CMOS: mixed-signal circuit design
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley [u.a.]
2009
|
Ausgabe: | 2. ed. |
Schriftenreihe: | IEEE Press series on microelectronic systems
[6] |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | Previous ed.: New York: Wiley, 2002 |
Beschreibung: | XVI, 329 S. graph. Darst. |
ISBN: | 9780470290262 0470290269 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV035140230 | ||
003 | DE-604 | ||
005 | 20120809 | ||
007 | t | ||
008 | 081104s2009 d||| |||| 00||| eng d | ||
015 | |a GBA8A3007 |2 dnb | ||
020 | |a 9780470290262 |9 978-0-470-29026-2 | ||
020 | |a 0470290269 |9 0-470-29026-9 | ||
035 | |a (OCoLC)300964949 | ||
035 | |a (DE-599)BVBBV035140230 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-634 |a DE-92 | ||
050 | 0 | |a TK7871.99.M44 | |
082 | 0 | |a 621.3815 |2 22 | |
084 | |a ZN 4960 |0 (DE-625)157426: |2 rvk | ||
100 | 1 | |a Baker, Russel Jacob |d 1964- |e Verfasser |0 (DE-588)138111715 |4 aut | |
245 | 1 | 0 | |a CMOS |b mixed-signal circuit design |c R. Jacob Baker |
250 | |a 2. ed. | ||
264 | 1 | |a Hoboken, NJ |b Wiley [u.a.] |c 2009 | |
300 | |a XVI, 329 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a IEEE Press series on microelectronic systems |v [6] | |
500 | |a Previous ed.: New York: Wiley, 2002 | ||
650 | 4 | |a Metal oxide semiconductors, Complementary | |
650 | 4 | |a Mixed signal circuits / Design | |
650 | 4 | |a Electronic circuit design | |
650 | 4 | |a Circuits à signaux mixtes - Conception et construction | |
650 | 4 | |a Circuits électroniques - Calcul | |
650 | 4 | |a MOS complémentaires | |
650 | 4 | |a Electronic circuit design | |
650 | 4 | |a Metal oxide semiconductors, Complementary | |
650 | 4 | |a Mixed signal circuits |x Design | |
650 | 0 | 7 | |a CMOS |0 (DE-588)4010319-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mixed-Signal-Schaltung |0 (DE-588)4756481-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a CMOS |0 (DE-588)4010319-5 |D s |
689 | 0 | 1 | |a Mixed-Signal-Schaltung |0 (DE-588)4756481-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a IEEE Press series on microelectronic systems |v [6] |w (DE-604)BV040358802 |9 6 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-016807623 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804138124129861632 |
---|---|
adam_text | Contents
Preface
xv
Chapter
1
Signals, Filters, and Tools
1
1.1
Sinusoidal Signals
............................................... 1
1.1.1
The Pendulum Analogy
1
Describing Amplitude in the x-y Plane
3
In-Phase and Quadrature Signals
4
1.1.2
The Complex (z-) Plane
6
1.2
Comb Filters
.................................................... 8
1.2.1
The Digital Comb Filter
11
1.2.2
The Digital Differentiator
14
1.2.3
An Intuitive Discussion of the z-Plane
15
1.2.4
Comb Filters with Multiple Delay Elements
17
1.2.5
The Digital Integrator
19
The Delaying Integrator
20
An Important Note
21
1.3
Representing Signals
........................................... 21
1.3.1
Exponential Fourier Series
22
1.3.2
Fourier Transform
23
Dirac Delta Function (Unit Impulse Response)
23
VII
viii Contents
Chapter
2
Sampling and Aliasing
27
2.1
Sampling
....................................................... 28
2.1.1
Impulse Sampling
28
A Note Concerning the AAF and the RCF
30
Time Domain Description of Reconstruction
31
An Important Note
33
2.1.2
Decimation
33
2.1.3
The Sample-and-Hold (S/H)
35
S/H Spectral Response
35
The Reconstruction Filter (RCF)
39
Circuit Concerns for Implementing the S/H
39
An Example
40
2.1.4
The Track-and-Hold (T/H)
41
2.1.5
Interpolation
43
Zero Padding
44
Hold Register
46
Linear Interpolation
49
2.1.6
K-Path Sampling
50
Switched-Capacitor Circuits
51
Non-Overlapping Clock Generation
53
2.2
Circuits
......................................................... 54
2.2.1
Implementing the S/H
54
Finite Op-Amp Gain-Bandwidth Product
55
Autozeroing
57
Correlated Double Sampling (CDS)
59
Selecting Capacitor Sizes
61
2.2.2
The S/H with Gain
61
Implementing Subtraction in the S/H
63
A Single-Ended to Differential Output S/H
65
2.2.3
The Discrete Analog Integrator (DAI)
66
A Note Concerning Block Diagrams
68
Fully-Differential DAI
69
DAI Noise Performance
70
Chapter
3
Analog Filters
73
3.1
Integrator Building Blocks
....................................... 73
3.1.1
Lowpass Filters
73
3.1.2
Active-RC Integrators
75
Contents
Effects of Finite Op-Amp Gain Bandwidth Product, fun
78
Active-RC
SNR
82
3.1.3
MOSFET-C Integrators
83
Why Use an Active Circuit (an Op-Amp)?
85
3.1.4
gm-C (Transconductor-C) Integrators
86
Common-Mode Feedback Considerations
88
A High-Frequency Transconductor
89
3.1.5
Discrete-Time Integrators
90
An Important Note
94
Exact Frequency Response of an Ideal Discrete-Time
94
Filter
3.2
Filtering Topologies
............................................. 95
3.2.1
The Bilinear Transfer Function
95
Active-RC Implementation
97
Transconductor-C Implementation
97
Switched-Capacitor Implementation
98
3.2.2
The Biquadratic Transfer Function
99
Active-RC Implementation
101
Switched-Capacitor Implementation
106
High
Q
107
Q
Peaking and Instability
112
Transconductor-C Implementation
114
Chapter
4
Digital Filters
119
4.1
SPICE Models for DACs and ADCs
............................ 119
4.1.1
The Ideal
DAC
119
SPICE Modeling the Ideal
DAC
120
4.1.2
The Ideal ADC
121
4.1.3
Number Representation
123
Increasing Word Size (Extending the Sign-Bit)
124
Adding Numbers and Overflow
125
Subtracting Numbers in Two s Complement Format
126
4.2
Sine-Shaped Digital Filters
..................................... 126
4.2.1
The Counter
126
Aliasing
127
The Accumulate-and-Dump
129
4.2.2
Lowpass Sine Filters
129
Averaging without Decimation: A Review
132
Contents
Cascading Sine
Filters 132
Finite and Infinite Impulse Response Filters
133
4.2.3
Bandpass and Highpass Sine Filters
134
Canceling Zeroes to Create Highpass and Bandpass
134
Filters
Frequency Sampling Filters
138
4.2.4
Interpolation using Sine Filters
139
Additional Control
142
Cascade of Integrators and Combs
142
4.2.5
Decimation using Sine Filters
143
4.3
Filtering Topologies
............................................ 145
4.3.1
FIR Filters
145
4.3.2
Stability and Overflow
146
Overflow
147
4.3.3
The Bilinear Transfer Function
148
The Canonic Form (or Standard Form) of a Digital
151
Filter
General Canonic Form of a Recursive Filter
154
4.3.4
The Biquadratic Transfer Function
155
Comparing Biquads to Sine-Shaped Filters
157
A Comment Concerning Multiplications
158
Chapter
5
Data Converter
SNR
163
5.1
Quantization Noise
............................................ 163
5.1.1
Viewing the Quantization Noise Spectrum Using
164
Simulations
Bennett s Criteria
165
An Important Note
166
RMS Quantization Noise Voltage
166
Treating Quantization Noise as a Random Variable
168
5.1.2
Quantization Noise Voltage Spectral Density
169
Calculating Quantization Noise from a SPICE
171
Spectrum
Power Spectral Density
172
5.2
Signal-to-Noise Ratio
(SNR)
................................... 173
Effective Number of Bits
173
Coherent Sampling
175
Signal-to-Noise Plus Distortion Ratio
176
Spurious Free Dynamic Range
177
Contents
Dynamic Range 177
Specifying
SNR
and SNDR
178
5.2.1
Clock Jitter
178
Using Oversampling to Reduce Sampling Clock Jitter
181
Stability Requirements
A Practical Note
182
5.2.2
A Tool: The Spectral Density
182
The Spectral Density of Deterministic Signals: An
183
Overview
The Spectral Density of Random Signals: An Overview
185
Specifying Phase Noise from Measured Data
189
5.3
Improving
SNR
using Averaging
............................... 190
An Important Note
191
5.3.1
Using Averaging to Improve
SNR
192
Ideal Signal-to-Noise Ratio
194
5.3.2
Linearity Requirements
194
5.3.3
Adding a Noise Dither
195
5.3.4
Jitter
198
5.3.5
Anti-Aliasing Filter
198
5.4
Using Feedback to Improve
SNR
.............................. 199
Chapter
6
Data Converter Design Basics
203
The One-Bit ADC and
DAC
204
6.1
Passive Noise-Shaping
........................................ 205
6.1.1
Signal-to-Noise Ratio
208
6.1.2
Decimating and Filtering the Modulator s Output
209
SNR
Calculation using a Sine Filter
211
6.1.3
Offset, Matching, and Linearity
212
Resistor Mismatch
213
The Feedback
DAC
213
DAC
Offset
214
Linearity of the First-Order Modulator
214
Dead Zones
215
6.2
Improving
SNR
and Linearity
.................................. 215
6.2.1
Second-Order Passive Noise-Shaping
216
6.2.2
Passive Noise-Shaping Using Switched-Capacitors
218
6.2.3
Increasing
SNR
using K-Paths
220
Revisiting Switched-Capacitor Implementations
224
xii
Contents
Effects of the Added Amplifier on Linearity
224
6.2.4
Improving Linearity Using an Active Circuit
225
Second-Order Noise-Shaping
227
Signal-to-Noise Ratio
229
Discussion
230
Chapter
7
Noise-Shaping Data Converters
233
7.1
First-Order Noise Shaping
..................................... 233
A Digital First-Order NS Demodulator
235
7.1.1
Modulation Noise in First-Order NS Modulators
236
7.1.2
RMS Quantization Noise in a First-Order Modulator
237
7.1.3
Decimating and Filtering the Output of a NS
239
Modulator
7.1.4
Pattern Noise from DC Inputs (Limit Cycle
241
Oscillations)
7.1.5
Integrator and Forward Modulator Gain
243
7.1.6
Comparator Gain, Offset, Noise, and Hysteresis
246
7.1.7
Op-Amp Gain (Integrator Leakage)
247
7.1.8
Op-Amp Settling Time
248
7.1.9
Op-Amp Offset
250
7.1.10
Op-Amp Input-Referred Noise
250
7.1.11
Practical Implementation of the First-Order NS
251
Modulator
7.2
Second-Order Noise-Shaping
.................................. 253
7.2.1
Second-Order Modulator Topology
253
7.2.2
Integrator Gain
257
Implementing Feedback Gains in the DAI
260
Using Two Delaying Integrators to Implement the
263
Second-Order Modulator
7.2.3
Selecting Modulator (Integrator) Gains
264
7.3
Noise-Shaping Topologies
..................................... 264
7.3.1
Higher-Order Modulators
265
M th-Order
Modulator Topology
265
7.3.2
Filtering the Output of an
M th-Order
NS Modulator
266
7.3.3
Implementing Higher-Order,
Single-Stage
267
Modulators
7.3.4
Multi-Bit Modulators
269
Simulating a Multibit NS Modulator Using SPICE
269
7.3.5
Error Feedback
271
Contents xiii
Implementation
Concerns
274
7.3.6
Cascaded
Modulators 275
Second-Order
(1-1) Modulators 275
Third-Order
(1-1-1) Modulators 277
Third-Order
(2-1 ) Modulators 277
Implementing the Additional Summing Input
279
Chapter
8
Bandpass Data Converters
285
8.1
Continuous-Time Bandpass Noise-Shaping
.................... 287
8.1.1
Passive-Component Bandpass Modulators
287
An Important Note
289
8.1.2
Active-Component Bandpass Modulators
289
Signal-to-Noise Ratio
290
8.1.3
Modulators for Conversion at Radio Frequencies
291
8.2
Switched-Capacitor Bandpass Noise-Shaping
................. 292
8.2.1
Switched-Capacitor Resonators
292
8.2.2
Second-Order Modulators
294
8.2.3
Fourth-Order Modulators
296
A Common Error
297
A Comment about 1/f Noise
297
8.2.4
Digital I/Q Extraction to Baseband
297
Chapter
9
A High-Speed Data Converter
301
9.1
The Topology
................................................. 301
9.1.1
Clock Signals
301
Path Settling Time
302
9.1.2
Implementation
303
9.1.3
Filtering
306
Examples
307
Direction
312
9.1.4
Discussion
312
9.1.5
Understanding the Clock Signals
315
9.2
Practical Implemenation
....................................... 316
9.2.1
Generating the Clock Signals
316
9.2.2
The Components
318
The Switched-Capacitors
318
The Amplifier
318
The Clocked Comparator
319
9.2.3
The ADC
320
Contents
9.3
Conclusion 322
Index 325
Get ud
to speed on mixed-siqnal circuit desian
(MSD) is currently performed in industry by
а
select few
gurus. While MSD techniques can be found scattered throughout hard-to-
digest technical papers, it is difficult for someone new to the topic to get up to
speed on the subject without the guidance of a mentor and the right environment
in which to gain the relevant experience.
CMOS Mixed-Signal Circuit Design, Second Edition fills the gap in the technical
literarna·
by providing a tutorial presentation of MSD techniques and integrating
homework problems, netlists, and simulation examples, all of which are available
for download via the book s Web site at CMOSedu.com. Additional features of
the Second
Ediríon
include:
Coverage of noise-shaping
«.lata
converters
(delta-sigma
topologies)
Practical discussion
Ы
digital filtering and its uses in transistor-level circuit designs
Design of analog Hirers for both reconstruction and anti-aliasing
Transistor- and system-level design techniques and theory
Presentation
oí
a topology for high-speed data conversion in nanometer CMOS
iplemented with practical examples and discussions, CMOS Mixed-Sig
Circuit Design, Second Editton is an ideal textbook for graduate students in
mixed-signal circuit design courses. It is also an equally valuable reference for
professionals who want to improve their skills in this area.
R. JACOB (JAKE) BAKER, PhD, is an engineer, educator, and inventor.
He has more than twenty years of engineering experience and holds over
200
granted or pending patents in integrated circuit design. Jake is the
author of several circuit design books. For a detailed biography, please visit:
http^/CMOSedu.com/jbaker/jbaker.htm.
|
adam_txt |
Contents
Preface
xv
Chapter
1
Signals, Filters, and Tools
1
1.1
Sinusoidal Signals
. 1
1.1.1
The Pendulum Analogy
1
Describing Amplitude in the x-y Plane
3
In-Phase and Quadrature Signals
4
1.1.2
The Complex (z-) Plane
6
1.2
Comb Filters
. 8
1.2.1
The Digital Comb Filter
11
1.2.2
The Digital Differentiator
14
1.2.3
An Intuitive Discussion of the z-Plane
15
1.2.4
Comb Filters with Multiple Delay Elements
17
1.2.5
The Digital Integrator
19
The Delaying Integrator
20
An Important Note
21
1.3
Representing Signals
. 21
1.3.1
Exponential Fourier Series
22
1.3.2
Fourier Transform
23
Dirac Delta Function (Unit Impulse Response)
23
VII
viii Contents
Chapter
2
Sampling and Aliasing
27
2.1
Sampling
. 28
2.1.1
Impulse Sampling
28
A Note Concerning the AAF and the RCF
30
Time Domain Description of Reconstruction
31
An Important Note
33
2.1.2
Decimation
33
2.1.3
The Sample-and-Hold (S/H)
35
S/H Spectral Response
35
The Reconstruction Filter (RCF)
39
Circuit Concerns for Implementing the S/H
39
An Example
40
2.1.4
The Track-and-Hold (T/H)
41
2.1.5
Interpolation
43
Zero Padding
44
Hold Register
46
Linear Interpolation
49
2.1.6
K-Path Sampling
50
Switched-Capacitor Circuits
51
Non-Overlapping Clock Generation
53
2.2
Circuits
. 54
2.2.1
Implementing the S/H
54
Finite Op-Amp Gain-Bandwidth Product
55
Autozeroing
57
Correlated Double Sampling (CDS)
59
Selecting Capacitor Sizes
61
2.2.2
The S/H with Gain
61
Implementing Subtraction in the S/H
63
A Single-Ended to Differential Output S/H
65
2.2.3
The Discrete Analog Integrator (DAI)
66
A Note Concerning Block Diagrams
68
Fully-Differential DAI
69
DAI Noise Performance
70
Chapter
3
Analog Filters
73
3.1
Integrator Building Blocks
. 73
3.1.1
Lowpass Filters
73
3.1.2
Active-RC Integrators
75
Contents
Effects of Finite Op-Amp Gain Bandwidth Product, fun
78
Active-RC
SNR
82
3.1.3
MOSFET-C Integrators
83
Why Use an Active Circuit (an Op-Amp)?
85
3.1.4
gm-C (Transconductor-C) Integrators
86
Common-Mode Feedback Considerations
88
A High-Frequency Transconductor
89
3.1.5
Discrete-Time Integrators
90
An Important Note
94
Exact Frequency Response of an Ideal Discrete-Time
94
Filter
3.2
Filtering Topologies
. 95
3.2.1
The Bilinear Transfer Function
95
Active-RC Implementation
97
Transconductor-C Implementation
97
Switched-Capacitor Implementation
98
3.2.2
The Biquadratic Transfer Function
99
Active-RC Implementation
101
Switched-Capacitor Implementation
106
High
Q
107
Q
Peaking and Instability
112
Transconductor-C Implementation
114
Chapter
4
Digital Filters
119
4.1
SPICE Models for DACs and ADCs
. 119
4.1.1
The Ideal
DAC
119
SPICE Modeling the Ideal
DAC
120
4.1.2
The Ideal ADC
121
4.1.3
Number Representation
123
Increasing Word Size (Extending the Sign-Bit)
124
Adding Numbers and Overflow
125
Subtracting Numbers in Two's Complement Format
126
4.2
Sine-Shaped Digital Filters
. 126
4.2.1
The Counter
126
Aliasing
127
The Accumulate-and-Dump
129
4.2.2
Lowpass Sine Filters
129
Averaging without Decimation: A Review
132
Contents
Cascading Sine
Filters 132
Finite and Infinite Impulse Response Filters
133
4.2.3
Bandpass and Highpass Sine Filters
134
Canceling Zeroes to Create Highpass and Bandpass
134
Filters
Frequency Sampling Filters
138
4.2.4
Interpolation using Sine Filters
139
Additional Control
142
Cascade of Integrators and Combs
142
4.2.5
Decimation using Sine Filters
143
4.3
Filtering Topologies
. 145
4.3.1
FIR Filters
145
4.3.2
Stability and Overflow
146
Overflow
147
4.3.3
The Bilinear Transfer Function
148
The Canonic Form (or Standard Form) of a Digital
151
Filter
General Canonic Form of a Recursive Filter
154
4.3.4
The Biquadratic Transfer Function
155
Comparing Biquads to Sine-Shaped Filters
157
A Comment Concerning Multiplications
158
Chapter
5
Data Converter
SNR
163
5.1
Quantization Noise
. 163
5.1.1
Viewing the Quantization Noise Spectrum Using
164
Simulations
Bennett's Criteria
165
An Important Note
166
RMS Quantization Noise Voltage
166
Treating Quantization Noise as a Random Variable
168
5.1.2
Quantization Noise Voltage Spectral Density
169
Calculating Quantization Noise from a SPICE
171
Spectrum
Power Spectral Density
172
5.2
Signal-to-Noise Ratio
(SNR)
. 173
Effective Number of Bits
173
Coherent Sampling
175
Signal-to-Noise Plus Distortion Ratio
176
Spurious Free Dynamic Range
177
Contents
Dynamic Range 177
Specifying
SNR
and SNDR
178
5.2.1
Clock Jitter
178
Using Oversampling to Reduce Sampling Clock Jitter
181
Stability Requirements
A Practical Note
182
5.2.2
A Tool: The Spectral Density
182
The Spectral Density of Deterministic Signals: An
183
Overview
The Spectral Density of Random Signals: An Overview
185
Specifying Phase Noise from Measured Data
189
5.3
Improving
SNR
using Averaging
. 190
An Important Note
191
5.3.1
Using Averaging to Improve
SNR
192
Ideal Signal-to-Noise Ratio
194
5.3.2
Linearity Requirements
194
5.3.3
Adding a Noise Dither
195
5.3.4
Jitter
198
5.3.5
Anti-Aliasing Filter
198
5.4
Using Feedback to Improve
SNR
. 199
Chapter
6
Data Converter Design Basics
203
The One-Bit ADC and
DAC
204
6.1
Passive Noise-Shaping
. 205
6.1.1
Signal-to-Noise Ratio
208
6.1.2
Decimating and Filtering the Modulator's Output
209
SNR
Calculation using a Sine Filter
211
6.1.3
Offset, Matching, and Linearity
212
Resistor Mismatch
213
The Feedback
DAC
213
DAC
Offset
214
Linearity of the First-Order Modulator
214
Dead Zones
215
6.2
Improving
SNR
and Linearity
. 215
6.2.1
Second-Order Passive Noise-Shaping
216
6.2.2
Passive Noise-Shaping Using Switched-Capacitors
218
6.2.3
Increasing
SNR
using K-Paths
220
Revisiting Switched-Capacitor Implementations
224
xii
Contents
Effects of the Added Amplifier on Linearity
224
6.2.4
Improving Linearity Using an Active Circuit
225
Second-Order Noise-Shaping
227
Signal-to-Noise Ratio
229
Discussion
230
Chapter
7
Noise-Shaping Data Converters
233
7.1
First-Order Noise Shaping
. 233
A Digital First-Order NS Demodulator
235
7.1.1
Modulation Noise in First-Order NS Modulators
236
7.1.2
RMS Quantization Noise in a First-Order Modulator
237
7.1.3
Decimating and Filtering the Output of a NS
239
Modulator
7.1.4
Pattern Noise from DC Inputs (Limit Cycle
241
Oscillations)
7.1.5
Integrator and Forward Modulator Gain
243
7.1.6
Comparator Gain, Offset, Noise, and Hysteresis
246
7.1.7
Op-Amp Gain (Integrator Leakage)
247
7.1.8
Op-Amp Settling Time
248
7.1.9
Op-Amp Offset
250
7.1.10
Op-Amp Input-Referred Noise
250
7.1.11
Practical Implementation of the First-Order NS
251
Modulator
7.2
Second-Order Noise-Shaping
. 253
7.2.1
Second-Order Modulator Topology
253
7.2.2
Integrator Gain
257
Implementing Feedback Gains in the DAI
260
Using Two Delaying Integrators to Implement the
263
Second-Order Modulator
7.2.3
Selecting Modulator (Integrator) Gains
264
7.3
Noise-Shaping Topologies
. 264
7.3.1
Higher-Order Modulators
265
M th-Order
Modulator Topology
265
7.3.2
Filtering the Output of an
M th-Order
NS Modulator
266
7.3.3
Implementing Higher-Order,
Single-Stage
267
Modulators
7.3.4
Multi-Bit Modulators
269
Simulating a Multibit NS Modulator Using SPICE
269
7.3.5
Error Feedback
271
Contents xiii
Implementation
Concerns
274
7.3.6
Cascaded
Modulators 275
Second-Order
(1-1) Modulators 275
Third-Order
(1-1-1) Modulators 277
Third-Order
(2-1 ) Modulators 277
Implementing the Additional Summing Input
279
Chapter
8
Bandpass Data Converters
285
8.1
Continuous-Time Bandpass Noise-Shaping
. 287
8.1.1
Passive-Component Bandpass Modulators
287
An Important Note
289
8.1.2
Active-Component Bandpass Modulators
289
Signal-to-Noise Ratio
290
8.1.3
Modulators for Conversion at Radio Frequencies
291
8.2
Switched-Capacitor Bandpass Noise-Shaping
. 292
8.2.1
Switched-Capacitor Resonators
292
8.2.2
Second-Order Modulators
294
8.2.3
Fourth-Order Modulators
296
A Common Error
297
A Comment about 1/f Noise
297
8.2.4
Digital I/Q Extraction to Baseband
297
Chapter
9
A High-Speed Data Converter
301
9.1
The Topology
. 301
9.1.1
Clock Signals
301
Path Settling Time
302
9.1.2
Implementation
303
9.1.3
Filtering
306
Examples
307
Direction
312
9.1.4
Discussion
312
9.1.5
Understanding the Clock Signals
315
9.2
Practical Implemenation
. 316
9.2.1
Generating the Clock Signals
316
9.2.2
The Components
318
The Switched-Capacitors
318
The Amplifier
318
The Clocked Comparator
319
9.2.3
The ADC
320
Contents
9.3
Conclusion 322
Index 325
Get ud
to speed on mixed-siqnal circuit desian
(MSD) is currently performed in industry by
а
select few
"gurus." While MSD techniques can be found scattered throughout hard-to-
digest technical papers, it is difficult for someone new to the topic to get up to
speed on the subject without the guidance of a mentor and the right environment
in which to gain the relevant experience.
CMOS Mixed-Signal Circuit Design, Second Edition fills the gap in the technical
literarna·
by providing a tutorial presentation of MSD techniques and integrating
homework problems, netlists, and simulation examples, all of which are available
for download via the book's Web site at CMOSedu.com. Additional features of
the Second
Ediríon
include:
Coverage of noise-shaping
«.lata
converters
(delta-sigma
topologies)
Practical discussion
Ы
digital filtering and its uses in transistor-level circuit designs
Design of analog Hirers for both reconstruction and anti-aliasing
Transistor- and system-level design techniques and theory
Presentation
oí
a topology for high-speed data conversion in nanometer CMOS
iplemented with practical examples and discussions, CMOS Mixed-Sig
Circuit Design, Second Editton is an ideal textbook for graduate students in
mixed-signal circuit design courses. It is also an equally valuable reference for
professionals who want to improve their skills in this area.
R. JACOB (JAKE) BAKER, PhD, is an engineer, educator, and inventor.
He has more than twenty years of engineering experience and holds over
200
granted or pending patents in integrated circuit design. Jake is the
author of several circuit design books. For a detailed biography, please visit:
http^/CMOSedu.com/jbaker/jbaker.htm. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Baker, Russel Jacob 1964- |
author_GND | (DE-588)138111715 |
author_facet | Baker, Russel Jacob 1964- |
author_role | aut |
author_sort | Baker, Russel Jacob 1964- |
author_variant | r j b rj rjb |
building | Verbundindex |
bvnumber | BV035140230 |
callnumber-first | T - Technology |
callnumber-label | TK7871 |
callnumber-raw | TK7871.99.M44 |
callnumber-search | TK7871.99.M44 |
callnumber-sort | TK 47871.99 M44 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 4960 |
ctrlnum | (OCoLC)300964949 (DE-599)BVBBV035140230 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02620nam a2200601 cb4500</leader><controlfield tag="001">BV035140230</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120809 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">081104s2009 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA8A3007</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470290262</subfield><subfield code="9">978-0-470-29026-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0470290269</subfield><subfield code="9">0-470-29026-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)300964949</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035140230</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7871.99.M44</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4960</subfield><subfield code="0">(DE-625)157426:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Baker, Russel Jacob</subfield><subfield code="d">1964-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)138111715</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CMOS</subfield><subfield code="b">mixed-signal circuit design</subfield><subfield code="c">R. Jacob Baker</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley [u.a.]</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 329 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IEEE Press series on microelectronic systems</subfield><subfield code="v">[6]</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Previous ed.: New York: Wiley, 2002</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal oxide semiconductors, Complementary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed signal circuits / Design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuit design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits à signaux mixtes - Conception et construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Circuits électroniques - Calcul</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MOS complémentaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electronic circuit design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metal oxide semiconductors, Complementary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed signal circuits</subfield><subfield code="x">Design</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">CMOS</subfield><subfield code="0">(DE-588)4010319-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mixed-Signal-Schaltung</subfield><subfield code="0">(DE-588)4756481-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">CMOS</subfield><subfield code="0">(DE-588)4010319-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mixed-Signal-Schaltung</subfield><subfield code="0">(DE-588)4756481-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IEEE Press series on microelectronic systems</subfield><subfield code="v">[6]</subfield><subfield code="w">(DE-604)BV040358802</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016807623</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV035140230 |
illustrated | Illustrated |
index_date | 2024-07-02T22:26:55Z |
indexdate | 2024-07-09T21:23:12Z |
institution | BVB |
isbn | 9780470290262 0470290269 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016807623 |
oclc_num | 300964949 |
open_access_boolean | |
owner | DE-703 DE-634 DE-92 |
owner_facet | DE-703 DE-634 DE-92 |
physical | XVI, 329 S. graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Wiley [u.a.] |
record_format | marc |
series | IEEE Press series on microelectronic systems |
series2 | IEEE Press series on microelectronic systems |
spelling | Baker, Russel Jacob 1964- Verfasser (DE-588)138111715 aut CMOS mixed-signal circuit design R. Jacob Baker 2. ed. Hoboken, NJ Wiley [u.a.] 2009 XVI, 329 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier IEEE Press series on microelectronic systems [6] Previous ed.: New York: Wiley, 2002 Metal oxide semiconductors, Complementary Mixed signal circuits / Design Electronic circuit design Circuits à signaux mixtes - Conception et construction Circuits électroniques - Calcul MOS complémentaires Mixed signal circuits Design CMOS (DE-588)4010319-5 gnd rswk-swf Integrierte Schaltung (DE-588)4027242-4 gnd rswk-swf Mixed-Signal-Schaltung (DE-588)4756481-7 gnd rswk-swf CMOS (DE-588)4010319-5 s Mixed-Signal-Schaltung (DE-588)4756481-7 s DE-604 Integrierte Schaltung (DE-588)4027242-4 s 1\p DE-604 IEEE Press series on microelectronic systems [6] (DE-604)BV040358802 6 Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Baker, Russel Jacob 1964- CMOS mixed-signal circuit design IEEE Press series on microelectronic systems Metal oxide semiconductors, Complementary Mixed signal circuits / Design Electronic circuit design Circuits à signaux mixtes - Conception et construction Circuits électroniques - Calcul MOS complémentaires Mixed signal circuits Design CMOS (DE-588)4010319-5 gnd Integrierte Schaltung (DE-588)4027242-4 gnd Mixed-Signal-Schaltung (DE-588)4756481-7 gnd |
subject_GND | (DE-588)4010319-5 (DE-588)4027242-4 (DE-588)4756481-7 |
title | CMOS mixed-signal circuit design |
title_auth | CMOS mixed-signal circuit design |
title_exact_search | CMOS mixed-signal circuit design |
title_exact_search_txtP | CMOS mixed-signal circuit design |
title_full | CMOS mixed-signal circuit design R. Jacob Baker |
title_fullStr | CMOS mixed-signal circuit design R. Jacob Baker |
title_full_unstemmed | CMOS mixed-signal circuit design R. Jacob Baker |
title_short | CMOS |
title_sort | cmos mixed signal circuit design |
title_sub | mixed-signal circuit design |
topic | Metal oxide semiconductors, Complementary Mixed signal circuits / Design Electronic circuit design Circuits à signaux mixtes - Conception et construction Circuits électroniques - Calcul MOS complémentaires Mixed signal circuits Design CMOS (DE-588)4010319-5 gnd Integrierte Schaltung (DE-588)4027242-4 gnd Mixed-Signal-Schaltung (DE-588)4756481-7 gnd |
topic_facet | Metal oxide semiconductors, Complementary Mixed signal circuits / Design Electronic circuit design Circuits à signaux mixtes - Conception et construction Circuits électroniques - Calcul MOS complémentaires Mixed signal circuits Design CMOS Integrierte Schaltung Mixed-Signal-Schaltung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000003&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016807623&sequence=000004&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV040358802 |
work_keys_str_mv | AT bakerrusseljacob cmosmixedsignalcircuitdesign |