Generalized Lie theory in mathematics, physics and beyond:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 305 S. |
ISBN: | 9783540853312 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV035173740 | ||
003 | DE-604 | ||
005 | 20090216 | ||
007 | t | ||
008 | 081121s2009 gw |||| 00||| eng d | ||
016 | 7 | |a 989665143 |2 DE-101 | |
020 | |a 9783540853312 |c Gb. : EUR 85.55 (freier Pr.), sfr 133.00 (freier Pr.) |9 978-3-540-85331-2 | ||
035 | |a (OCoLC)241054779 | ||
035 | |a (DE-599)DNB989665143 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-355 |a DE-19 |a DE-188 | ||
050 | 0 | |a QA387 | |
082 | 0 | |a 512.482 |2 22 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Generalized Lie theory in mathematics, physics and beyond |c Sergei Silvestrov ..., ed. |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2009 | |
300 | |a XVII, 305 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Lie groups | |
650 | 0 | 7 | |a Lie-Theorie |0 (DE-588)4251836-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lie-Theorie |0 (DE-588)4251836-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Silvestrov, Sergei |0 (DE-588)136773710 |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016980631 |
Datensatz im Suchindex
_version_ | 1804138343118667776 |
---|---|
adam_text | Contents
Part I Non-Associative and Non-Commutative Structures for Physics
1
Moufang Transformations and Noether Currents
................. 3
Eugen
Paal
1.1
Introduction
.............................................. 3
1.2
Moufang Loops and Mal tsev Algebras
....................... 4
1.3
Birepresentations
......................................... 4
1.4
Moufang-Noether Currents and ETC
......................... 6
References
..................................................... 8
2
Weakly Nonassociative Algebras, Riccati and
KP
Hierarchies
...... 9
Aristophanes Dimakis and
Fölkért Müller-Hoissen
2.1
Introduction
.............................................. 9
2.2
Nonassociativity and
KP................................... 10
2.3
A Class of WNA Algebras and a Matrix Riccati Hierarchy
....... 13
2.4
WNA Algebras and Solutions of the Discrete
KP
Hierarchy
...... 17
2.5
From WNA to Gelfand-Dickey-Sato
......................... 20
2.6
Conclusions
.............................................. 23
References
..................................................... 24
3
Applications of Iransvectants
................................. 29
Chris Athorne
3.1
Introduction
.............................................. 29
3.2
Transvectants
............................................. 30
3.3
Hirota
................................................... 31
3.4
Padé
.................................................... 33
3.5
Hyperellipüc.............................................
34
References
..................................................... 36
x
Contents
4
Automorphisms of Finite Orthoalgebras, Exceptional Root Systems
and Quantum Mechanics
..................................... 39
Artur
E.
Ruuge and Fred Van Oystaeyen
4.1
Introduction
.............................................. 39
4.2
Saturated Configurations
................................... 41
4.3
Non-Colourable Configurations
............................. 41
4.4
The E6 Case
.............................................. 42
4.5
Orthoalgebras Generated by
Es.............................. 43
4.6
Conclusions
.............................................. 45
References
..................................................... 45
5
A Rewriting Approach to Graph Invariants
..................... 47
Lars
Hellström
5.1
Background
.............................................. 47
5.2
Graph Theory
............................................ 48
5.3
The Problem
............................................. 50
5.4
Semigraphs
.............................................. 52
5.5
Applying the Diamond Lemma
.............................. 58
5.6
Classification of Invariants
.................................. 64
References
..................................................... 67
Part II Non-Commutative Deformations, Quantization, Homological
Methods, and Representations
6
Graded ^-Differential Algebra Approach to
ç-Connection
......... 71
Viktor Abramov
6.1
Introduction
.............................................. 71
6.2
Graded ^-Differential Algebra
............................... 72
6.3
^-Connection and Its Curvature
.............................. 73
6.4
Matrix of a ^-Connection
................................... 75
References
..................................................... 79
7
On Generalized iV-Complexes Coming from Twisted Derivations
... 81
Daniel
Larsson
and Sergei
D. Silvestrov
7.1
Introduction
.............................................. 81
7.2
General Framework of
(σ,
^-Derivations
..................... 82
7.3
Generalized N-Complexes and an Example
.................... 86
References
..................................................... 88
8
Remarks on Quantizations, Words and R-Matrices
............... 89
Hilja L.
Huru
8.1
Introduction
.............................................. 89
8.2
Multiplicative Cohomologies of Monoids
..................... 90
8.3
Graded Modules
.......................................... 92
8.4
Letters and Words
......................................... 94
Contents xi
8.5
Quantizations of
/Í-Matrices
................................ 95
References
..................................................... 98
9
Connections on Modules over Singularities of Finite
and Tame CM Representation Type
............................ 99
Eivind Eriksen and Trond St0len Gustavsen
9.1
Introduction
.............................................. 99
9.2
Preliminaries
.............................................100
9.3
Obstruction Theory
........................................102
9.4
Results and Examples
......................................104
References
.....................................................107
10
Computing Noncommutative Global Deformations of D-Modules
... 109
Eivind Eriksen
10.1
Introduction
..............................................109
10.2
Noncommutative Global Deformations of D-Modules
...........110
10.3
Computing Noncommutative Global Deformations
.............
Ill
10.4
Calculations for D-Modules on Elliptic Curves
.................113
References
.....................................................117
11
Comparing Small Orthogonal Classes
.......................... 119
Gabriella
D Esté
1
1.1
Introduction
..............................................119
11.2
Preliminaries
.............................................120
11.3
Proofs and Examples
......................................122
References
.....................................................128
Partiu
Groups and Actions
12
How to Compose Lagrangian?
................................ 131
Eugen
Paal
and
Jüri Virkepu
12.1
Introduction
..............................................131
12.2
General Method for Constructing Lagrangians
.................132
12.3
Lagrangian
ΐοτ
SOQ.)
......................................133
12.4
Physical Interpretation
.....................................136
12.5
Lagrangian for the
Affine
Transformations of the Line
..........136
References
.....................................................140
13
Semidirect Products of Generalized Quaternion Groups
by a Cyclic Group
........................................... 141
Peeter Puusemp
13.1
Introduction
..............................................141
13.2
Semidirect Products of Qn by C2
............................142
13.3
A Description of <g
,
<śi
and
Sř3
by Their Endomorphisms
.......146
References
.....................................................149
xii Contents
14
A Characterization of a Class of 2-Groups by Their Endomorphism
Semigroups
................................................151
Tatjana
Gramushnjak and Peeter Puusemp
14.1
Introduction
..............................................151
14.2
The Group Gn
...........................................153
14.3
The Group G2o
...........................................155
14.4
The Group G27
...........................................156
References
.....................................................158
15
Adjoint Representations and Movements
........................161
Maido Rahula and
Vitali
Retšnoi
15.1
Introduction
..............................................161
15.2
Generalized Leibnitz Rule
..................................162
15.3
Tangent Group
............................................162
15.4
LinearGroup GL(2,E)
....................................163
15.5
The Operator of Center
.....................................165
15.6
Discriminant Parabola
.....................................166
15.7
Relations to Moments in Probability Theory
...................167
15.8
Conclusion
...............................................169
References
.....................................................170
16
Applications of Hypocontinuous Bilinear Maps
in Infinite-Dimensional Differential Calculus
.................... 171
Helge Glöckner
16.1
Introduction
..............................................171
16.2
Preliminaries and Basic Facts
...............................172
16.3
Differentiability Properties of Compositions
with Hypocontinuous Bilinear Mappings
......................178
16.4
Holomorphic Families of Operators
..........................180
16.5
Locally Convex
Poisson
Vector Spaces
.......................182
References
.....................................................186
Part IV Quasi-Lie, Super-Lie, Hom-Hopf and Super-Hopf Structures
and Extensions, Deformations and Generalizations of Infinite-Dimensional
Lie Algebras
17
Horn-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras
.... 189
Abdenacer Makhlouf and Sergei
Silvestrov
17.1
Introduction
..............................................189
17.2
Hom-
Algebra and Hom-Coalgebra Structures
..................191
17.3
Нот
-Lie Admissible Hom-Coalgebras
.......................193
17.4
Hom-Hopf Algebras
.......................................199
References
.....................................................205
Contents xiii
18 Bosonisation and Parastatistics................................207
K. Kanakoglou and C. Daskaloyannis
18.1
Introduction
and Definitions
................................207
18.2 (Super-)Lie and (Super-)Hopf
Algebraic Structure
of the Parabosonic Pg and Parafermionic P^p Algebras
.........208
18.3
Bosonisation as a Technique of Reducing Supersymmetry
.......212
18.4
Discussion
...............................................217
References
.....................................................218
19
Deformations of the Witt, Virasoro, and Current Algebra
..........219
Martin Schlichenmaier
19.1
Introduction
..............................................219
19.2
Deformations of Lie Algebras
...............................221
19.3
Krichever-Novikov Algebras
...............................223
19.4
The Geometric Families
....................................226
19.5
The Geometric Background
.................................229
19.6
Examples for the Degenerated Situations
......................230
References
.....................................................233
20
Conformai
Algebras in the Context of Linear Algebraic Groups
.... 235
Pavel Kolesnikov
20.1
Introduction
..............................................235
20.2
Categories of
Conformai
Algebras
...........................237
20.3
Associative (Gj-Conformal Algebras
.........................240
20.4
Conformai
Endomorphism Algebra over a Linear
Algebraic Group
..........................................243
References
.....................................................246
21
Lie Color and
Нот
-Lie Algebras of Witt Type and Their Central
Extensions
.................................................247
Gunnar
Sigurdsson
and Sergei
Silvestrov
21.1
Introduction
..............................................247
21.2
Central Extensions of
Witt
-Туре
Lie Color Algebras
............248
21.3
Central Extensions of
Γ
-Graded
Horn-Lie Algebras of Witt Type
. 252
References
.....................................................254
22
A Note on Quasi-Lie and Hom-Lie Structures of
σ
-Derivations
of
Cfzf1,...^1]
.............................................257
Lionel Richard and Sergei
Silvestrov
22.1
Introduction
..............................................257
22.2
Framework
...............................................258
22.3
Sufficient Condition
.......................................260
22.4
Laurent Polynomials
......................................261
References
.....................................................262
xiv
Contents
Part V Commutative Subalgebras in Noncommutative Algebras
23
Algebraic Dependence of Commuting Elements in Algebras
........265
Sergei
Silvestrov,
Christian
Svensson,
and Marcel
de Jeu
23.1
Introduction
..............................................265
23.2
Description of the Problem: Commuting Elements in an Algebra
Are Given, Then Find Curves They Lie on
....................267
23.3
Burchnall-Chaundy Construction for Differential Operators
.....269
23.4
Burchnall-Chaundy Theory for the ^-Deformed
Heisenberg
Algebra
.................................................273
References
.....................................................279
24
Crossed Product-Like and Pre-Crystalline Graded Rings
..........281
Johan Öinert
and Sergei
D. Silvestrov
24.1
Introduction
..............................................281
24.2
Preliminaries and Definitions
...............................282
24.3
The
Commutant
of
Ло
in a Crossed Product-Like Ring
..........284
24.4
The Center of a Crossed Product-Like Ring AqO^M
............286
24.5
Intersection Theorems
.....................................288
24.6
Examples of Crossed Product-Like and Crystalline
Graded Rings
.............................................292
References
.....................................................295
25
Decomposition of the Enveloping Algebra so(5)
..................297
Čestmír Burdík
and
Ondřej Navrátil
25.1
Introduction
..............................................297
25.2
The Lie Algebra so(5)
.....................................298
25.3
The Highest Weight Vectors
................................299
25.4
Conclusion
...............................................302
References
.....................................................302
Index
.............................................................303
|
adam_txt |
Contents
Part I Non-Associative and Non-Commutative Structures for Physics
1
Moufang Transformations and Noether Currents
. 3
Eugen
Paal
1.1
Introduction
. 3
1.2
Moufang Loops and Mal'tsev Algebras
. 4
1.3
Birepresentations
. 4
1.4
Moufang-Noether Currents and ETC
. 6
References
. 8
2
Weakly Nonassociative Algebras, Riccati and
KP
Hierarchies
. 9
Aristophanes Dimakis and
Fölkért Müller-Hoissen
2.1
Introduction
. 9
2.2
Nonassociativity and
KP. 10
2.3
A Class of WNA Algebras and a Matrix Riccati Hierarchy
. 13
2.4
WNA Algebras and Solutions of the Discrete
KP
Hierarchy
. 17
2.5
From WNA to Gelfand-Dickey-Sato
. 20
2.6
Conclusions
. 23
References
. 24
3
Applications of Iransvectants
. 29
Chris Athorne
3.1
Introduction
. 29
3.2
Transvectants
. 30
3.3
Hirota
. 31
3.4
Padé
. 33
3.5
Hyperellipüc.
34
References
. 36
x
Contents
4
Automorphisms of Finite Orthoalgebras, Exceptional Root Systems
and Quantum Mechanics
. 39
Artur
E.
Ruuge and Fred Van Oystaeyen
4.1
Introduction
. 39
4.2
Saturated Configurations
. 41
4.3
Non-Colourable Configurations
. 41
4.4
The E6 Case
. 42
4.5
Orthoalgebras Generated by
Es. 43
4.6
Conclusions
. 45
References
. 45
5
A Rewriting Approach to Graph Invariants
. 47
Lars
Hellström
5.1
Background
. 47
5.2
Graph Theory
. 48
5.3
The Problem
. 50
5.4
Semigraphs
. 52
5.5
Applying the Diamond Lemma
. 58
5.6
Classification of Invariants
. 64
References
. 67
Part II Non-Commutative Deformations, Quantization, Homological
Methods, and Representations
6
Graded ^-Differential Algebra Approach to
ç-Connection
. 71
Viktor Abramov
6.1
Introduction
. 71
6.2
Graded ^-Differential Algebra
. 72
6.3
^-Connection and Its Curvature
. 73
6.4
Matrix of a ^-Connection
. 75
References
. 79
7
On Generalized iV-Complexes Coming from Twisted Derivations
. 81
Daniel
Larsson
and Sergei
D. Silvestrov
7.1
Introduction
. 81
7.2
General Framework of
(σ,
^-Derivations
. 82
7.3
Generalized N-Complexes and an Example
. 86
References
. 88
8
Remarks on Quantizations, Words and R-Matrices
. 89
Hilja L.
Huru
8.1
Introduction
. 89
8.2
Multiplicative Cohomologies of Monoids
. 90
8.3
Graded Modules
. 92
8.4
Letters and Words
. 94
Contents xi
8.5
Quantizations of
/Í-Matrices
. 95
References
. 98
9
Connections on Modules over Singularities of Finite
and Tame CM Representation Type
. 99
Eivind Eriksen and Trond St0len Gustavsen
9.1
Introduction
. 99
9.2
Preliminaries
.100
9.3
Obstruction Theory
.102
9.4
Results and Examples
.104
References
.107
10
Computing Noncommutative Global Deformations of D-Modules
. 109
Eivind Eriksen
10.1
Introduction
.109
10.2
Noncommutative Global Deformations of D-Modules
.110
10.3
Computing Noncommutative Global Deformations
.
Ill
10.4
Calculations for D-Modules on Elliptic Curves
.113
References
.117
11
Comparing Small Orthogonal Classes
. 119
Gabriella
D'Esté
1
1.1
Introduction
.119
11.2
Preliminaries
.120
11.3
Proofs and Examples
.122
References
.128
Partiu
Groups and Actions
12
How to Compose Lagrangian?
. 131
Eugen
Paal
and
Jüri Virkepu
12.1
Introduction
.131
12.2
General Method for Constructing Lagrangians
.132
12.3
Lagrangian
ΐοτ
SOQ.)
.133
12.4
Physical Interpretation
.136
12.5
Lagrangian for the
Affine
Transformations of the Line
.136
References
.140
13
Semidirect Products of Generalized Quaternion Groups
by a Cyclic Group
. 141
Peeter Puusemp
13.1
Introduction
.141
13.2
Semidirect Products of Qn by C2
.142
13.3
A Description of <g\
,
<śi
and
Sř3
by Their Endomorphisms
.146
References
.149
xii Contents
14
A Characterization of a Class of 2-Groups by Their Endomorphism
Semigroups
.151
Tatjana
Gramushnjak and Peeter Puusemp
14.1
Introduction
.151
14.2
The Group Gn
.153
14.3
The Group G2o
.155
14.4
The Group G27
.156
References
.158
15
Adjoint Representations and Movements
.161
Maido Rahula and
Vitali
Retšnoi
15.1
Introduction
.161
15.2
Generalized Leibnitz Rule
.162
15.3
Tangent Group
.162
15.4
LinearGroup GL(2,E)
.163
15.5
The Operator of Center
.165
15.6
Discriminant Parabola
.166
15.7
Relations to Moments in Probability Theory
.167
15.8
Conclusion
.169
References
.170
16
Applications of Hypocontinuous Bilinear Maps
in Infinite-Dimensional Differential Calculus
. 171
Helge Glöckner
16.1
Introduction
.171
16.2
Preliminaries and Basic Facts
.172
16.3
Differentiability Properties of Compositions
with Hypocontinuous Bilinear Mappings
.178
16.4
Holomorphic Families of Operators
.180
16.5
Locally Convex
Poisson
Vector Spaces
.182
References
.186
Part IV Quasi-Lie, Super-Lie, Hom-Hopf and Super-Hopf Structures
and Extensions, Deformations and Generalizations of Infinite-Dimensional
Lie Algebras
17
Horn-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebras
. 189
Abdenacer Makhlouf and Sergei
Silvestrov
17.1
Introduction
.189
17.2
Hom-
Algebra and Hom-Coalgebra Structures
.191
17.3
Нот
-Lie Admissible Hom-Coalgebras
.193
17.4
Hom-Hopf Algebras
.199
References
.205
Contents xiii
18 Bosonisation and Parastatistics.207
K. Kanakoglou and C. Daskaloyannis
18.1
Introduction
and Definitions
.207
18.2 (Super-)Lie and (Super-)Hopf
Algebraic Structure
of the Parabosonic Pg and Parafermionic P^p Algebras
.208
18.3
Bosonisation as a Technique of Reducing Supersymmetry
.212
18.4
Discussion
.217
References
.218
19
Deformations of the Witt, Virasoro, and Current Algebra
.219
Martin Schlichenmaier
19.1
Introduction
.219
19.2
Deformations of Lie Algebras
.221
19.3
Krichever-Novikov Algebras
.223
19.4
The Geometric Families
.226
19.5
The Geometric Background
.229
19.6
Examples for the Degenerated Situations
.230
References
.233
20
Conformai
Algebras in the Context of Linear Algebraic Groups
. 235
Pavel Kolesnikov
20.1
Introduction
.235
20.2
Categories of
Conformai
Algebras
.237
20.3
Associative (Gj-Conformal Algebras
.240
20.4
Conformai
Endomorphism Algebra over a Linear
Algebraic Group
.243
References
.246
21
Lie Color and
Нот
-Lie Algebras of Witt Type and Their Central
Extensions
.247
Gunnar
Sigurdsson
and Sergei
Silvestrov
21.1
Introduction
.247
21.2
Central Extensions of
Witt
-Туре
Lie Color Algebras
.248
21.3
Central Extensions of
Γ
-Graded
Horn-Lie Algebras of Witt Type
. 252
References
.254
22
A Note on Quasi-Lie and Hom-Lie Structures of
σ
-Derivations
of
Cfzf1,.^1]
.257
Lionel Richard and Sergei
Silvestrov
22.1
Introduction
.257
22.2
Framework
.258
22.3
Sufficient Condition
.260
22.4
Laurent Polynomials
.261
References
.262
xiv
Contents
Part V Commutative Subalgebras in Noncommutative Algebras
23
Algebraic Dependence of Commuting Elements in Algebras
.265
Sergei
Silvestrov,
Christian
Svensson,
and Marcel
de Jeu
23.1
Introduction
.265
23.2
Description of the Problem: Commuting Elements in an Algebra
Are Given, Then Find Curves They Lie on
.267
23.3
Burchnall-Chaundy Construction for Differential Operators
.269
23.4
Burchnall-Chaundy Theory for the ^-Deformed
Heisenberg
Algebra
.273
References
.279
24
Crossed Product-Like and Pre-Crystalline Graded Rings
.281
Johan Öinert
and Sergei
D. Silvestrov
24.1
Introduction
.281
24.2
Preliminaries and Definitions
.282
24.3
The
Commutant
of
Ло
in a Crossed Product-Like Ring
.284
24.4
The Center of a Crossed Product-Like Ring AqO^M
.286
24.5
Intersection Theorems
.288
24.6
Examples of Crossed Product-Like and Crystalline
Graded Rings
.292
References
.295
25
Decomposition of the Enveloping Algebra so(5)
.297
Čestmír Burdík
and
Ondřej Navrátil
25.1
Introduction
.297
25.2
The Lie Algebra so(5)
.298
25.3
The Highest Weight Vectors
.299
25.4
Conclusion
.302
References
.302
Index
.303 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Silvestrov, Sergei |
author2_role | edt |
author2_variant | s s ss |
author_GND | (DE-588)136773710 |
author_facet | Silvestrov, Sergei |
building | Verbundindex |
bvnumber | BV035173740 |
callnumber-first | Q - Science |
callnumber-label | QA387 |
callnumber-raw | QA387 |
callnumber-search | QA387 |
callnumber-sort | QA 3387 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
ctrlnum | (OCoLC)241054779 (DE-599)DNB989665143 |
dewey-full | 512.482 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.482 |
dewey-search | 512.482 |
dewey-sort | 3512.482 |
dewey-tens | 510 - Mathematics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01449nam a2200397 c 4500</leader><controlfield tag="001">BV035173740</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090216 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081121s2009 gw |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">989665143</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540853312</subfield><subfield code="c">Gb. : EUR 85.55 (freier Pr.), sfr 133.00 (freier Pr.)</subfield><subfield code="9">978-3-540-85331-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)241054779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB989665143</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA387</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generalized Lie theory in mathematics, physics and beyond</subfield><subfield code="c">Sergei Silvestrov ..., ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 305 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Silvestrov, Sergei</subfield><subfield code="0">(DE-588)136773710</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016980631</subfield></datafield></record></collection> |
id | DE-604.BV035173740 |
illustrated | Not Illustrated |
index_date | 2024-07-02T22:55:17Z |
indexdate | 2024-07-09T21:26:41Z |
institution | BVB |
isbn | 9783540853312 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016980631 |
oclc_num | 241054779 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-188 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-188 |
physical | XVII, 305 S. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Generalized Lie theory in mathematics, physics and beyond Sergei Silvestrov ..., ed. Berlin [u.a.] Springer 2009 XVII, 305 S. txt rdacontent n rdamedia nc rdacarrier Lie groups Lie-Theorie (DE-588)4251836-2 gnd rswk-swf Lie-Theorie (DE-588)4251836-2 s DE-604 Silvestrov, Sergei (DE-588)136773710 edt Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Generalized Lie theory in mathematics, physics and beyond Lie groups Lie-Theorie (DE-588)4251836-2 gnd |
subject_GND | (DE-588)4251836-2 |
title | Generalized Lie theory in mathematics, physics and beyond |
title_auth | Generalized Lie theory in mathematics, physics and beyond |
title_exact_search | Generalized Lie theory in mathematics, physics and beyond |
title_exact_search_txtP | Generalized Lie theory in mathematics, physics and beyond |
title_full | Generalized Lie theory in mathematics, physics and beyond Sergei Silvestrov ..., ed. |
title_fullStr | Generalized Lie theory in mathematics, physics and beyond Sergei Silvestrov ..., ed. |
title_full_unstemmed | Generalized Lie theory in mathematics, physics and beyond Sergei Silvestrov ..., ed. |
title_short | Generalized Lie theory in mathematics, physics and beyond |
title_sort | generalized lie theory in mathematics physics and beyond |
topic | Lie groups Lie-Theorie (DE-588)4251836-2 gnd |
topic_facet | Lie groups Lie-Theorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016980631&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT silvestrovsergei generalizedlietheoryinmathematicsphysicsandbeyond |