Modeling evolution: an introduction to numerical methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Oxford
Oxford University Press
2009
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XII, 451 S. Ill., graph. Darst. |
ISBN: | 9780199571147 0199571147 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025603437 | ||
003 | DE-604 | ||
005 | 20100428 | ||
007 | t | ||
008 | 100417s2009 ad|| |||| 00||| ger d | ||
020 | |a 9780199571147 |9 978-0-19-957114-7 | ||
020 | |a 0199571147 |9 0-19-957114-7 | ||
035 | |a (OCoLC)587631063 | ||
035 | |a (DE-599)BVBBV025603437 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a ger | |
049 | |a DE-11 | ||
082 | 0 | |a 576.80113 | |
084 | |a WH 2500 |0 (DE-625)148643: |2 rvk | ||
100 | 1 | |a Roff, Derek A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modeling evolution |b an introduction to numerical methods |c by Derek A. Roff |
264 | 1 | |a Oxford |b Oxford University Press |c 2009 | |
300 | |a XII, 451 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a MATLAB |0 (DE-588)4329066-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolution |0 (DE-588)4071050-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Evolution |0 (DE-588)4071050-6 |D s |
689 | 0 | 1 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 0 | 2 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | 3 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Evolution |0 (DE-588)4071050-6 |D s |
689 | 1 | 1 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 1 | 2 | |a MATLAB |0 (DE-588)4329066-8 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020198638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-020198638 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804142787897065472 |
---|---|
adam_text | MODELING EVOLUTION AN INTRODUCTION TO NUMERICAL METHODS DEREK A. ROFF
OXFORD UNIVERSITY PRESS CONTENTS 1 OVERVIEW I 1.1 INTRODUCTION 1 1.1.1
THE AIM OF THIS BOOK 1 1.1.2 WHY RAND MATLAB? 2 1.2 OPERATIONAL
DEFINITIONS OF FITNESS 3 1.2.1 CONSTANT ENVIRONMENT,
DENSITY-INDEPENDENT, STABLE-AGE DISTRIBUTION 5 1.2.2 DEMOGRAPHIC
STOCHASTICITY 5 1.2.3 ENVIRONMENTS OF FIXED LENGTH (E.G., DETERMINISTIC
SEASONAL ENVIRONMENTS) 7 1.2.4 CONSTANT ENVIRONMENT, DENSITY-DEPENDENCE
WITH A STABLE EQUILIBRIUM 7 1.2.5 CONSTANT ENVIRONMENT, VARIABLE
POPULATION DYNAMICS 9 1.2.6 TEMPORALLY STOCHASTIC ENVIRONMENTS 10 1.2.7
TEMPORALLY VARIABLE, DENSITY-DEPENDENT ENVIRONMENTS 12 1.2.8 SPATIALLY
VARIABLE ENVIRONMENTS 13 1.2.9 SOCIAL ENVIRONMENT 14 1.2.10
FREQUENCY-DEPENDENCE 15 1.3 SOME GENERAL PRINCIPLES OF MODEL BUILDING 16
1.4 AN INTRODUCTION TO MODELING IN R AND MATLAB 17 1.4.1 GENERAL
ASSUMPTIONS 17 1.4.2 MATHEMATICAL ASSUMPTIONS OF MODEL 1 18 1.4.3
MATHEMATICAL ASSUMPTIONS OF MODEL 2 25 1.4.4 MATHEMATICAL ASSUMPTIONS OF
MODEL 3 40 1.4.5 MATHEMATICAL ASSUMPTIONS OF MODEL 4 43 1.4.6
MATHEMATICAL ASSUMPTIONS OF MODEL 5 45 1.4.7 MATHEMATICAL ASSUMPTIONS OF
MODEL 6 51 1.5 SUMMARY OF MODELING APPROACHES DESCRIBED IN THIS BOOK 55
1.5.1 FISHERIAN OPTIMALITY ANALYSIS (CHAPTER 2) 55 1.5.2 INVASIBILITY
ANALYSIS (CHAPTER 3) 56 1.5.3 GENETIC MODELS (CHAPTER 4) 56 1.5.4 GAME
THEORETIC MODELS (CHAPTER 5) 57 1.5.5 DYNAMIC PROGRAMMING (CHAPTER 6) 57
2 FISHERIAN OPTIMALITY MODELS 59 2.1 INTRODUCTION 59 2.1.1 FITNESS
MEASURES 59 2.1.2 METHODS OF ANALYSIS: INTRODUCTION 61 2.1.3 METHODS OF
ANALYSIS: W = /(#I, 0 2 , ..., 0*, XI, X 2 ,..., X N ) AND WELL-BEHAVED
62 VI CONTENTS 2.1.4 METHODS OF ANALYSIS: W = F(0- , 6 2 , ***, 6K,X- ,X
2 , *,X N ) AND NOT WELL-BEHAVED 65 2.1.5 METHODS OF ANALYSIS: #(W) =
F(0 U 6 2 ,...,6 K ,XI,X 2 ,...,X N , W) 67 2.2 SUMMARY OF SCENARIOS
(TABLE 2.1) 69 2.3 SCENARIO 1: A SIMPLE TRADE-OFF MODEL 71 2.3.1 GENERAL
ASSUMPTIONS 71 2.3.2 MATHEMATICAL ASSUMPTIONS 72 2.3.3 PLOTTING THE
FITNESS FUNCTION 72 2.3.4 FINDING THE MAXIMUM USING THE CALCULUS 73
2.3.5 FINDING THE MAXIMUM USING A NUMERICAL APPROACH 75 2.4 SCENARIO 2:
ADDING AGE STRUCTURE MAY NOT AFFECT THE OPTIMUM 75 2.4.1 GENERAL
ASSUMPTIONS 75 2.4.2 MATHEMATICAL ASSUMPTIONS 75 2.5 SCENARIO 3: ADDING
AGE-SPECIFIC MORTALITY THAT AFFECTS THE OPTIMUM 76 2.5.1 GENERAL
ASSUMPTIONS 76 2.5.2 MATHEMATICAL ASSUMPTIONS 76 2.5.3 PLOTTING THE
FITNESS FUNCTION 77 ISA FINDING THE MAXIMUM USING THE CALCULUS 79 2.5.5
FINDING THE MAXIMUM USING A NUMERICAL APPROACH 81 2.6 SCENARIO 4: ADDING
AGE-SPECIFIC MORTALITY THAT AFFECTS THE OPTIMUM AND USING INTEGRATION
RATHER THAN SUMMATION 81 2.6.1 GENERAL ASSUMPTIONS 81 2.6.2 MATHEMATICAL
ASSUMPTIONS 82 2.6.3 PLOTTING THE FITNESS FUNCTION 82 2.6.4 FINDING THE
MAXIMUM USING THE CALCULUS 84 2.6.5 FINDING THE MAXIMUM USING A
NUMERICAL APPROACH 85 2.7 SCENARIO 5: MAXIMIZING THE MALTHUSIAN
PARAMETER, R, RATHER THAN EXPECTED LIFETIME REPRODUCTIVE SUCCESS, RO 86
2.7.1 GENERAL ASSUMPTIONS 87 2.7.2 MATHEMATICAL ASSUMPTIONS 87 2.7.3
PLOTTING THE FITNESS FUNCTION 88 2.7 .4 FINDING THE MAXIMUM USING THE
CALCULUS 89 2.7.5 FINDING THE MAXIMUM USING A NUMERICAL APPROACH 92 2.8
SCENARIO 6: STOCHASTIC VARIATION IN PARAMETERS 93 2.8.1 GENERAL
ASSUMPTIONS 94 2.8.2 MATHEMATICAL ASSUMPTIONS 94 2.8.3 PLOTTING THE
FITNESS FUNCTION 95 2.8.4 FINDING THE MAXIMUM USING THE CALCULUS 97
2.8.5 FINDING THE MAXIMUM USING A NUMERICAL APPROACH 99 2.9 SCENARIO 7:
DISCRETE TEMPORAL VARIATION IN PARAMETERS 100 2.9.1 GENERAL ASSUMPTIONS
100 2.9.2 MATHEMATICAL ASSUMPTIONS 100 2.9.3 PLOTTING THE FITNESS
FUNCTION 101 2.9.4 FINDING THE MAXIMUM USING THE CALCULUS 102 2.9.5
FINDING THE MAXIMUM USING NUMERICAL METHODS 104 CONTENTS VLL 2.10
SCENARIO 8: CONTINUOUS TEMPORAL VARIATION IN PARAMETERS 105 2.10.1
GENERAL ASSUMPTIONS 105 2.10.2 MATHEMATICAL ASSUMPTIONS 105 2.10.3
PLOTTING THE FITNESS FUNCTION 106 2.10.4 FINDING THE MAXIMUM USING A
NUMERICAL APPROACH 107 2.11 SCENARIO 9: MAXIMIZING TWO TRAITS
SIMULTANEOUSLY 108 2.11.1 GENERAL ASSUMPTIONS 108 2.11.2 MATHEMATICAL
ASSUMPTIONS 109 2.11.3 PLOTTING THE FITNESS FUNCTION 110 2.11.4 FINDING
THE MAXIMUM USING THE CALCULUS 112 2.11.5 FINDING THE MAXIMUM USING A
NUMERICAL APPROACH 112 2.12 SCENARIO 10: TWO TRAITS MAY COVARY BUT
OPTIMA ARE INDEPENDENT 113 2.12.1 GENERAL ASSUMPTIONS 113 2.12.2
MATHEMATICAL ASSUMPTIONS 113 2.13 SCENARIO 11: TWO TRAITS MAY BE
RESOLVED INTO A SINGLE TRAIT 114 2.13.1 GENERAL ASSUMPTIONS 115 2.13.2
MATHEMATICAL ASSUMPTIONS 115 2.13.3 PLOTTING THE FITNESS FUNCTION 116
2.13.4 FINDING THE OPTIMUM USING THE CALCULUS 117 2.13.5 FINDING THE
OPTIMUM USING A NUMERICAL APPROACH 119 2.14 SCENARIO 12: THE IMPORTANCE
OF PLOTTING AND THE UTILITY OF BRUTE FORCE 119 2.14.1 GENERAL
ASSUMPTIONS 119 2.14.2 MATHEMATICAL ASSUMPTIONS 120 2.14.3 PLOTTING THE
FITNESS FUNCTION 120 2.14.4 FINDING THE MAXIMUM USING THE CALCULUS 123
2.14.5 FINDING THE MAXIMUM USING A NUMERICAL APPROACH 128 2.15 SCENARIO
13: DEALING WITH RECURSION BY BRUTE FORCE 130 2.15.1 GENERAL ASSUMPTIONS
130 2.15.2 MATHEMATICAL ASSUMPTIONS 131 2.15.3 PLOTTING THE FITNESS
FUNCTION 132 2.15.4 FINDING THE MAXIMUM USING THE CALCULUS 134 2.15.5
FINDING THE MAXIMUM USING A NUMERICAL APPROACH 134 2.16 SCENARIO 14:
ADDING A THIRD VARIABLE AND MORE 135 2.16.1 GENERAL ASSUMPTIONS 136
2.16.2 MATHEMATICAL ASSUMPTIONS 136 2.16.3 PLOTTING THE FITNESS FUNCTION
137 2.16.4 FINDING THE MAXIMUM USING THE CALCULUS 137 2.16.5 FINDING THE
MAXIMUM USING A NUMERICAL APPROACH 137 2.17 SOME EXEMPLARY PAPERS 139
2.18 MATLAB CODE 140 2.18.1 SCENARIO 1: PLOTTING THE FITNESS FUNCTION
140 2.18.2 SCENARIO 1: FINDING THE MAXIMUM USING THE CALCULUS 140 2.18.3
SCENARIO 1: FINDING THE MAXIMUM USING A NUMERICAL APPROACH 141 2.18.4
SCENARIO 3: PLOTTING THE FITNESS FUNCTION 141 2.18.5 SCENARIO 3: FINDING
THE MAXIMUM BY THE CALCULUS 142 VLLL CONTENTS 2.18.6 SCENARIO 3: FINDING
THE MAXIMUM USING A NUMERICAL APPROACH 142 2.18.7 SCENARIO 4: PLOTTING
THE FITNESS FUNCTION 142 2.18.8 SCENARIO 4: FINDING THE MAXIMUM USING
THE CALCULUS 143 2.18.9 SCENARIO 4: FINDING THE MAXIMUM USING A
NUMERICAL APPROACH 144 2.18.10 SCENARIO 5: PLOTTING THE FITNESS FUNCTION
144 2.18.11 SCENARIO 5: FINDING THE MAXIMUM USING THE CALCULUS 145
2.18.12 SCENARIO 5: FINDING THE MAXIMUM USING A NUMERICAL APPROACH 145
2.18.13 SCENARIO 6: PLOTTING THE FITNESS FUNCTION 146 2.18.14 SCENARIO
6: FINDING THE MAXIMUM USING THE CALCULUS 147 2.18.15 SCENARIO 6:
FINDING THE MAXIMUM USING A NUMERICAL APPROACH 147 2.18.16 SCENARIO 7:
PLOTTING THE FITNESS FUNCTION 148 2.18.17 SCENARIO 7: FINDING THE
MAXIMUM USING THE CALCULUS 149 2.18.18 SCENARIO 7: FINDING THE MAXIMUM
USING NUMERICAL METHODS 150 2.18.19 SCENARIO 8: PLOTTING THE FITNESS
FUNCTION 150 2.18.20 SCENARIO 8: FINDING THE MAXIMUM USING A NUMERICAL
APPROACH 151 2.18.21 SCENARIO 9: THE DERIVATIVE CAN ALSO BE DETERMINED
USING MATLAB 151 2.18.22 SCENARIO 9: PLOTTING THE FITNESS FUNCTION 151
2.18.23 SCENARIO 9: FINDING THE MAXIMUM USING THE CALCULUS 152 2.18.24
SCENARIO 9: FINDING THE MAXIMUM USING A NUMERICAL APPROACH 152 2.18.25
SCENARIO 11: PLOTTING THE FITNESS FUNCTION 153 2.18.26 SCENARIO 11:
FINDING THE OPTIMUM USING THE CALCULUS 153 2.18.27 SCENARIO 11: FINDING
THE OPTIMUM USING A NUMERICAL APPROACH 154 2.18.28 SCENARIO 12: PLOTTING
THE FITNESS FUNCTION 154 2.18.29 SCENARIO 12: FINDING THE MAXIMUM USING
THE CALCULUS 155 2.18.30 SCENARIO 12: FINDING THE MAXIMUM USING A
NUMERICAL APPROACH 158 2.18.31 SCENARIO 13: PLOTTING THE FITNESS
FUNCTION 160 2.18.32 SCENARIO 13: FINDING THE MAXIMUM USING A NUMERICAL
APPROACH 162 2.18.33 SCENARIO 14: FINDING THE MAXIMUM USING A NUMERICAL
APPROACH 163 3 INVASIBILITY ANALYSIS LES 3.1 INTRODUCTION 165 3.1.1
AGE-OR STAGE-STRUCTURED MODELS 165 3.1.2 MODELING EVOLUTION USING THE
LESLIE MATRIX 169 3.1.3 STAGE-STRUCTURED MODELS 170 3.1.4 ADDING
DENSITY-DEPENDENCE 170 3.1.5 ESTIMATING FITNESS 173 3.1.6 PAIRWISE
INVASIBILITY ANALYSIS 174 3.1.7 ELASTICITY ANALYSIS 180 3.1.8 MULTIPLE
INVASIBILITY ANALYSIS 181 3.2 SUMMARY OF SCENARIOS 184 3.3 SCENARIO 1:
COMPARING APPROACHES 184 3.3.1 GENERAL ASSUMPTIONS 184 3.3.2
MATHEMATICAL ASSUMPTIONS 184 3.3.3 SOLVING USING THE METHODS OF CHAPTER
2 185 3.3.4 SOLVING USING THE EIGENVALUE OF THE LESLIE MATRIX 186
CONTENTS IX 3.4 SCENARIO 2: ADDING DENSITY-DEPENDENCE 188 3.4.1 GENERAL
ASSUMPTIONS 188 3.4.2 MATHEMATICAL ASSUMPTIONS 189 3.4.3 SOLVING USING
RO AS THE FITNESS MEASURE 189 3.4.4 PAIRWISE INVASIBILITY ANALYSIS 189
3.4.5 ELASTICITY ANALYSIS 193 3.5 SCENARIO 3: FUNCTIONAL DEPENDENCE IN
THE RICKER MODEL 194 3.5.1 GENERAL ASSUMPTIONS 195 3.5.2 MATHEMATICAL
ASSUMPTIONS 195 3.5.3 PAIRWISE INVASIBILITY ANALYSIS 195 3.5.4
ELASTICITY ANALYSIS 198 3.5.5 MULTIPLE INVASIBILITY ANALYSIS 201 3.6
SCENARIO 4: THE EVOLUTION OF REPRODUCTIVE EFFORT 203 3.6.1 GENERAL
ASSUMPTIONS 203 3.6.2 MATHEMATICAL ASSUMPTIONS 203 3.6.3 PAIRWISE
INVASIBILITY ANALYSIS 204 3.6.4 ELASTICITY ANALYSIS 206 3.7 SCENARIO 5:
A TWO STAGE MODEL 208 3.7.1 GENERAL ASSUMPTIONS 208 3.7.2 MATHEMATICAL
ASSUMPTIONS 208 3.7.3 ELASTICITY ANALYSIS 210 3.7.4 PAIRWISE
INVASIBILITY ANALYSIS 211 3.8 SCENARIO 6: A CASE IN WHICH THE PUTATIVE
ESS IS NOT STABLE 213 3.8.1 GENERAL ASSUMPTIONS 213 3.8.2 MATHEMATICAL
ASSUMPTIONS 213 3.8.3 PAIRWISE INVASIBILITY ANALYSIS 213 3.8.4
ELASTICITY ANALYSIS 215 3.8.5 MULTIPLE INVASIBILITY ANALYSIS 219 3.9
SOME EXEMPLARY PAPERS 221 4 GENETIC MODELS 223 4.1 INTRODUCTION 223
4.1.1 POPULATION VARIANCE COMPONENTS (PVC) MODELS 223 4.1.2 INDIVIDUAL
VARIANCE COMPONENTS (IVC) MODELS 228 4.1.3 INDIVIDUAL LOCUS (IL) MODELS
233 4.2 SUMMARY OF SCENARIOS 243 4.3 SCENARIO 1: STABILIZING SELECTION
ON TWO TRAITS USING A PVC MODEL 243 4.3.1 GENERAL ASSUMPTIONS 244 4.3.2
MATHEMATICAL ASSUMPTIONS 244 4.3.3 ANALYSIS 244 4.4 SCENARIO 2:
STABILIZING SELECTION USING AN IVC MODEL 245 4A.1 GENERAL ASSUMPTIONS
246 4.4.2 MATHEMATICAL ASSUMPTIONS 246 4A3 ANALYSIS 246 X CONTENTS 4.5
SCENARIO 3: DIRECTIONAL SELECTION USING AN IVC MODEL 248 4.5.1 GENERAL
ASSUMPTIONS 249 4.5.2 MATHEMATICAL ASSUMPTIONS 249 4.5.3 ANALYSIS 249
4.6 SCENARIO 4: DIRECTIONAL SELECTION USING AN IL MODEL 251 4.6.1
GENERAL ASSUMPTIONS 251 4.6.2 MATHEMATICAL ASSUMPTIONS 252 4.6.3
ANALYSIS 252 4.7 SCENARIO 5: A QUANTITATIVE GENETIC ANALYSIS OF THE
RICKER MODEL 255 4.7.1 GENERAL ASSUMPTIONS 255 4.7.2 MATHEMATICAL
ASSUMPTIONS 256 4.7.3 ANALYSIS 257 4.8 SCENARIO 6: EVOLUTION OF TWO
TRAITS USING AN IVC MODEL 258 4.8.1 GENERAL ASSUMPTIONS 259 4.8.2
MATHEMATICAL ASSUMPTIONS 259 4.8.3 ANALYSIS 259 4.9 SCENARIO 7:
EVOLUTION OF TWO TRAITS USING AN IL MODEL 262 4.9.1 GENERAL ASSUMPTIONS
262 4.9.2 MATHEMATICAL ASSUMPTIONS 262 4.9.3 ANALYSIS 263 4.10 SOME
EXEMPLARY PAPERS 268 5 GAME THEORETIC MODELS 271 5.1 INTRODUCTION 271
5.1.1 FREQUENCY-INDEPENDENT MODELS 271 5.1.2 FREQUENCY-DEPENDENT MODELS
273 5.1.3 THE SIZE OF THE POPULATION 274 5.1.4 THE MODE OF INHERITANCE
IN TWO-STRATEGY GAMES 274 5.1.5 THE NUMBER OF DIFFERENT STRATEGIES 276
5.2 SUMMARY OF SCENARIOS 276 5.3 SCENARIO 1: A FREQUENCY-INDEPENDENT
GAME 277 5.3.1 GENERAL ASSUMPTIONS 277 5.3.2 MATHEMATICAL ASSUMPTIONS
277 5.3.3 PLOTTING THE FITNESS CURVES 278 5.3.4 FINDING THE ESS USING
THE CALCULUS 280 5.3.5 FINDING THE ESS USING A NUMERICAL APPROACH 282
5.4 SCENARIO 2: HAWK-DOVE GAME: A CLONAL MODEL 282 5.4.1 GENERAL
ASSUMPTIONS 282 5.4.2 MATHEMATICAL ASSUMPTIONS 283 5.4.3 FINDING THE ESS
USING A NUMERICAL APPROACH 283 5.5 SCENARIO 3: HAWK-DOVE GAME: A SIMPLE
MENDELIAN MODEL 287 5.5.1 GENERAL ASSUMPTIONS 287 5.5.2 MATHEMATICAL
ASSUMPTIONS 287 CONTENTS XI 5.5.3 A GRAPHICAL ANALYSIS 287 5.5.4 FINDING
THE ESS USING A NUMERICAL APPROACH 291 5.6 SCENARIO 4: HAWK-DOVE GAME: A
QUANTITATIVE GENETIC MODEL 294 5.6.1 GENERAL ASSUMPTIONS 294 5.6.2
MATHEMATICAL ASSUMPTIONS 294 5.6.3 A GRAPHICAL ANALYSIS 295 5.6.4
FINDING THE ESS USING A NUMERICAL APPROACH 299 5.7 SCENARIO 5:
ROCK-PAPER-SCISSORS: A CLONAL MODEL 301 5.7.1 GENERAL ASSUMPTIONS 301
5.7.2 MATHEMATICAL ASSUMPTIONS 302 5.7.3 FINDING THE ESS USING A
NUMERICAL APPROACH 302 5.8 SCENARIO 6: ROCK-PAPER-SCISSORS: A SIMPLE
MENDELIAN MODEL 306 5.8.1 GENERAL ASSUMPTIONS 306 5.8.2 MATHEMATICAL
ASSUMPTIONS 306 5.8.3 A GRAPHICAL ANALYSIS 307 5.8.4 FINDING THE ESS
USING A NUMERICAL APPROACH 313 5.9 SCENARIO 7: ROCK-PAPER-SCISSORS: A
QUANTITATIVE GENETICS MODEL 315 5.9.1 GENERAL ASSUMPTIONS 316 5.9.2
MATHEMATICAL ASSUMPTIONS 316 5.9.3 A GRAPHICAL ANALYSIS 316 5.9.4
FINDING THE ESS USING A NUMERICAL APPROACH 317 5.10 SCENARIO 8:
FREQUENCY-DEPENDENCE WITH LIMITED INTERACTIONS 322 5.10.1 GENERAL
ASSUMPTIONS 322 5.10.2 MATHEMATICAL ASSUMPTIONS 322 5.10.3 FINDING THE
ESS ANALYTICALLY 323 5.10.4 FINDING THE ESS USING A NUMERICAL APPROACH
328 5.11 SCENARIO 9: LEARNING THE ESS 331 5.11.1 GENERAL ASSUMPTIONS 331
5.11.2 MATHEMATICAL ASSUMPTIONS 331 5.11.3 FINDING THE ESS USING A
NUMERICAL APPROACH 332 5.12 SOME EXEMPLARY PAPERS 337 6 DYNAMIC
PROGRAMMING 341 6.1 INTRODUCTION 341 6.1.1 GENERAL ASSUMPTIONS IN THE
PATCH-FORAGING MODEL 341 6.1.2 MATHEMATICAL ASSUMPTIONS IN THE
PATCH-FORAGING MODEL 342 6.1.3 A FIRST LOOK AT THE MODEL 342 6.1.4 AN
ALGORITHM FOR CONSTRUCTING THE DECISION MATRIX 344 6.1.5 USING THE
DECISION MATRIX: INDIVIDUAL PREDICTION 351 6.1.6 USING THE DECISION
MATRIX: EXPECTED STATE 354 6.1.7 USING THE DECISION AND TRANSITION
DENSITY MATRICES TO GET EXPECTED CHOICES 356 6.1.8 ADJUSTING STATE
VALUES TO CORRESPOND TO INDEX VALUES 357 6.1.9 LINEAR INTERPOLATION TO
ADJUST FOR NON-INTEGER STATE VARIABLES 357 6.2 SUMMARY OF SCENARIOS 360
XLL CONTENTS 6.3 SCENARIO 1: A DIFFERENT TERMINAL FITNESS 360 6.3.1
GENERAL ASSUMPTIONS 360 6.3.2 MATHEMATICAL ASSUMPTIONS 361 6.3.3 OUTCOME
CHART AND EXPECTED LIFETIME FITNESS FUNCTION 361 6.3.4 CALCULATING THE
DECISION MATRIX 361 6.4 SCENARIO 2: TO FORAGE OR NOT TO FORAGE: WHEN
PATCHES BECOME OPTIONS 361 6.4.1 GENERAL ASSUMPTIONS 361 6.4.2
MATHEMATICAL ASSUMPTIONS 362 6.4.3 OUTCOME CHART AND EXPECTED LIFETIME
FITNESS FUNCTION 363 6.4.4 CALCULATING THE DECISION MATRIX 363 6.5
SCENARIO 3: TESTING FOR EQUIVALENT CHOICES, INDEXING, AND INTERPOLATION
367 6.5.1 GENERAL ASSUMPTIONS 367 6.5.2 MATHEMATICAL ASSUMPTIONS 367
6.5.3 OUTCOME CHART AND EXPECTED LIFETIME FITNESS FUNCTION 368 6.5.4
CALCULATING THE DECISION MATRIX 370 6.6 SCENARIO 4: HOST CHOICE IN
PARASITOIDS: FITNESS DECREASES WITH TIME 37 5 6.6.1 GENERAL ASSUMPTIONS
375 6.6.2 MATHEMATICAL ASSUMPTIONS 375 6.6.3 OUTCOME CHART AND EXPECTED
LIFETIME FITNESS FUNCTION 378 6.6.4 CALCULATING THE DECISION MATRIX 379
6.6.5 USING THE DECISION MATRIX: INDIVIDUAL PREDICTION 385 6.7 SCENARIO
5: OPTIMIZING EGG AND CLUTCH SIZE: DEALING WITH TWO STATE VARIABLES 389
6.7.1 GENERAL ASSUMPTIONS 389 6.7.2 MATHEMATICAL ASSUMPTIONS 391 6.7.3
OUTCOME CHART AND EXPECTED LIFETIME FITNESS FUNCTION 391 6.7.4
CALCULATING THE DECISION MATRIX 393 6.8 SOME EXEMPLARY PAPERS 399 6.9
MATLAB CODE 402 6.9.1 AN ALGORITHM FOR CONSTRUCTING THE DECISION MATRIX
402 6.9.2 USING THE DECISION MATRIX: INDIVIDUAL PREDICTION 404 6.9.3
USING THE DECISION MATRIX: EXPECTED STATE 406 6.9.4 SCENARIO 2:
CALCULATING THE DECISION MATRIX 407 6.9.5 SCENARIO 3: CALCULATING THE
DECISION MATRIX 409 6.9.6 SCENARIO 4: CALCULATING THE DECISION MATRIX
413 6.9.7 SCENARIO 4: USING THE DECISION MATRIX: INDIVIDUAL PREDICTION
416 6.9.8 SCENARIO 5: CALCULATING THE DECISION MATRIX 417 APPENDIX 1 423
APPENDIX 2 428 REFERENCES 435 AUTHOR INDEX 443 SUBJECT INDEX 447 CODING
INDEX 450
|
any_adam_object | 1 |
author | Roff, Derek A. |
author_facet | Roff, Derek A. |
author_role | aut |
author_sort | Roff, Derek A. |
author_variant | d a r da dar |
building | Verbundindex |
bvnumber | BV025603437 |
classification_rvk | WH 2500 |
ctrlnum | (OCoLC)587631063 (DE-599)BVBBV025603437 |
dewey-full | 576.80113 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 576 - Genetics and evolution |
dewey-raw | 576.80113 |
dewey-search | 576.80113 |
dewey-sort | 3576.80113 |
dewey-tens | 570 - Biology |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01906nam a2200481 c 4500</leader><controlfield tag="001">BV025603437</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100428 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2009 ad|| |||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199571147</subfield><subfield code="9">978-0-19-957114-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199571147</subfield><subfield code="9">0-19-957114-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)587631063</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025603437</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">576.80113</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WH 2500</subfield><subfield code="0">(DE-625)148643:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roff, Derek A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modeling evolution</subfield><subfield code="b">an introduction to numerical methods</subfield><subfield code="c">by Derek A. Roff</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 451 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Evolution</subfield><subfield code="0">(DE-588)4071050-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">MATLAB</subfield><subfield code="0">(DE-588)4329066-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020198638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-020198638</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV025603437 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:37:19Z |
institution | BVB |
isbn | 9780199571147 0199571147 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-020198638 |
oclc_num | 587631063 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XII, 451 S. Ill., graph. Darst. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Oxford University Press |
record_format | marc |
spelling | Roff, Derek A. Verfasser aut Modeling evolution an introduction to numerical methods by Derek A. Roff Oxford Oxford University Press 2009 XII, 451 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index R Programm (DE-588)4705956-4 gnd rswk-swf MATLAB (DE-588)4329066-8 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Evolution (DE-588)4071050-6 gnd rswk-swf Evolution (DE-588)4071050-6 s Computersimulation (DE-588)4148259-1 s R Programm (DE-588)4705956-4 s MATLAB (DE-588)4329066-8 s 1\p DE-604 DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020198638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Roff, Derek A. Modeling evolution an introduction to numerical methods R Programm (DE-588)4705956-4 gnd MATLAB (DE-588)4329066-8 gnd Computersimulation (DE-588)4148259-1 gnd Evolution (DE-588)4071050-6 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)4329066-8 (DE-588)4148259-1 (DE-588)4071050-6 |
title | Modeling evolution an introduction to numerical methods |
title_auth | Modeling evolution an introduction to numerical methods |
title_exact_search | Modeling evolution an introduction to numerical methods |
title_full | Modeling evolution an introduction to numerical methods by Derek A. Roff |
title_fullStr | Modeling evolution an introduction to numerical methods by Derek A. Roff |
title_full_unstemmed | Modeling evolution an introduction to numerical methods by Derek A. Roff |
title_short | Modeling evolution |
title_sort | modeling evolution an introduction to numerical methods |
title_sub | an introduction to numerical methods |
topic | R Programm (DE-588)4705956-4 gnd MATLAB (DE-588)4329066-8 gnd Computersimulation (DE-588)4148259-1 gnd Evolution (DE-588)4071050-6 gnd |
topic_facet | R Programm MATLAB Computersimulation Evolution |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=020198638&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT roffdereka modelingevolutionanintroductiontonumericalmethods |