Insect taste:
This title covers different approaches to taste research including genes and receptors, taste coding in the periphery and its modulation, taste coding in the central nervous system and behaviour, and nutrition and nutritional regulation.
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Taylor & Francis
2009
|
Ausgabe: | 1. publ. |
Schriftenreihe: | SEB experimental biology series
63 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | This title covers different approaches to taste research including genes and receptors, taste coding in the periphery and its modulation, taste coding in the central nervous system and behaviour, and nutrition and nutritional regulation. |
Beschreibung: | Includes bibliographical references |
Beschreibung: | XIV, 263 S. Ill., graph. Darst. |
ISBN: | 9780415436397 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV035034239 | ||
003 | DE-604 | ||
005 | 20090421 | ||
007 | t | ||
008 | 080902s2009 xxuad|| |||| 00||| eng d | ||
010 | |a 2008024269 | ||
020 | |a 9780415436397 |9 978-0-415-43639-7 | ||
035 | |a (OCoLC)176946574 | ||
035 | |a (DE-599)BVBBV035034239 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-355 |a DE-12 |a DE-703 | ||
050 | 0 | |a QL495 | |
082 | 0 | |a 573.8/78157 | |
084 | |a WW 1761 |0 (DE-625)152062:13446 |2 rvk | ||
084 | |a WW 1765 |0 (DE-625)152062:13450 |2 rvk | ||
245 | 1 | 0 | |a Insect taste |c ed. by Philip L. Newland ; Matthew Cobb ; Frédéric Marion-Poll |
250 | |a 1. publ. | ||
264 | 1 | |a London [u.a.] |b Taylor & Francis |c 2009 | |
300 | |a XIV, 263 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a SEB experimental biology series |v 63 | |
490 | 0 | |a Experimental biology reviews | |
500 | |a Includes bibliographical references | ||
520 | 3 | |a This title covers different approaches to taste research including genes and receptors, taste coding in the periphery and its modulation, taste coding in the central nervous system and behaviour, and nutrition and nutritional regulation. | |
650 | 4 | |a Goût | |
650 | 4 | |a Insectes - Physiologie | |
650 | 4 | |a Insects |x Physiology | |
650 | 4 | |a Taste | |
650 | 0 | 7 | |a Geschmackssinn |0 (DE-588)4253946-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Insekten |0 (DE-588)4027110-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Insekten |0 (DE-588)4027110-9 |D s |
689 | 0 | 1 | |a Geschmackssinn |0 (DE-588)4253946-8 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Newland, Philip L. |e Sonstige |4 oth | |
700 | 1 | |a Cobb, Matthew |e Sonstige |4 oth | |
700 | 1 | |a Marion-Poll, Frédéric |e Sonstige |4 oth | |
830 | 0 | |a SEB experimental biology series |v 63 |w (DE-604)BV023082462 |9 63 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016703177&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016703177 |
Datensatz im Suchindex
_version_ | 1804137966085341184 |
---|---|
adam_text | Contents
Contributors
xi
Preface
xiii
1.
Gustation in
Drosophüa
melanogaster
1
Matthew Cobb, Kristin Scott and Michael Pankratz
1
Introduction
1
2
Gustation in
Drosophüa
larvae
2
2.1
The ecology of larval gustation
2
2.2
The neuroanatomy of larval gustation
3
2.3
Methods and problems in measuring larval gustation
8
3
Gustation in adult
Drosophila
15
3.1
The gustatory system of adult
Drosophila
melanogaster
15
3.2
Early studies of taste selectivity in
Drosophila
15
3.3
The molecular identification of sugar- and bitter-sensing cells
16
3.4
Taste cells that detect other tastes
18
3.5
Comparison of taste coding strategies in the periphery for
mammals and flies
19
3.6
Taste representations in the
Drosophila
brain
19
3.7
Behavioural assays to study taste in
Drosophila
20
4
Taste, feeding and mating
22
4.1
Larvae and adults: growth versus reproductive needs
23
4.2
Convergence of gustatory and pheromonal signalling
24
4.3 SOG, tritocerebrum
and beyond
25
4.4
Neuromodulation
of central circuits
28
5
Conclusions
29
References
30
2. Drosophüa Gr5a:
expression pattern, ligand profile and transduction
pathway
39
Sylwester Chyb
1
Introduction
39
2
A taste case study:
Drosophila Gr5a
42
3
A research strategy
43
4
Expression pattern and axonal projections
44
5
Ligand profile
46
6
Signal transduction
50
7
The future outlook
54
Acknowledgements
55
References
55
vi
Contents
3.
Neurophysiology of gustatory receptor neurones in
Drosophila
59
Teiichi Tanimura, Makoto Hiroi, Tsuyoshi Inoshita and
Frédéric
Marion-Poll
1
Introduction
59
2
Taste organs in
Drosophila
60
3
Electrophysiological characterisation of labeliar chemosensilla
61
3.1
Method: taste recordings in
Drosophila
61
3.2
Tungsten microelectrode recording
62
3.3
Spontaneous activity from GRNs
64
3.4
Comparison of signals between tip recording and tungsten
recording
64
3.5
Recordings from sugar and bitter sensing neurones
64
3.6
Summary
65
4
Differential responses among labeliar taste bristles
65
4.1
Types of GRNs in
Drosophila
65
4.2
Variation of response among labeliar taste bristles
67
4.3
Candidate receptor genes and physiology of GRNs
68
4.4
Summary
69
5
Identification of water gustatory receptor neurones
69
5.1
Water taste cell
69
5.2
Enhancer trap method
70
5.3
Central projection of gustatory receptor neurones
70
6
Conclusions
72
References
73
4.
Chemosensory regulation of feeding in the blowfly: several studies
after The Hungry Fly
77
Mamiko Ozaki and Tadashi Nakamura
1
Introduction
77
2
Sweetness for the fly: gustatory triggers for feeding
78
2.1
Sugar receptor cell
81
2.2
Sugar receptor
82
2.3
G-proteins
83
2.4
Cyclic nucleotides, IP3 and Ca2+
84
2.5
Synergic effects
87
3
Bitterness for the fly: gustatory avoidance of feeding
87
4
Bitter taste receptor cell (fifth cell)
89
4.1
Noxious or bitter substance detection system
89
4.2
Lipophilic substances and gustatory OBP
91
5
Regulation of feeding
92
5.1
Olfactory modification of feeding
92
5.2
Monoamines and feeding regulation
93
5.3
Blood sugar level and feeding regulation
94
6
Conclusions
95
References
96
Contents
vii
5.
Tasting in plant-feeding insects: from single compounds to
complex natural stimuli
103
Joop
J.A.van Loon, Qingbo Tang, Honglei Wang, Chenzhu Wang,
Dongsheng Zhou and Hans M.
Smid
1
Introduction: coding principles in gustatory systems of herbivorous
insects
103
2
The sense of taste of plant-feeding insects: current status is based on
studies using single compounds
104
2.1
Taste neurone typology
104
2.2
Coding concepts
105
3
Binary mixtures: non-linearity in the periphery
105
4
Input-output relationships for taste-mediated behaviour
107
4.1
Larval insects
107
4.2
Adult insects
108
5
Complex mixtures: taste neurone activity and behavioural responses
to real-life plant-derived stimuli
110
5.1
Changing paradigms: moving from binary mixtures to complex
plant-derived mixtures
110
5.2
Multi-neural recordings: obstacles in analysis and interpretation
110
5.3
Taste neurone identification using activity-related labelling 111
5.4
Taste coding in host-plant preference
113
6
Modulation of taste neurone sensitivity: opportunities to distinguish
qualitative and quantitative aspects of taste coding
118
7
Conclusions and outlook
119
References
120
6.
Tasting toxicants as bitter: phytoecdysteroids
127
Frédéric
Marion-Poll,
Delphine
Calas,
Dalida Darazy-Choubaya,
Cécile
Faucher and Charles Descoins
1
Introduction
127
2
Phytoecdysteroids as plant
defence secondary compounds
128
2.1
Phytoecdysteroids: a
family of molecules
128
2.2
Botanical distribution, synthetic pathways
129
2.3
Defence compounds: tissue distribution, inducibility, turnover
129
3
Phytoecdysteroids are toxic to insects
129
3.1
Toxicity
of diet ecdysteroids
129
3.2
Detoxification pathways
130
3.3
Different types of insects affected
131
4
Phytoecdysteroids as toxic molecules and antifeedants to larval
Lepidoptera
132
4.1
Behavioural effects
132
4.2
Taste detection
133
5
Phytoecdysteroids and adult Lepidoptera
134
5.1
Toxicity?
134
5.2
Taste detection
134
5.3
Anti-oviposition effects of ecdysteroids
134
vin
Contents
6
Conclusions
135
References
135
7.
Peripheral modulation of taste responses
139
Hansjürgen Schuppe
and Philip L. Newland
1
Introduction
139
1.1
Locusts as model organisms for the study of taste and nutritional
regulation
139
1.2
How locusts detect taste
139
1.3
Taste responses in locusts
143
1.4
The link with behaviour
144
1.5
Tracing the neural circuits
147
2
The role of chemosensory responses in nutritional regulation
149
2.1
Nutritional requirements and the need to balance the diet
149
2.2
Modulation of the phagostimulatory power at different levels
149
2.3
Mechanisms that modulate taste responses
154
3
Modulation of taste responses by NO
158
3.1
Early role for NO in chemosensory processing and feeding
158
3.2
NO in taste organs of vertebrates
161
3.3
NO and taste modulation in insects
162
4
A role for NO in the peripheral regulation of nutrient intake
169
4.1
Regulation of salt responses via peripheral NO synthesis
169
4.2
Balancing food intake via the periphery
171
References
173
8.
The sweet tooth of the honeybee: the perception of nectar and
its influence on honeybee behaviour
183
Géraldine
A. Wright
1
Introduction
183
2
Gustatory environment of honeybees
183
2.1
Nectar
183
2.2
Nectar s nutrients
184
2.3
Other compounds
185
2.4
Variation in nectar quality
186
3
The honeybee s sweet tooth
187
3.1
Peripheral mechanisms of gustation
187
3.2
Central organisation of honeybee taste
190
3.3
Proboscis extension reflex (PER)
192
4
Gustatory perception and behaviour
193
4.1
Sucrose
193
4.2
Modulation of gustatory sensitivity to sucrose
194
4.3
Other compounds
196
5
Conclusions
197
Acknowledgements
198
References
198
Contents
ix
9.
Effects of experience on the physiology of taste discrimination in insects
205
Marta L.
del
Campo,
Carol I. Miles and Marina
С. Сатана
1
Introduction
205
1.1
Experience: a fundamental modifier of feeding behaviour
206
1.2
Central nervous system, sensory input and feeding behaviour
207
2
Taste organs: anatomy and distribution
208
2.1
Taste neurones
210
2.2
Membrane receptors
211
2.3
Ion Channels, second messengers and intracellular cascades
212
2.4
Sensillar
fluid
214
3
The neurophysiology of taste in insects: from transduction to coding
215
3.1
Stimulants, deterrents and the reality of mixtures: selecting
meaningful flavours
219
3.2
The diversity of taste neurone responses
220
4
Experience as a modifier of taste neurone input in insects
222
4.1
A case study: induction of host specificity in a facultative specialist
feeder, the larvae of
Manduca
sexta
223
4.2
Neural circuitry for feeding choices among host-restricted and
polyphagous
Manduca
larvae
225
4.3
Molecular basis of experience-based changes of taste neurone
input in
Manduca
larvae
227
5
Conclusions and future directions
231
Acknowledgements
231
References
232
10.
Evolutionary biology of learning in insects: the search for food
243
Frédéric
Mery
1
Introduction
243
1.1
What is learning?
243
1.2
Different forms of learning
244
1.3
When is learning advantageous?
245
2
Variation in learning ability in nature
246
2.1
Inter- and intraspecific variation in learning ability
246
2.2
Do generalists learn better than specialists?
248
2.3
Effect of environmental conditions on the development of memory
249
3
Cost and constraints of learning
250
3.1
Costs of being naive
250
3.2
Constitutive costs of learning
250
3.3
Induced costs of learning
250
3.4
Memory constraints in insect and flower constancy
251
4
Conclusion and perspectives
251
References
252
Index
257
|
adam_txt |
Contents
Contributors
xi
Preface
xiii
1.
Gustation in
Drosophüa
melanogaster
1
Matthew Cobb, Kristin Scott and Michael Pankratz
1
Introduction
1
2
Gustation in
Drosophüa
larvae
2
2.1
The ecology of larval gustation
2
2.2
The neuroanatomy of larval gustation
3
2.3
Methods and problems in measuring larval gustation
8
3
Gustation in adult
Drosophila
15
3.1
The gustatory system of adult
Drosophila
melanogaster
15
3.2
Early studies of taste selectivity in
Drosophila
15
3.3
The molecular identification of sugar- and bitter-sensing cells
16
3.4
Taste cells that detect other tastes
18
3.5
Comparison of taste coding strategies in the periphery for
mammals and flies
19
3.6
Taste representations in the
Drosophila
brain
19
3.7
Behavioural assays to study taste in
Drosophila
20
4
Taste, feeding and mating
22
4.1
Larvae and adults: growth versus reproductive needs
23
4.2
Convergence of gustatory and pheromonal signalling
24
4.3 SOG, tritocerebrum
and beyond
25
4.4
Neuromodulation
of central circuits
28
5
Conclusions
29
References
30
2. Drosophüa Gr5a:
expression pattern, ligand profile and transduction
pathway
39
Sylwester Chyb
1
Introduction
39
2
A taste case study:
Drosophila Gr5a
42
3
A research strategy
43
4
Expression pattern and axonal projections
44
5
Ligand profile
46
6
Signal transduction
50
7
The future outlook
54
Acknowledgements
55
References
55
vi
Contents
3.
Neurophysiology of gustatory receptor neurones in
Drosophila
59
Teiichi Tanimura, Makoto Hiroi, Tsuyoshi Inoshita and
Frédéric
Marion-Poll
1
Introduction
59
2
Taste organs in
Drosophila
60
3
Electrophysiological characterisation of labeliar chemosensilla
61
3.1
Method: taste recordings in
Drosophila
61
3.2
Tungsten microelectrode recording
62
3.3
Spontaneous activity from GRNs
64
3.4
Comparison of signals between tip recording and tungsten
recording
64
3.5
Recordings from sugar and bitter sensing neurones
64
3.6
Summary
65
4
Differential responses among labeliar taste bristles
65
4.1
Types of GRNs in
Drosophila
65
4.2
Variation of response among labeliar taste bristles
67
4.3
Candidate receptor genes and physiology of GRNs
68
4.4
Summary
69
5
Identification of water gustatory receptor neurones
69
5.1
Water taste cell
69
5.2
Enhancer trap method
70
5.3
Central projection of gustatory receptor neurones
70
6
Conclusions
72
References
73
4.
Chemosensory regulation of feeding in the blowfly: several studies
after 'The Hungry Fly'
77
Mamiko Ozaki and Tadashi Nakamura
1
Introduction
77
2
Sweetness for the fly: gustatory triggers for feeding
78
2.1
Sugar receptor cell
81
2.2
Sugar receptor
82
2.3
G-proteins
83
2.4
Cyclic nucleotides, IP3 and Ca2+
84
2.5
Synergic effects
87
3
Bitterness for the fly: gustatory avoidance of feeding
87
4
Bitter taste receptor cell (fifth cell)
89
4.1
Noxious or bitter substance detection system
89
4.2
Lipophilic substances and gustatory OBP
91
5
Regulation of feeding
92
5.1
Olfactory modification of feeding
92
5.2
Monoamines and feeding regulation
93
5.3
Blood sugar level and feeding regulation
94
6
Conclusions
95
References
96
Contents
vii
5.
Tasting in plant-feeding insects: from single compounds to
complex natural stimuli
103
Joop
J.A.van Loon, Qingbo Tang, Honglei Wang, Chenzhu Wang,
Dongsheng Zhou and Hans M.
Smid
1
Introduction: coding principles in gustatory systems of herbivorous
insects
103
2
The sense of taste of plant-feeding insects: current status is based on
studies using single compounds
104
2.1
Taste neurone typology
104
2.2
Coding concepts
105
3
Binary mixtures: non-linearity in the periphery
105
4
Input-output relationships for taste-mediated behaviour
107
4.1
Larval insects
107
4.2
Adult insects
108
5
Complex mixtures: taste neurone activity and behavioural responses
to real-life plant-derived stimuli
110
5.1
Changing paradigms: moving from binary mixtures to complex
plant-derived mixtures
110
5.2
Multi-neural recordings: obstacles in analysis and interpretation
110
5.3
Taste neurone identification using activity-related labelling 111
5.4
Taste coding in host-plant preference
113
6
Modulation of taste neurone sensitivity: opportunities to distinguish
qualitative and quantitative aspects of taste coding
118
7
Conclusions and outlook
119
References
120
6.
Tasting toxicants as bitter: phytoecdysteroids
127
Frédéric
Marion-Poll,
Delphine
Calas,
Dalida Darazy-Choubaya,
Cécile
Faucher and Charles Descoins
1
Introduction
127
2
Phytoecdysteroids as plant
defence secondary compounds
128
2.1
Phytoecdysteroids: a
family of molecules
128
2.2
Botanical distribution, synthetic pathways
129
2.3
Defence compounds: tissue distribution, inducibility, turnover
129
3
Phytoecdysteroids are toxic to insects
129
3.1
Toxicity
of diet ecdysteroids
129
3.2
Detoxification pathways
130
3.3
Different types of insects affected
131
4
Phytoecdysteroids as toxic molecules and antifeedants to larval
Lepidoptera
132
4.1
Behavioural effects
132
4.2
Taste detection
133
5
Phytoecdysteroids and adult Lepidoptera
134
5.1
Toxicity?
134
5.2
Taste detection
134
5.3
Anti-oviposition effects of ecdysteroids
134
vin
Contents
6
Conclusions
135
References
135
7.
Peripheral modulation of taste responses
139
Hansjürgen Schuppe
and Philip L. Newland
1
Introduction
139
1.1
Locusts as model organisms for the study of taste and nutritional
regulation
139
1.2
How locusts detect taste
139
1.3
Taste responses in locusts
143
1.4
The link with behaviour
144
1.5
Tracing the neural circuits
147
2
The role of chemosensory responses in nutritional regulation
149
2.1
Nutritional requirements and the need to balance the diet
149
2.2
Modulation of the phagostimulatory power at different levels
149
2.3
Mechanisms that modulate taste responses
154
3
Modulation of taste responses by NO
158
3.1
Early role for NO in chemosensory processing and feeding
158
3.2
NO in taste organs of vertebrates
161
3.3
NO and taste modulation in insects
162
4
A role for NO in the peripheral regulation of nutrient intake
169
4.1
Regulation of salt responses via peripheral NO synthesis
169
4.2
Balancing food intake via the periphery
171
References
173
8.
The 'sweet tooth' of the honeybee: the perception of nectar and
its influence on honeybee behaviour
183
Géraldine
A. Wright
1
Introduction
183
2
Gustatory environment of honeybees
183
2.1
Nectar
183
2.2
Nectar's nutrients
184
2.3
Other compounds
185
2.4
Variation in nectar quality
186
3
The honeybee's sweet tooth
187
3.1
Peripheral mechanisms of gustation
187
3.2
Central organisation of honeybee taste
190
3.3
Proboscis extension reflex (PER)
192
4
Gustatory perception and behaviour
193
4.1
Sucrose
193
4.2
Modulation of gustatory sensitivity to sucrose
194
4.3
Other compounds
196
5
Conclusions
197
Acknowledgements
198
References
198
Contents
ix
9.
Effects of experience on the physiology of taste discrimination in insects
205
Marta L.
del
Campo,
Carol I. Miles and Marina
С. Сатана
1
Introduction
205
1.1
Experience: a fundamental modifier of feeding behaviour
206
1.2
Central nervous system, sensory input and feeding behaviour
207
2
Taste organs: anatomy and distribution
208
2.1
Taste neurones
210
2.2
Membrane receptors
211
2.3
Ion Channels, second messengers and intracellular cascades
212
2.4
Sensillar
fluid
214
3
The neurophysiology of taste in insects: from transduction to coding
215
3.1
Stimulants, deterrents and the reality of mixtures: selecting
meaningful flavours
219
3.2
The diversity of taste neurone responses
220
4
Experience as a modifier of taste neurone input in insects
222
4.1
A case study: induction of host specificity in a facultative specialist
feeder, the larvae of
Manduca
sexta
223
4.2
Neural circuitry for feeding choices among host-restricted and
polyphagous
Manduca
larvae
225
4.3
Molecular basis of experience-based changes of taste neurone
input in
Manduca
larvae
227
5
Conclusions and future directions
231
Acknowledgements
231
References
232
10.
Evolutionary biology of learning in insects: the search for food
243
Frédéric
Mery
1
Introduction
243
1.1
What is learning?
243
1.2
Different forms of learning
244
1.3
When is learning advantageous?
245
2
Variation in learning ability in nature
246
2.1
Inter- and intraspecific variation in learning ability
246
2.2
Do generalists learn better than specialists?
248
2.3
Effect of environmental conditions on the development of memory
249
3
Cost and constraints of learning
250
3.1
Costs of being naive
250
3.2
Constitutive costs of learning
250
3.3
Induced costs of learning
250
3.4
Memory constraints in insect and flower constancy
251
4
Conclusion and perspectives
251
References
252
Index
257 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV035034239 |
callnumber-first | Q - Science |
callnumber-label | QL495 |
callnumber-raw | QL495 |
callnumber-search | QL495 |
callnumber-sort | QL 3495 |
callnumber-subject | QL - Zoology |
classification_rvk | WW 1761 WW 1765 |
ctrlnum | (OCoLC)176946574 (DE-599)BVBBV035034239 |
dewey-full | 573.8/78157 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 573 - Specific physiological systems in animals |
dewey-raw | 573.8/78157 |
dewey-search | 573.8/78157 |
dewey-sort | 3573.8 578157 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02267nam a2200553zcb4500</leader><controlfield tag="001">BV035034239</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090421 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080902s2009 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008024269</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780415436397</subfield><subfield code="9">978-0-415-43639-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)176946574</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV035034239</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QL495</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">573.8/78157</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 1761</subfield><subfield code="0">(DE-625)152062:13446</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WW 1765</subfield><subfield code="0">(DE-625)152062:13450</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Insect taste</subfield><subfield code="c">ed. by Philip L. Newland ; Matthew Cobb ; Frédéric Marion-Poll</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Taylor & Francis</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 263 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">SEB experimental biology series</subfield><subfield code="v">63</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Experimental biology reviews</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This title covers different approaches to taste research including genes and receptors, taste coding in the periphery and its modulation, taste coding in the central nervous system and behaviour, and nutrition and nutritional regulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Goût</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insectes - Physiologie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Insects</subfield><subfield code="x">Physiology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taste</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschmackssinn</subfield><subfield code="0">(DE-588)4253946-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Insekten</subfield><subfield code="0">(DE-588)4027110-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Insekten</subfield><subfield code="0">(DE-588)4027110-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschmackssinn</subfield><subfield code="0">(DE-588)4253946-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Newland, Philip L.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cobb, Matthew</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marion-Poll, Frédéric</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">SEB experimental biology series</subfield><subfield code="v">63</subfield><subfield code="w">(DE-604)BV023082462</subfield><subfield code="9">63</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016703177&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016703177</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV035034239 |
illustrated | Illustrated |
index_date | 2024-07-02T21:50:58Z |
indexdate | 2024-07-09T21:20:41Z |
institution | BVB |
isbn | 9780415436397 |
language | English |
lccn | 2008024269 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016703177 |
oclc_num | 176946574 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-12 DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-12 DE-703 |
physical | XIV, 263 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Taylor & Francis |
record_format | marc |
series | SEB experimental biology series |
series2 | SEB experimental biology series Experimental biology reviews |
spelling | Insect taste ed. by Philip L. Newland ; Matthew Cobb ; Frédéric Marion-Poll 1. publ. London [u.a.] Taylor & Francis 2009 XIV, 263 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier SEB experimental biology series 63 Experimental biology reviews Includes bibliographical references This title covers different approaches to taste research including genes and receptors, taste coding in the periphery and its modulation, taste coding in the central nervous system and behaviour, and nutrition and nutritional regulation. Goût Insectes - Physiologie Insects Physiology Taste Geschmackssinn (DE-588)4253946-8 gnd rswk-swf Insekten (DE-588)4027110-9 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Insekten (DE-588)4027110-9 s Geschmackssinn (DE-588)4253946-8 s b DE-604 Newland, Philip L. Sonstige oth Cobb, Matthew Sonstige oth Marion-Poll, Frédéric Sonstige oth SEB experimental biology series 63 (DE-604)BV023082462 63 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016703177&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Insect taste SEB experimental biology series Goût Insectes - Physiologie Insects Physiology Taste Geschmackssinn (DE-588)4253946-8 gnd Insekten (DE-588)4027110-9 gnd |
subject_GND | (DE-588)4253946-8 (DE-588)4027110-9 (DE-588)4143413-4 |
title | Insect taste |
title_auth | Insect taste |
title_exact_search | Insect taste |
title_exact_search_txtP | Insect taste |
title_full | Insect taste ed. by Philip L. Newland ; Matthew Cobb ; Frédéric Marion-Poll |
title_fullStr | Insect taste ed. by Philip L. Newland ; Matthew Cobb ; Frédéric Marion-Poll |
title_full_unstemmed | Insect taste ed. by Philip L. Newland ; Matthew Cobb ; Frédéric Marion-Poll |
title_short | Insect taste |
title_sort | insect taste |
topic | Goût Insectes - Physiologie Insects Physiology Taste Geschmackssinn (DE-588)4253946-8 gnd Insekten (DE-588)4027110-9 gnd |
topic_facet | Goût Insectes - Physiologie Insects Physiology Taste Geschmackssinn Insekten Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016703177&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV023082462 |
work_keys_str_mv | AT newlandphilipl insecttaste AT cobbmatthew insecttaste AT marionpollfrederic insecttaste |