUNDICI
. . . . . . . . . . . . . . . . . . . . . . . . . .. 213 INTRODUCTION:
CONDITIONALS AND DE FINETTI COHERENCE CRITERION. . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . .. 213 1 THE I-DIMENSIONAL VOLUME
OF A FORMULA . . . . . . . . . .. 215 2 CONDITIONALS IN LUKASIEWICZ
PROPOSITIONAL LOGIC L OO . .. 220 3 A FAITHFUL INVARIANT CONDITIONAL FOR
L OO 222 4 PROOF: CONSTRUCTION OF A FAITHFUL CONDITIONAL P . . . . ..
224 5 CONCLUSION OF THE PROOF: P IS INVARIANT . . . . . . . . . . .. 227
REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
231 12 A FUZZY LOGIC APPROACH TO NON-SCALAR HEDGES, STEPHAN VAN DER
WAART VAN GULIK. . . . . . . . . . . . . . . . . . . . . * . . . . ..
233 1 INTRODUCTION ; . . . . . . . . . . . . . . . . .. 233 2 LAKOFF S
PROPOSAL. . . . . . . . . . . . . . . . . . . . . . . . . . .. 234 3
SOME NEW MACHINERY 237 VIII 4 THE GENERIC FUZZY LOGIC FUER NON-SCALAR
HEDGES FLH .. 240 5 CONCLUSION ... . . . . . . . . . . . . . . . . . . .
. . . . . . . . .. 247 REFERENCES. . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . .. 247 13 14 15 THE PROCEDURES FOR BELIEF
REVISION, PIOTR LUKOWSKI . 1 INTRODUCTION . 2 NONMONOTONICITY ON
CLASSICAL BASE . 3 NONMONOTONICITY ON INTUITIONISTIC BASE . 4
GENERALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . SHIFTING PRIORITIES: SIMPLE REPRESENTATIONS FOR TWENTY-SEVEN
ITERATED THEORY CHANGE OPERATORS, HANS ROTT . 1 INTRODUCTION . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . 2 REPRESENTING
DOXASTIC STATES: PRIORITIZED BELIEF BASES, ENTRENEHMENT, SYSTEMS OF
SPHERES . 3 VARIANTS OF EXPANSION . 4 RADICAL REVISION. . . . . . . . .
. . . . . . . . . . . . . . . . . . . . 5 CONSERVATIVE REVISION . . . .
. . . . . . . . . . . . . . . . . . . . 6 MODERATE REVISION . . . . . .
. . . . . . . . . . . . . . . . . . . . . 7 RESTRAINED REVISION . . . .
. . . . . . . . . . . . . . . . . . . . . . 8 VARIANTS OF CONTRACTION .
9 REFINEMENT: NEITHER REVISION NOR CONTRACTION . 10
TWO-DIMENSIONALOPERATORS: REVISION BY COMPARISON . 11
TWO-DIMENSIONALOPERATORS: CANTWELL S LOWERING . 12 GENTLE RAISING AND
LOWERING . 13 TWO-DIMENSIONALOPERATORS: RAISING AND LOWERING BY STRICT
COMPARISONS . 14 TWO-DIMENSIONAL OPERATORS: BOUNDED REVISION . 15
CONCLUSION . REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . THE COHERENCE OF THEORIES-DEPENDENCIES AND WEIGHTS,
JASON JINGSHI LI, REX BING HUNG KWOK AND NORMAN Y. FOO . 1 INTRODUCTION
. 2 INTERNALIST COHERENCE . . . . . . . . . . . . . . . . . . . . . . .
. . 3 APPLICATION TO GAME THEORY . 4 SUMMARY AND DISCUSSION . . . . . .
. . . . . . . . . . . . . . . . REFERENCES. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . 249 250 256 263 266 267 269 269 270
275 276 277 278 279 280 281 282 283 285 285 286 288 290 297 297 299 311
317 317 IX 16 ON META-KNOWLEDGE AND TRUTH, URSZULA WVBRANIEC-SKARDOWSKA
319 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. .. 319 1 IDEAS 320 2 MAIN ASSUMPTIONS OF THE THEORY OF SYNTAX AND
SEMANTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
322 3 THREE NOTIONS OF TRUTHFULNESS 334 4 FINAL REMARKS. . . . . . . .
. . . . . . . . . . . . . . . . . . . . .. 339 REFERENCES. . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .. 340
|
any_adam_object | 1 |
building | Verbundindex |
bvnumber | BV035306381 |
callnumber-first | Q - Science |
callnumber-label | QA9 |
callnumber-raw | QA9.A1 |
callnumber-search | QA9.A1 |
callnumber-sort | QA 19 A1 |
callnumber-subject | QA - Mathematics |
classification_rvk | CC 2600 |
ctrlnum | (OCoLC)465137241 (DE-599)DNB989847381 |
dewey-full | 511.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.3 |
dewey-search | 511.3 |
dewey-sort | 3511.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Philosophie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02229nam a2200577 cb4500</leader><controlfield tag="001">BV035306381</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100604 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090211s2009 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,N34,0398</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">989847381</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781402090837</subfield><subfield code="c">Gb. : ca. EUR 155.10 (freier Pr.), ca. sfr 241.00 (freier Pr.)</subfield><subfield code="9">978-1-402-09083-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781402090837</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12444885</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)465137241</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB989847381</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA9.A1</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 2600</subfield><subfield code="0">(DE-625)17610:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">5,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Towards mathematical philosophy</subfield><subfield code="b">papers from the Studia Logica Conference Trends in Logic IV</subfield><subfield code="c">David Makinson ... eds.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">[Dordrecht]</subfield><subfield code="b">Springer Netherland</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 343 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Trends in Logic</subfield><subfield code="v">28</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Philosophie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield><subfield code="x">Philosophy</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2006</subfield><subfield code="z">Thorn</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Philosophie</subfield><subfield code="0">(DE-588)4045791-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Makinson, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Trends in Logic</subfield><subfield code="v">28</subfield><subfield code="w">(DE-604)BV011512969</subfield><subfield code="9">28</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Erlangen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017111173&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-017111173</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2006 Thorn gnd-content |
genre_facet | Konferenzschrift 2006 Thorn |
id | DE-604.BV035306381 |
illustrated | Illustrated |
indexdate | 2024-07-09T21:30:54Z |
institution | BVB |
isbn | 9781402090837 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-017111173 |
oclc_num | 465137241 |
open_access_boolean | |
owner | DE-12 DE-29 DE-11 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-29 DE-11 DE-19 DE-BY-UBM |
physical | XIII, 343 S. graph. Darst. 235 mm x 155 mm |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer Netherland |
record_format | marc |
series | Trends in Logic |
series2 | Trends in Logic |
spelling | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV David Makinson ... eds. [Dordrecht] Springer Netherland 2009 XIII, 343 S. graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Trends in Logic 28 Mathematik Philosophie Logic, Symbolic and mathematical Congresses Mathematics Philosophy Congresses Mathematik (DE-588)4037944-9 gnd rswk-swf Mathematische Logik (DE-588)4037951-6 gnd rswk-swf Philosophie (DE-588)4045791-6 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2006 Thorn gnd-content Mathematik (DE-588)4037944-9 s Philosophie (DE-588)4045791-6 s DE-604 Mathematische Logik (DE-588)4037951-6 s Makinson, David Sonstige oth Trends in Logic 28 (DE-604)BV011512969 28 Digitalisierung UB Erlangen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017111173&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV Trends in Logic Mathematik Philosophie Logic, Symbolic and mathematical Congresses Mathematics Philosophy Congresses Mathematik (DE-588)4037944-9 gnd Mathematische Logik (DE-588)4037951-6 gnd Philosophie (DE-588)4045791-6 gnd |
subject_GND | (DE-588)4037944-9 (DE-588)4037951-6 (DE-588)4045791-6 (DE-588)1071861417 |
title | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV |
title_auth | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV |
title_exact_search | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV |
title_full | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV David Makinson ... eds. |
title_fullStr | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV David Makinson ... eds. |
title_full_unstemmed | Towards mathematical philosophy papers from the Studia Logica Conference Trends in Logic IV David Makinson ... eds. |
title_short | Towards mathematical philosophy |
title_sort | towards mathematical philosophy papers from the studia logica conference trends in logic iv |
title_sub | papers from the Studia Logica Conference Trends in Logic IV |
topic | Mathematik Philosophie Logic, Symbolic and mathematical Congresses Mathematics Philosophy Congresses Mathematik (DE-588)4037944-9 gnd Mathematische Logik (DE-588)4037951-6 gnd Philosophie (DE-588)4045791-6 gnd |
topic_facet | Mathematik Philosophie Logic, Symbolic and mathematical Congresses Mathematics Philosophy Congresses Mathematische Logik Konferenzschrift 2006 Thorn |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=017111173&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011512969 |
work_keys_str_mv | AT makinsondavid towardsmathematicalphilosophypapersfromthestudialogicaconferencetrendsinlogiciv |