AIP physics desk reference:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2003
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXV, 888 S. Ill. |
ISBN: | 0387989730 9780387989785 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV025260941 | ||
003 | DE-604 | ||
005 | 20140804 | ||
007 | t | ||
008 | 100417s2003 a||| |||| 00||| eng d | ||
020 | |a 0387989730 |9 0-387-98973-0 | ||
020 | |a 9780387989785 |c (softcover : alk. paper) |9 978-0-387-98978-5 | ||
035 | |a (OCoLC)248637577 | ||
035 | |a (DE-599)BVBBV025260941 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-11 | ||
082 | 0 | |a 530 | |
084 | |a UC 300 |0 (DE-625)145520: |2 rvk | ||
245 | 1 | 0 | |a AIP physics desk reference |c E. Richard Cohen... (eds.) |
250 | |a 3. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2003 | |
300 | |a XXXV, 888 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Astronomie |0 (DE-588)4003311-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4148875-1 |a Datensammlung |2 gnd-content | |
689 | 0 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Astronomie |0 (DE-588)4003311-9 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Cohen, E. Richard |4 edt | |
856 | 4 | 2 | |m SWB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019897118&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-019897118 |
Datensatz im Suchindex
_version_ | 1804142321115070464 |
---|---|
adam_text | CONTENTS
PREFACE TO THE THIRD EDITION
.............................
V
PREFACE TO THE FIRST EDITION
..............................
VII
CONTRIBUTORS
.....................................
XXXI
TABLE OF FUNDAMENTAL PHYSICAL CONSTANTS
......................
XXXV
1. SYMBOLS, UNITS, AND NOMENCLATURE
.....................
1
E. RICHARD COHEN
1.1 PHYSICAL QUANTITIES
...........................
2
1.1.1 SYMBOLS FOR QUANTITIES
.....................
2
1.1.2 SYMBOLS FOR UNITS
.......................
2
1.2 PHYSICAL UNITS
.............................
3
1.2.1 BASE UNITS
...........................
3
1.2.2 DIMENSION
...........................
3
1.3 THE INTERNATIONAL SYSTEM OF UNITS (SYST
`
EME INTERNATIONAL, SI)
.....
4
1.3.1 BASE UNITS
...........................
4
1.3.2 CONVERSION FACTORS TO SI UNITS
.................
6
1.4 RECOMMENDED SYMBOLS FOR PHYSICAL QUANTITIES
............
8
1.4.1 GENERAL PHYSICS
........................
8
1.4.2 QUANTUM MECHANICS
......................
18
1.4.3 CRYSTALLOGRAPHY
........................
18
1.4.4 NUCLEAR AND FUNDAMENTAL PARTICLES
...............
19
1.5 NOMENCLATURE CONVENTIONS IN NUCLEAR PHYSICS
.............
20
1.5.1 NUCLIDE
............................
20
1.5.2 CHARACTERIZATION OF INTERACTIONS
................
20
1.6 REFERENCES
...............................
21
2. MATHEMATICAL BASICS
.............................
22
E. RICHARD COHEN
2.1 FACTORIALS
................................
24
2.2 PROGRESSION AND SERIES
.........................
24
2.3 MEANS
.................................
24
2.4 SUMMATION FORMULAS
..........................
25
2.5 BINOMIAL THEOREM
...........................
25
2.6 QUADRATIC EQUATION
...........................
25
2.7 DIFFERENTIATION
.............................
26
2.7.1 TAYLOR SERIES
..........................
26
IX
X
CONTENTS
2.8 INTEGRATION
...............................
27
2.9 LOGARITHMIC FUNCTIONS
.........................
28
2.9.1 SERIES
.............................
28
2.10 EXPONENTIAL FUNCTIONS
.........................
28
2.10.1 DERIVATIVES
..........................
28
2.10.2 INTEGRALS
............................
29
2.11 TRIGONOMETRIC FUNCTIONS
........................
29
2.11.1 SERIES EXPANSIONS
.......................
30
2.11.2 DERIVATIVES
..........................
30
2.11.3 INTEGRALS
............................
30
2.11.4 PLANE TRIANGLES
.........................
31
2.11.5 SPHERICAL TRIANGLES
.......................
31
2.12 INVERSE TRIGONOMETRIC FUNCTIONS
....................
32
2.12.1 SERIES EXPANSIONS
.......................
32
2.12.2 DERIVATIVES
..........................
32
2.12.3 INTEGRALS
............................
32
2.13 HYPERBOLIC FUNCTIONS
..........................
33
2.13.1 SERIES EXPANSIONS
.......................
34
2.13.2 DERIVATIVES
..........................
34
2.13.3 INTEGRALS
............................
34
2.14 INVERSE HYPERBOLIC FUNCTIONS
......................
35
2.14.1 SERIES EXPANSIONS
.......................
35
2.14.2 DERIVATIVES
..........................
35
2.14.3 INTEGRALS
............................
36
2.15 GAMMA FUNCTION
............................
36
2.15.1 DEFINITE INTEGRALS
.......................
37
2.16 DELTA FUNCTION
.............................
38
2.17 VECTOR ALGEBRA
.............................
39
2.17.1 NOTATION
............................
39
2.17.2 DOT PRODUCT (SCALAR PRODUCT OR INNER PRODUCT)
.........
39
2.17.3 CROSS PRODUCT (VECTOR PRODUCT OR OUTER PRODUCT)
........
39
2.17.4 VECTOR IDENTITIES
........................
39
2.17.5 VECTOR LINEAR EQUATIONS
....................
40
2.17.6 DIFFERENTIAL OPERATORS
.....................
40
2.18 ORTHOGONAL COORDINATE SYSTEMS
....................
43
2.18.1 GRADIENT OF F ,
*
F
.......................
43
2.18.2 DIVERGENCE OF A
,
*
A
.....................
43
2.18.3 CURL OF A
,
*×
A
.......................
43
2.18.4 PROJECTED DERIVATIVE, COMPONENTS OF A
*
B
..........
44
2.18.5 DIVERGENCE OF A TENSOR
*
T
..................
45
2.18.6 SCALAR LAPLACIAN
*
2
F
.....................
46
2.18.7 VECTOR LAPLACIAN
*
2
A
.....................
46
2.19 FOURIER SERIES AND FOURIER TRANSFORMS
.................
47
2.19.1 ORTHOGONALITY CONDITION
....................
47
CONTENTS
XI
2.19.2 COMPLETENESS
.........................
48
2.19.3 CONVOLUTION
..........................
48
2.20 LAPLACE TRANSFORMS
...........................
48
2.20.1 GENERAL PROPERTIES
.......................
48
2.20.2 LINEARITY
............................
48
2.20.3 DIFFERENTIATION
.........................
48
2.20.4 BESSEL FUNCTIONS
........................
49
2.20.5 SPHERICAL HARMONICS
......................
53
2.20.6 POTENTIAL AT R
1
DUE TO A UNIT SOURCE AT R
2
............
53
2.20.7 CLEBSCH-GORDAN (WIGNER) COEFFICIENTS
.............
55
2.21 REFERENCES
...............................
56
3. ACOUSTICS
...................................
60
ROBERT T. BEYER
3.1 IMPORTANT ACOUSTICAL UNITS
.......................
62
3.2 OSCILLATIONS OF A LINEAR SYSTEM
.....................
63
3.2.1 ANALOGIES
...........................
65
3.3 GENERAL LINEAR ACOUSTICS; WAVE PROPAGATION IN FLUIDS
.........
65
3.3.1 PLANE WAVES
..........................
65
3.3.2 SPHERICAL WAVES
........................
66
3.3.3 REFLECTION AND TRANSMISSION
..................
67
3.3.4 VELOCITY AND ATTENUATION OF SOUND
...............
67
3.4 HIGH-INTENSITY SOUND; NONLINEAR ACOUSTICS
..............
72
3.4.1 LAGRANGIAN FORM OF WAVE EQUATION
..............
72
3.4.2 SOLUTIONS OF EULERIAN WAVE EQUATION
..............
73
3.4.3 BURGERS EQUATION AND OTHER APPROXIMATIONS
.........
74
3.4.4 RADIATION PRESSURE
.......................
74
3.5 ATMOSPHERIC ACOUSTICS
.........................
75
3.5.1 VELOCITY OF SOUND IN AIR
....................
75
3.5.2 REFRACTION IN A FLUID MEDIUM
.................
75
3.5.3 ATTENUATION IN ATMOSPHERE
...................
75
3.5.4 DOPPLER EFFECT
.........................
75
3.6 UNDERWATER SOUND
...........................
76
3.7 ACOUSTIC TRANSMISSION IN SOLIDS
....................
77
3.7.1 VELOCITY IN AN EXTENDED POLYCRYSTALLINE SOLID
.........
77
3.7.2 CONFIGURATIONAL DISPERSION IN A SOLID ROD
...........
77
3.7.3 ATTENUATION OF SOUND IN SOLIDS
.................
77
3.8 MOLECULAR ACOUSTICS; RELAXATION PROCESSES
...............
78
3.8.1 PROPAGATION OF SOUND
.....................
78
3.8.2 EXCESS SOUND ATTENUATION IN LIQUIDS
..............
79
3.8.3 ULTRASONIC PROPAGATION AT VERY LOW TEMPERATURES
.......
79
3.9 BUBBLES, CAVITATION, SONOLUMINESCENCE
................
80
3.9.1 CAVITATION
...........................
80
3.9.2 SONOLUMINESCENCE
.......................
81
XII
CONTENTS
3.10 NONDESTRUCTIVE TESTING, ULTRASONIC IMAGING
..............
81
3.10.1 NONDESTRUCTIVE TESTING
.....................
81
3.10.2 ULTRASONIC IMAGING
......................
81
3.11 NOISE AND ITS CONTROL
..........................
81
3.11.1 ACTIVE SUPPRESSION OF NOISE
..................
82
3.12 ROOM AND ARCHITECTURAL ACOUSTICS
...................
83
3.12.1 SABINE S FORMULA
.......................
83
3.12.2 PRACTICAL ARCHITECTURAL ACOUSTICS
................
83
3.13 PHYSIOLOGICAL AND PSYCHOLOGICAL ACOUSTICS
...............
85
3.13.1 LOUDNESS AND LOUDNESS LEVEL
.................
85
3.13.2 AUDITORY SENSATION AREA
....................
86
3.13.3 MASKING
............................
86
3.13.4 TEMPORARY THRESHOLD SHIFT (TTS)
...............
86
3.13.5 PITCH
..............................
87
3.13.6 BINAURAL HEARING
........................
87
3.13.7 AUDIOGRAM
..........................
87
3.14 SPEECH COMMUNICATION
........................
88
3.15 BIOACOUSTICS
..............................
88
3.16 MUSICAL ACOUSTICS
...........................
89
3.16.1 RESONANCE FREQUENCIES FOR AN ORGAN PIPE
...........
89
3.16.2 RESONANCE FREQUENCIES FOR A RECTANGULAR MEMBRANE
......
89
3.16.3 RESONANCE FREQUENCIES FOR A CIRCULAR MEMBRANE
........
89
3.17 ACOUSTICAL MEASUREMENTS AND INSTRUMENTS
...............
89
3.17.1 ABSOLUTE MEASUREMENT OF SOUND INTENSITY
...........
90
3.17.2 CALIBRATION OF MICROPHONES
..................
90
3.17.3 FREQUENCY MEASUREMENT
....................
90
3.17.4 ACOUSTIC FILTER
.........................
91
3.18 REFERENCES
...............................
91
4. ASTRONOMY
..................................
93
JAY M. PASACHOFF
4.1 BASIC DATA
...............................
94
4.2 SOLAR SYSTEMS
.............................
95
4.3 STARS AND THE MILKY WAY
........................
100
4.4 TIME AND PLANETARY POSITIONS
......................
112
5. ASTROPHYSICS AND COSMOLOGY
.........................
119
VIRGINIA TRIMBLE
5.1 STELLAR ASTRONOMY
...........................
120
5.1.1 STELLAR STRUCTURE AND EVOLUTION
.................
120
5.1.2 STELLAR ATMOSPHERES
......................
121
5.1.3 NUCLEAR REACTIONS, ENERGY GENERATION, AND NUCLEOSYNTHESIS
..
123
5.2 BINARY STARS
..............................
127
5.2.1 SIGNIFICANCE
..........................
127
5.2.2 EVOLUTION OF BINARY STARS
...................
128
CONTENTS
XIII
5.3 STAR CLUSTERS, INTERSTELLAR MEDIUM, AND THE MILKY WAY
........
128
5.3.1 STAR CLUSTERS
..........................
128
5.3.2 THE GALACTIC CENTER
......................
130
5.3.3 THE MILKY WAY: GENERAL PROPERTIES
..............
130
5.3.4 BACKGROUNDS
.........................
130
5.4 GALAXIES
................................
131
5.4.1 TYPES AND THEIR PROPERTIES
...................
131
5.4.2 DARK MATTER
..........................
133
5.4.3 FORMATION AND EVOLUTION OF GALAXIES
..............
134
5.4.4 COLLECTIVE PROPERTIES, CLUSTERING, AND LARGE-SCALE STRUCTURE
...
135
5.5 HIGH-ENERGY ASTROPHYSICS
.......................
136
5.5.1 BASIC PHYSICAL MECHANISMS
..................
136
5.5.2 NEUTRON STARS AND BLACK HOLES AS ENDPOINTS OF STELLAR EVOLUTION
137
5.5.3 PULSARS AND X-RAY BINARIES
...................
137
5.5.4 SUPERNOVAE
..........................
138
5.5.5 QUASARS AND OTHER ACTIVE GALAXIES
...............
139
5.5.6 GAMMA RAY BURSTERS
......................
140
5.6 COSMOLOGY
...............................
141
5.6.1 EVIDENCE THAT THE UNIVERSE IS EXPANDING AND EXPERIENCED A BIG
BANG
..............................
141
5.6.2 THE FRIEDMANN-ROBERTSON-WALKER METRIC
...........
141
5.6.3 BIG-BANG NUCLEOSYNTHESIS
...................
142
5.6.4 BEST VALUES OF THE PARAMETERS FOR A RELATIVISTIC UNIVERSE
...
143
5.6.5 CONNECTIONS WITH PARTICLE PHYSICS
..............
144
5.7 REFERENCES
...............................
144
6. ATOMIC AND MOLECULAR COLLISION PROCESSES
.................
145
M. R. FLANNERY
6.1 INTRODUCTION
..............................
147
6.2 COLLISIONS
................................
148
6.2.1 DIFFERENTIAL AND INTEGRAL CROSS SECTIONS
............
148
6.2.2 COLLISION RATES, COLLISION FREQUENCY, AND PATH LENGTH
......
149
6.2.3 ENERGY AND ANGULAR MOMENTUM: CENTER OF MASS AND RELATIVE
.
150
6.2.4 ELASTIC SCATTERING
.......................
151
6.2.5 INELASTIC SCATTERING
.......................
151
6.2.6 REACTIVE SCATTERING
......................
151
6.2.7 CENTER-OF-MASS TO LABORATORY CROSS-SECTION CONVERSION
....
151
6.3 GENERAL COLLISION PROPERTIES
......................
153
6.3.1 MOMENTUM TRANSFER
......................
153
6.3.2 MOMENTUM TRANSFER CROSS SECTION
...............
153
6.3.3 ENERGY TRANSFER
........................
154
6.3.4 ENERGY TRANSFER CROSS SECTIONS
.................
156
6.3.5 ATOMIC UNITS
..........................
159
6.3.6 ENERGY CONVERSION FACTORS
...................
159
6.3.7 RYDBERG PROPERTIES
......................
160
XIV
CONTENTS
6.4 EQUILIBRIUM DISTRIBUTIONS
........................
163
6.4.1 MAXWELL VELOCITY DISTRIBUTION FOR FREE PARTICLES
........
163
6.4.2 TWO TEMPERATURE MAXWELL DISTRIBUTIONS
............
164
6.4.3 BOLTZMANN DISTRIBUTION
....................
165
6.4.4 CLASSICAL STATISTICAL WEIGHTS
..................
167
6.4.5 ASSOCIATION/DISSOCIATION EQUATION
...............
171
6.4.6 SAHA S IONIZATION EQUATIONS
..................
171
6.4.7 MACROSCOPIC DETAILED BALANCE
.................
173
6.4.8 PLANCK S EQUILIBRIUM DISTRIBUTION
...............
174
6.4.9 BOLTZMANN EQUATION
......................
175
6.5 MACROSCOPIC RATE COEFFICIENTS
.....................
175
6.5.1 SCATTERING RATE
.........................
175
6.5.2 ENERGY TRANSFER RATE
......................
176
6.5.3 TRANSPORT CROSS SECTIONS AND COLLISION INTEGRALS
........
177
6.6 QUANTAL TRANSITION RATES AND CROSS SECTIONS
..............
178
6.6.1 MICROSCOPIC RATE OF TRANSITIONS
................
178
6.6.2 DETAILED BALANCE BETWEEN RATES
................
179
6.6.3 ENERGY DENSITY OF CONTINUUM STATES
..............
180
6.6.4 INELASTIC CROSS SECTIONS
....................
181
6.6.5 DETAILED BALANCE BETWEEN CROSS SECTIONS
............
182
6.6.6 EXAMPLES OF DETAILED BALANCE
.................
182
6.6.7 FOUR USEFUL EXPRESSIONS FOR THE CROSS SECTION
.........
183
6.7 BORN CROSS SECTIONS
..........................
186
6.7.1 FERMI GOLDEN RULES
......................
187
6.7.2 ION (ELECTRON)-ATOM COLLISIONS
.................
188
6.7.3 ATOM-ATOM COLLISIONS
.....................
189
6.7.4 QUANTAL AND CLASSICAL IMPULSE CROSS SECTIONS
.........
189
6.7.5 ATOMIC FORM FACTOR AND GENERALIZED OSCILLATOR STRENGTH
....
190
6.7.6 FORM FACTORS FOR ATOMIC HYDROGEN
...............
191
6.7.7 ROTATIONAL EXCITATION
.....................
192
6.7.8 LIST OF BORN CROSS SECTIONS FOR MODEL POTENTIALS
........
193
6.8 QUANTAL POTENTIAL SCATTERING
......................
194
6.8.1 PARTIAL WAVE EXPANSION
....................
195
6.8.2 SCATTERING AMPLITUDES
.....................
196
6.8.3 INTEGRAL CROSS SECTIONS
.....................
197
6.8.4 DIFFERENTIAL CROSS SECTIONS
...................
197
6.8.5 OPTICAL THEOREM
........................
199
6.8.6 LEVINSON S THEOREM
......................
200
6.8.7 PARTIAL WAVE EXPANSION FOR TRANSPORT CROSS SECTIONS
......
200
6.8.8 BORN PHASE SHIFTS
.......................
201
6.8.9 COULOMB SCATTERING
......................
202
6.9 COLLISIONS BETWEEN IDENTICAL PARTICLES
.................
202
6.9.1 FERMION AND BOSON SCATTERING
.................
203
CONTENTS
XV
6.9.2 COULOMB SCATTERING OF TWO IDENTICAL PARTICLES
.........
204
6.9.3 SCATTERING OF IDENTICAL ATOMS
.................
205
6.10 CLASSICAL POTENTIAL SCATTERING
......................
206
6.10.1 DEFLECTION FUNCTIONS
......................
206
6.10.2 CLASSICAL CROSS SECTIONS
....................
207
6.10.3 ORBITING CROSS SECTIONS
....................
209
6.11 QUANTAL INELASTIC HEAVY-PARTICLE COLLISIONS
..............
211
6.11.1 ADIABATIC FORMULATION (KINETIC COUPLING SCHEME)
.......
211
6.11.2 DIABATIC FORMULATION (POTENTIAL COUPLING SCHEME)
.......
212
6.11.3 INELASTIC SCATTERING BY A CENTRAL FIELD
..............
213
6.11.4 TWO-STATE TREATMENT
......................
214
6.11.5 EXACT RESONANCE
........................
215
6.11.6 PARTIAL WAVE ANALYSIS
.....................
217
6.11.7 CLOSE COUPLING EQUATIONS FOR ELECTRON-ATOM (ION) COLLISIONS
..
217
6.12 SEMICLASSICAL INELASTIC SCATTERING
....................
219
6.12.1 CLASSICAL PATH THEORY
.....................
220
6.12.2 LANDAU-ZENER CROSS SECTION
..................
221
6.12.3 EIKONAL THEORIES
........................
221
6.13 LONG-RANGE INTERACTIONS
........................
224
6.13.1 POLARIZATION, ELECTROSTATIC, AND DISPERSION INTERACTIONS
.....
224
6.14 RADIATIVE PROCESSES
...........................
225
6.14.1 PHOTON SCATTERING BY FREE AND BOUND ELECTRONS
.........
225
6.14.2 RADIATIVE EMISSION RATE
....................
228
6.14.3 CROSS SECTION FOR RADIATIVE RECOMBINATION
...........
233
6.14.4 RADIATIVE RECOMBINATION RATE
.................
234
6.14.5 DIELECTRONIC RECOMBINATION CROSS SECTION
...........
236
6.14.6 BREMSSTRAHLUNG
........................
236
6.14.7 BREMSSTRAHLUNG CROSS SECTION
.................
237
6.14.8 DIPOLE TRANSITION MATRIX ELEMENTS
...............
237
6.15 ATOMIC AND MOLECULAR DATABASES
....................
238
6.16 GENERAL REFERENCES
...........................
239
6.17 REFERENCES
...............................
240
7. ATOMIC SPECTROSCOPY
.............................
242
WOLFGANG L. WIESE
7.1 INTRODUCTION
..............................
243
7.2 PHOTON ENERGIES, FREQUENCIES, AND WAVELENGTHS
............
243
7.2.1 PHOTON ENERGY
.........................
243
7.2.2 FREQUENCY, WAVELENGTH, WAVENUMBER
.............
244
7.2.3 SPECTRAL WAVELENGTH RANGES
..................
244
7.2.4 WAVELENGTHS IN AIR
.......................
244
7.2.5 WAVELENGTH STANDARDS
.....................
244
7.2.6 ENERGY CONVERSION FACTORS
...................
245
7.3 ATOMIC STATES, ATOMIC SHELL STRUCTURE
.................
245
XVI
CONTENTS
7.3.1 QUANTUM NUMBERS
.......................
245
7.3.2 PAULI EXCLUSION PRINCIPLE, ATOMIC SHELLS
............
245
7.4 THE HYDROGEN SPECTRUM
........................
246
7.5 ALKALI SPECTRA
.............................
246
7.6 ATOMIC STATES AND SPECTRA FOR MANY-ELECTRON ATOMS
.........
247
7.6.1 TYPICAL FEATURES, GENERAL QUANTUM DESIGNATIONS
........
247
7.6.2 RUSSELL-SAUNDERS OR LS-COUPLING
...............
247
7.6.3 CUSTOMARY NOTATION, SAMPLE CASE
...............
248
7.6.4 OTHER COUPLING SCHEMES
....................
248
7.7 ATOMIC STRUCTURE HIERARCHIES, SELECTION RULES FOR DISCRETE
TRANSITIONS 250
7.7.1 ATOMIC STRUCTURE HIERARCHIES
..................
250
7.7.2 SELECTION RULES FOR DISCRETE TRANSITIONS
.............
251
7.8 SPECTRAL LINE INTENSITIES, ATOMIC TRANSITION PROBABILITIES, F
-VALUES,
AND LINE STRENGTHS
...........................
252
7.8.1 EMISSION INTENSITIES
......................
252
7.8.2 ABSORPTION INTENSITIES
.....................
252
7.8.3 LINE STRENGTHS
.........................
252
7.8.4 RELATIONSHIPS AMONG A, F ,ANDS
...............
253
7.8.5 RELATIONSHIPS BETWEEN SPECTRAL LINE AND MULTIPLET VALUES
...
254
7.8.6 TABULATIONS
..........................
254
7.9 ATOMIC (RADIATIVE) LIFETIMES
......................
257
7.10 SCALING, SYSTEMATIC TRENDS (REGULARITIES), AND IMPORTANT
CHARACTERISTICS
OF SPECTRA
...............................
258
7.10.1 HYDROGENIC (ONE-ELECTRON) SPECIES
..............
258
7.10.2 ATOMS AND IONS WITH TWO OR MORE ELECTRONS
..........
259
7.10.3 IMPORTANT CHARACTERISTICS OF COMPLEX SPECTRA
.........
259
7.11 SPECTRAL LINE SHAPES, WIDTHS, AND SHIFTS
................
260
7.11.1 DOPPLER BROADENING
......................
260
7.11.2 PRESSURE BROADENING
......................
261
7.12 SPECTRAL CONTINUUM RADIATION
.....................
262
7.12.1 HYDROGENIC SPECIES
......................
262
7.12.2 MANY-ELECTRON SYSTEMS
....................
263
7.13 SOURCES OF SPECTROSCOPIC DATA
.....................
263
7.14 REFERENCES
...............................
263
8. BIOLOGICAL PHYSICS
...............................
265
ELIAS GREENBAUM AND VICTOR BLOOMFIELD
8.1 INTRODUCTION
..............................
267
8.2 INTERMOLECULAR FORCES
.........................
267
8.2.1 ELEMENTARY ELECTROSTATIC AND DISPERSION INTERACTIONS
......
267
8.2.2 FORCE FIELDS
..........................
268
8.2.3 INTERACTIONS IN WATER
......................
268
8.2.4 IONIC SOLUTIONS AND POLYELECTROLYTES
..............
269
8.3 NUCLEIC ACIDS
.............................
269
8.3.1 STRUCTURES OF NUCLEIC ACID BASES AND NUCLEOTIDES
........
269
CONTENTS
XVII
8.3.2 ENERGETICS OF BENDING AND TWISTING
..............
271
8.3.3 SUPERCOILED DNA
.......................
271
8.4 PROTEINS AND AMINO ACIDS
.......................
272
8.4.1 PEPTIDE BOND AND POLYPEPTIDE CONFORMATIONS
.........
273
8.4.2 HELIX-COIL TRANSITION AND PROTEIN FOLDING
............
274
8.5 BINDING THERMODYNAMICS
.......................
274
8.6 NUCLEAR MAGNETIC RESONANCE
......................
275
8.7 ELECTRON PARAMAGNETIC RESONANCE
...................
278
8.8 THERMODYNAMICS, MITOCHRONDRIA, AND CHLOROPLASTS
..........
280
8.8.1 FREE-ENERGY CHANGE OF A CHEMICAL REACTION
..........
280
8.8.2 ELECTRICAL AND CHEMICAL WORK
.................
281
8.8.3 ION GRADIENTS, ACTIVE TRANSPORT, AND ATP SYNTHESIS
.......
282
8.8.4 MITOCHONDRIA
.........................
283
8.8.5 CHLOROPLASTS
..........................
284
8.9 SIGNALING AND TRANSPORT ACROSS CELL MEMBRANES
............
284
8.9.1 RECEPTORS
...........................
287
8.9.2 TRANSPORTERS
..........................
288
8.9.3 CHANNELS AND PUMPS
.....................
288
8.10 ELECTROPHYSIOLOGY
...........................
289
8.10.1 IMPULSES IN NERVE AND MUSCLE CELLS
..............
289
8.10.2 PROPERTIES OF NERVE AND MUSCLE CELLS
..............
289
8.10.3 AXONS: THE CABLE MODEL
....................
291
8.10.4 MODELS FOR MEMBRANE CURRENT DENSITY
.............
291
8.11 PHOTOBIOPHYSICS
............................
293
8.12 MUSCLE AND CONTRACTILITY
........................
295
8.13 CHARACTERIZING BIOPOLYMERS IN SOLUTION
................
297
8.13.1 SEDIMENTATION AND DIFFUSION
..................
297
8.13.2 SEDIMENTATION EQUILIBRIUM
..................
298
8.13.3 ROTATIONAL MOTION
.......................
298
8.13.4 FRICTIONAL COEFFICIENTS
.....................
298
8.13.5 ELECTROPHORESIS AND GEL ELECTROPHORESIS
............
298
8.13.6 SCATTERING
...........................
298
8.13.7 DYNAMIC LIGHT SCATTERING
...................
300
8.14 BIOPHYSICS, THE HEALTH SCIENCES, AND EMERGING TECHNOLOGY
......
300
8.15 REFERENCES
...............................
304
8.15.1 GENERAL REFERENCES
.......................
304
8.15.2 ON-LINE RESOURCES
.......................
304
8.15.3 SPECIFIC REFERENCES
......................
304
9. CRYSTALLOGRAPHY
...............................
306
GEORGE A. JEFFREY AND VICKY LYNN KAREN
9.1 HISTORICAL SKETCH
............................
307
9.2 CRYSTAL DATA AND SYMMETRY
......................
309
9.2.1 CRYSTAL SYSTEM, SPACE GROUP, LATTICE CONSTANTS, AND
STRUCTURE TYPE
.........................
309
XVIII
CONTENTS
9.2.2 REDUCED CELLS
.........................
315
9.2.3 PHYSICAL PROPERTIES OF CRYSTALS
.................
316
9.3 CRYSTAL DIFFRACTION
...........................
316
9.3.1 CONDITIONS FOR DIFFRACTION
...................
316
9.3.2 SINGLE-CRYSTAL DIFFRACTOMETER
.................
319
9.3.3 ABSORPTION
..........................
321
9.3.4 X-RAY ABSORPTION CORRECTIONS
.................
321
9.3.5 EXTINCTION
...........................
323
9.3.6 MULTIPLE REFLECTIONS
......................
323
9.3.7 DIFFRACTION BY PERFECT CRYSTALS
.................
324
9.3.8 BORRMANN OR ANOMALOUS TRANSMISSION EFFECT
.......
324
9.3.9 KOSSEL AND KIKUCHI LINES
...................
324
9.3.10 POWDER DIFFRACTOMETRY
.....................
325
9.3.11 POWDER DIFFRACTION PROFILE REFINEMENT: RIETVELD METHOD
....
326
9.4 STRUCTURE FACTOR
.............................
326
9.4.1 ATOMIC SCATTERING FACTORS F
I
(
S
) ................
326
9.4.2 DISPERSION CORRECTIONS FOR X-RAY ATOMIC SCATTERING FACTORS
...
328
9.4.3 GEOMETRICAL STRUCTURE FACTOR
..................
331
9.4.4 UNITARY AND NORMALIZED STRUCTURE FACTORS
...........
332
9.5 THERMAL MOTION
............................
332
9.6 DIFFRACTING DENSITY FUNCTION
......................
335
9.7 PHASE PROBLEM
.............................
336
9.7.1 PHASE-SOLVING METHODS
....................
336
9.7.2 PATTERSON SYNTHESIS
......................
337
9.7.3 DIRECT METHODS
........................
337
9.8 CRYSTAL STRUCTURE REFINEMENT: METHOD OF LEAST SQUARES
........
337
9.9 REFERENCES
...............................
339
9.10 APPENDIX: CRYSTALLOGRAPHIC DATA SOURCES
...............
343
9.10.1 INTRODUCTION
..........................
343
9.10.2 CATEGORIES, QUALITY, AND DESCRIPTION
..............
343
9.10.3 MAJOR SOURCES OF CRYSTALLOGRAPHIC DATA
............
344
10. EARTH, OCEAN, AND ATMOSPHERE PHYSICS
...................
349
FERRIS WEBSTER
10.1 INTRODUCTION
..............................
350
10.2 PROPERTIES OF PLANET EARTH
........................
350
10.2.1 PLANETARY DIMENSIONS AND CONSTANTS
..............
350
10.2.2 OCEAN AREAS, VOLUMES, AND DEPTHS
...............
351
10.3 OCEAN
..................................
353
10.3.1 SEAWATER PROPERTIES
......................
353
10.3.2 AIR-SEA INTERACTION
.......................
359
10.3.3 TIDES
.............................
360
10.3.4 WAVES
.............................
361
10.3.5 GEOPHYSICAL FLUID DYNAMICS
..................
362
10.4 ATMOSPHERE
...............................
363
CONTENTS
XIX
10.4.1 PRINCIPAL ATMOSPHERIC CONSTITUENTS
..............
363
10.4.2 PROPERTIES OF MOIST AIR
.....................
363
10.4.3 PROPERTIES OF DRY AIR
......................
364
10.4.4 U.S. STANDARD ATMOSPHERE (1976)
...............
365
10.5 GLOBAL CLIMATE
.............................
370
10.5.1 EARTH S RADIATION BALANCE
...................
370
10.5.2 GLOBAL TEMPERATURE TRENDS
...................
371
10.5.3 ATMOSPHERIC CO
2
CONCENTRATIONS
...............
374
10.6 REFERENCES
...............................
375
11. ELECTRICITY AND MAGNETISM
..........................
376
DAVID J. GRIFFITHS
11.1 INTRODUCTION
..............................
377
11.2 ELECTROSTATICS
..............................
377
11.3 MAGNETOSTATICS
.............................
380
11.4 ELECTRODYNAMICS
............................
382
11.5 CONSERVATION LAWS
...........................
386
11.6 ELECTROMAGNETIC WAVES
.........................
387
11.7 RADIATION
................................
390
11.8 RELATIVISTIC FORMULATION
........................
393
11.9 CIRCUITS
.................................
395
11.10 UNITS
..................................
398
11.11 REFERENCES
...............................
400
12. ELEMENTARY PARTICLES
.............................
402
H. SCHELLMAN
12.1 THE STANDARD MODEL
..........................
403
12.1.1 FUNDAMENTAL FERMIONS
.....................
403
12.1.2 ELECTROWEAK COUPLINGS
....................
404
12.1.3 ELECTROWEAK LAGRANGIAN
....................
404
12.1.4 CABIBBO-KOBAYASHI-MASKAWA MIXING MATRIX
.........
405
12.1.5 CP VIOLATION IN THE KAON SYSTEM
................
406
12.1.6 NEUTRINO MASSES AND MIXING
..................
407
12.1.7 STRONG INTERACTIONS
......................
408
12.2 SELECTED PARTICLE PROPERTIES
.......................
408
12.3 KINEMATICS
...............................
410
12.3.1 RELATIVISTIC KINEMATICS OF REACTIONS AND DECAYS
........
410
12.3.2 BOOST OF A FOUR-VECTOR
.....................
411
12.3.3 DECAY LENGTH DISTRIBUTION
...................
411
12.3.4 TWO-BODY DECAYS
.......................
411
12.3.5 THREE-BODY DECAYS
......................
411
12.3.6 TWO-BODY REACTIONS
......................
412
12.3.7 MANDELSTAM VARIABLES
.....................
412
12.3.8 TRANSFORMATIONS BETWEEN THE LABORATORY AND THE CENTER
OF MASS FRAMES
........................
413
XX
CONTENTS
12.3.9 IN SPECIFIC FRAMES
.......................
413
12.3.10 LEPTON SCATTERING
.......................
413
12.3.11 INCLUSIVE PARTICLE PRODUCTION
.................
414
12.4 DECAYS AND CROSS SECTIONS
.......................
414
12.4.1 LEPTON SCATTERING
.......................
414
12.4.2 E
+
E
*
SCATTERING
........................
416
12.4.3 RESONANCE PRODUCTION
.....................
416
12.4.4 HADRON SCATTERING
.......................
417
12.4.5 FRAGMENTATION
.........................
417
12.4.6 TYPICAL INTERACTION CROSS SECTIONS
...............
417
12.5 PARTICLE DETECTORS
............................
418
12.5.1 CHERENKOV RADIATION
......................
418
12.5.2 IONIZATION ENERGY LOSS
.....................
418
12.5.3 MULTIPLE SCATTERING THROUGH SMALL ANGLES
...........
419
12.5.4 CHARGED PARTICLE TRAJECTORIES
..................
419
12.5.5 CALORIMETRY
..........................
424
12.6 REFERENCES
...............................
424
13. FLUID DYNAMICS
................................
425
STAVROS TAVOULARIS
13.1 INTRODUCTION
..............................
426
13.2 PROPERTIES OF COMMON FLUIDS
......................
427
13.3 MATHEMATICAL DESCRIPTION
.......................
429
13.3.1 EQUATIONS OF MOTION
......................
429
13.3.2 DIMENSIONLESS PARAMETERS
...................
431
13.3.3 SOME LAMINAR SOLUTIONS
....................
433
13.4 INSTABILITY, TRANSITION, AND TURBULENCE
.................
434
13.4.1 HYDRODYNAMIC STABILITY
....................
434
13.4.2 TRANSITION
...........................
434
13.4.3 TURBULENCE
..........................
435
13.5 FRICTION AND DRAG
............................
435
13.6 GAS DYNAMICS
.............................
437
13.6.1 WAVE PROPAGATION IN FLUIDS
..................
437
13.6.2 ONE-DIMENSIONAL, ISENTROPIC, COMPRESSIBLE FLOW
........
437
13.6.3 SHOCK WAVES
..........................
438
13.7 MEASUREMENT IN FLUIDS
.........................
439
13.7.1 BULK FLOW MEASUREMENT
....................
439
13.7.2 FLOW VISUALIZATION
.......................
439
13.7.3 PRESSURE MEASUREMENT
.....................
439
13.7.4 VELOCITY MEASUREMENT
.....................
440
13.7.5 TEMPERATURE MEASUREMENT
...................
440
13.7.6 THE FLUID MECHANICS LABORATORY
................
441
13.8 REFERENCES
...............................
441
CONTENTS
XXI
14. MECHANICS
...................................
444
FLORIAN SCHECK
14.1 INTRODUCTION
..............................
445
14.2 NEWTONIAN MECHANICS
.........................
445
14.2.1 NEWTON S LAWS AND INERTIAL FRAMES
...............
445
14.2.2 KEPLER S LAWS FOR PLANETARY MOTION
..............
447
14.2.3 PHASE SPACE AND DETERMINISM
.................
448
14.3 CANONICAL MECHANICS
..........................
450
14.3.1 LAGRANGIAN FUNCTIONS AND EULER-LAGRANGE EQUATIONS
.....
450
14.3.2 HAMILTONIAN SYSTEMS
.....................
451
14.3.3 CANONICAL TRANSFORMATIONS AND HAMILTON-JACOBI EQUATION
...
452
14.3.4 ACTION-ANGLE VARIABLES, MANIFOLDS OF MOTION
.........
454
14.4 RIGID BODIES
..............................
455
14.4.1 THE INERTIA TENSOR
.......................
455
14.4.2 EULER S EQUATIONS
.......................
457
14.4.3 SPINNING TOPS
.........................
458
14.5 RELATIVISTIC KINEMATICS
.........................
458
14.5.1 LORENTZ TRANSFORMATIONS AND DECOMPOSITION THEOREM
.....
459
14.5.2 CAUSAL ORBITS, ENERGY, AND MOMENTUM
.............
460
14.5.3 TIME DILATATION AND SCALE CONTRACTION
.............
461
14.5.4 MOTION OF FREE PARTICLES IN SRT AND GRT
...........
462
14.6 HAMILTONIAN DYNAMICAL SYSTEMS
....................
464
14.6.1 LONG-TERM BEHAVIOR OF MECHANICAL SYSTEMS
..........
464
14.6.2 DETERMINISTIC CHAOS IN HAMILTONIAN SYSTEMS
.........
465
14.7 REFERENCES
...............................
465
15. MEDICAL PHYSICS
................................
467
WILLIAM R. HENDEE AND MICHAEL YESTER
15.1 INTRODUCTION
..............................
469
15.1.1 IMAGING
............................
469
15.2 IONIZING RADIATION: X- AND
*
-RAYS
...................
470
15.2.1 INTERACTION OF X- AND
*
-RAYS WITH TISSUE
............
470
15.2.2 X-RAY DOSAGE
.........................
472
15.2.3 X-RAY IMAGE CONTRAST
.....................
478
15.3 IONIZING RADIATION: ELECTRONS
......................
478
15.4 HEALTH RISKS
..............................
480
15.5 ULTRASOUND
...............................
480
15.6 MAGNETIC RESONANCE
..........................
480
15.7 BRACHYTHERAPY
.............................
483
15.8 NUCLEAR MEDICINE
............................
487
15.9 REFERENCES
...............................
489
16. MOLECULAR SPECTROSCOPY AND STRUCTURE
...................
492
PETER F. BERNATH
16.1 INTRODUCTION
..............................
493
XXII
CONTENTS
16.2 ROTATIONAL SPECTROSCOPY
........................
493
16.2.1 DIATOMICS
...........................
494
16.2.2 LINEAR MOLECULES
.......................
498
16.2.3 SYMMETRIC TOPS
........................
498
16.2.4 ASYMMETRIC TOPS
.......................
499
16.2.5 SPHERICAL TOPS
.........................
502
16.3 VIBRATIONAL SPECTROSCOPY
........................
502
16.3.1 DIATOMICS
...........................
503
16.3.2 LINEAR MOLECULES
.......................
507
16.3.3 SYMMETRIC TOPS
........................
509
16.3.4 ASYMMETRIC TOPS
.......................
511
16.3.5 SPHERICAL TOPS
.........................
511
16.3.6 RAMAN SPECTROSCOPY
.....................
512
16.4 ELECTRONIC SPECTRA
...........................
513
16.4.1 DIATOMICS
...........................
514
16.4.2 POLYATOMICS
..........................
517
16.5 STRUCTURE DETERMINATION
........................
517
16.6 REFERENCES
...............................
520
17. NONLINEAR PHYSICS AND COMPLEXITY
.....................
522
PAUL MANNEVILLE
17.1 DYNAMICAL SYSTEMS AND BIFURCATIONS
..................
523
17.1.1 PRELIMINARIES
.........................
523
17.1.2 TANGENT DYNAMICS AND CENTER-MANIFOLD REDUCTION
.......
525
17.1.3 BIFURCATIONS
..........................
527
17.2 CHAOS AND FRACTALS
...........................
529
17.2.1 THE NATURE OF CHAOS
......................
531
17.2.2 FRACTAL PROPERTIES AND DIMENSIONS
...............
532
17.2.3 ROUTES TO CHAOS
........................
534
17.2.4 APPLIED NONLINEAR DYNAMICS
..................
535
17.3 SPACE-TIME DYNAMICAL SYSTEMS
....................
536
17.3.1 CLASSIFICATION OF INSTABILITIES AND THE MODELING ISSUE
.....
536
17.3.2 CONTINUOUS APPROACH TO SPACE-TIME BEHAVIOR
.........
537
17.3.3 DISCRETE APPROACH TO SPACE-TIME BEHAVIOR
...........
539
17.4 REFERENCES
...............................
542
18. NUCLEAR PHYSICS
................................
544
KENNETH S. KRANE
18.1 NUCLEAR PROPERTIES
...........................
545
18.1.1 SIZE AND SHAPE OF NUCLEI
....................
545
18.1.2 MASS AND BINDING ENERGY
...................
546
18.1.3 ELECTROMAGNETIC MOMENTS
...................
546
18.1.4 ISOSPIN IN NUCLEI
........................
548
18.2 RADIOACTIVE DECAY
...........................
549
18.2.1 RADIOACTIVE DECAY LAWS
....................
549
CONTENTS
XXIII
18.2.2 ALPHA DECAY
..........................
550
18.2.3 BETA DECAY
...........................
551
18.2.4 GAMMA DECAY
.........................
552
18.2.5 INTERNAL CONVERSION
......................
553
18.2.6 UNITS FOR RADIOACTIVITY
.....................
554
18.3 NUCLEAR MODELS
.............................
555
18.3.1 THE SHELL MODEL
........................
555
18.3.2 THE DEFORMED SHELL MODEL
...................
556
18.3.3 THE COLLECTIVE MODEL
.....................
556
18.4 INTERACTION OF NUCLEAR RADIATION WITH MATTER
..............
559
18.4.1 HEAVY CHARGED PARTICLES
....................
559
18.4.2 ELECTRONS
...........................
560
18.4.3 ELECTROMAGNETIC RADIATION
...................
561
18.4.4 NEUTRONS
............................
562
18.5 NUCLEAR REACTIONS
...........................
563
18.5.1 NONRELATIVISTIC KINEMATICS
...................
563
18.5.2 CROSS SECTIONS
.........................
564
18.6 COMPILATIONS OF NUCLEAR DATA
......................
565
18.7 REFERENCES
...............................
566
19. OPTICS
.....................................
568
JOSEPH READER
19.1 REFLECTION AND REFRACTION
........................
570
19.1.1 REFLECTION
...........................
570
19.1.2 INDEX OF REFRACTION
.......................
570
19.1.3 REFRACTION AT A PLANE SURFACE
.................
572
19.1.4 COEFFICIENTS OF REFLECTANCE AND TRANSMITTANCE
.........
572
19.1.5 REFLECTANCE AND TRANSMITTANCE AT NORMAL INCIDENCE
......
573
19.1.6 BREWSTER S ANGLE OF REFLECTION
.................
573
19.1.7 TOTAL INTERNAL REFLECTION
....................
574
19.1.8 BEAM DISPLACEMENT BY A PLANE PARALLEL PLATE
.........
575
19.1.9 PRISMS
.............................
575
19.1.10 REFRACTION AT A SPHERICAL SURFACE
................
576
19.2 ABSORPTION
...............................
577
19.2.1 INTERNAL TRANSMITTANCE AND TOTAL TRANSMITTANCE
.........
577
19.2.2 OPTICAL DENSITY
........................
577
19.3 LENSES
.................................
578
19.3.1 IMAGING BY LENSES
.......................
578
19.3.2 MINIMUM FOCAL DISTANCE
....................
580
19.3.3 LENS POWER AND F-NUMBER
..................
580
19.3.4 LENS MAKER S FORMULA
.....................
580
19.3.5 THIN LENSES IN COMBINATION
..................
580
19.3.6 RAY TRACING FOR LENSES
.....................
581
19.4 MIRRORS
.................................
581
XXIV
CONTENTS
19.4.1 IMAGING BY MIRRORS
......................
581
19.4.2 RAY TRACING FOR MIRRORS
....................
583
19.5 DIFFRACTION
...............................
583
19.5.1 DIFFRACTION BY A SINGLE SLIT
...................
583
19.5.2 DIFFRACTION AT A CIRCULAR APERTURE
................
584
19.5.3 RESOLVING POWER OF A TELESCOPE
................
584
19.5.4 RESOLVING POWER OF A MICROSCOPE
...............
585
19.6 INTERFERENCE
...............................
586
19.6.1 DOUBLE SLIT INTENSITY DISTRIBUTION
................
586
19.6.2 DIFFRACTION GRATINGS
......................
587
19.6.3 DISPERSION OF A DIFFRACTION GRATING
...............
588
19.6.4 RESOLVING POWER OF A DIFFRACTION GRATING
...........
588
19.6.5 FREE SPECTRAL RANGE
......................
589
19.6.6 OPTIMUM SLIT WIDTH
......................
589
19.6.7 GRATING BLAZE
.........................
589
19.6.8 ROWLAND CIRCLE
........................
589
19.6.9 MICHELSON INTERFEROMETER
...................
589
19.6.10 FABRY-PEROT INTERFEROMETER
..................
590
19.7 SPECTRA
.................................
593
19.7.1 IMPORTANT SPECTRAL LINES
....................
593
19.7.2 COMMON LASER WAVELENGTHS
..................
596
19.8 REFERENCES
...............................
596
20. PARTICLE ACCELERATORS AND STORAGE RINGS
..................
597
KAI DESLER AND DONALD A. EDWARDS
20.1 INTRODUCTION
..............................
598
20.2 SINGLE-PARTICLE MOTION
.........................
598
20.2.1 LINEAR TRANSVERSE MOTION
...................
599
20.2.2 LONGITUDINAL MOTION
......................
604
20.2.3 TRANSVERSE COUPLING
......................
606
20.2.4 NONLINEAR EFFECTS
.......................
608
20.2.5 SYNCHROTRON RADIATION
.....................
611
20.3 MULTIPARTICLE DYNAMICS
.........................
615
20.3.1 SPACE CHARGE
.........................
615
20.3.2 COLLECTIVE INSTABILITIES
.....................
617
20.3.3 BEAM COOLING
.........................
619
20.3.4 LUMINOSITY
..........................
622
20.4 REFERENCES
...............................
623
21. PLASMA PHYSICS
................................
625
DAVID L. BOOK
21.1 FUNDAMENTAL PLASMA PARAMETERS
....................
626
21.1.1 FREQUENCIES
..........................
626
21.1.2 LENGTHS
............................
627
21.1.3 VELOCITIES
...........................
628
CONTENTS
XXV
21.1.4 DIMENSIONLESS
.........................
628
21.1.5 MISCELLANEOUS
.........................
628
21.2 PLASMA DISPERSION FUNCTION
......................
629
21.2.1 DEFINITION
...........................
629
21.2.2 DIFFERENTIAL EQUATION
.....................
631
21.2.3 SERIES EXPANSIONS
.......................
631
21.2.4 SYMMETRY PROPERTIES
.....................
631
21.2.5 TWO-POLE APPROXIMATIONS
...................
631
21.3 COLLISIONS AND TRANSPORT
........................
632
21.3.1 RELAXATION RATES
........................
632
21.3.2 TEMPERATURE ISOTROPIZATION
..................
634
21.3.3 THERMAL EQUILIBRATION
.....................
634
21.3.4 COULOMB LOGARITHM
......................
635
21.3.5 FOKKER*PLANCK EQUATION
....................
635
21.3.6 B-G-K COLLISION OPERATOR
...................
636
21.3.7 TRANSPORT COEFFICIENTS
.....................
637
21.3.8 WEAKLY IONIZED PLASMAS
....................
639
21.4 SOLAR AND IONOSPHERIC PHYSICS
.....................
640
21.5 THERMONUCLEAR FUSION
.........................
642
21.5.1 BASIC DATA AND RELATIONSHIPS
..................
642
21.5.2 FUSION REACTIONS
........................
642
21.6 ELECTRON AND ION BEAMS
........................
644
21.7 LASER*PLASMA INTERACTIONS
.......................
648
21.7.1 SYSTEM PARAMETERS
......................
648
21.7.2 FORMULAS
...........................
648
21.8 ATOMIC PHYSICS AND RADIATION
.....................
649
21.8.1 EXCITATION AND DECAY
.....................
650
21.8.2 IONIZATION AND RECOMBINATION
.................
650
21.8.3 IONIZATION EQUILIBRIUM MODELS
.................
651
21.8.4 RADIATION
...........................
652
21.9 REFERENCES
...............................
654
22. POLYMER PHYSICS
...............................
656
STEPHEN Z. D. CHENG
22.1 INTRODUCTION
..............................
658
22.2 POLYMER MOLECULES
...........................
658
22.3 MOLECULAR-MASS AVERAGES
.......................
658
22.3.1 KTH MOMENT OF A MOLECULAR-MASS DISTRIBUTION P
(
M
) .....
658
22.3.2 MOLECULAR-MASS AVERAGES
...................
658
22.4 SINGLE-CHAIN DIMENSIONS
........................
659
22.5
*
SOLVENTS AND TEMPERATURES
......................
660
22.6 MOLECULAR-WEIGHT CHARACTERIZATION
...................
662
22.6.1 SOLUTION VISCOSITY
.......................
662
22.6.2 OSMOTIC PRESSURE
* ......................
662
22.6.3 ULTRACENTRIFUGATION
......................
663
XXVI
CONTENTS
22.6.4 STATIC LIGHT SCATTERING
.....................
663
22.6.5 DYNAMIC (QUASIELASTIC) LIGHT SCATTERING
............
663
22.7 CHARACTERIZATION BY SPECTROSCOPIC TECHNIQUES
.............
664
22.7.1 NUCLEAR MAGNETIC RESONANCE
..................
664
22.7.2 VIBRATIONAL SPECTROSCOPY
...................
664
22.8 CRYSTAL STRUCTURES
............................
664
22.9 BOND LENGTHS AND ANGLES OF POLYMERS
.................
667
22.10 MELTING AND CRYSTALLIZATION
.......................
669
22.10.1 VARIATION OF MELTING POINT OF THIN CRYSTALS WITH THICKNESS
...
669
22.10.2 SPHERULITIC GROWTH RATE CONTROLLED BY SECONDARY (SURFACE)
NUCLEATION
...........................
669
22.10.3 AVRAMI EQUATION TO DESCRIBE OVERALL KINETICS OF PHASE CHANGES
670
22.11 LIQUID CRYSTALLINE TRANSITIONS
.....................
670
22.12 HEAT CAPACITY AND THERMODYNAMIC FUNCTIONS
.............
671
22.12.1 HEAT CAPACITY IN SOLID AND LIQUID STATES OF SEMICRYSTALLINE
POLYMERS
...........................
671
22.12.2 GENERAL FEATURES OF THE HEAT CAPACITY
.............
672
22.12.3 RESIDUAL ENTROPIES AT ABSOLUTE ZERO FOR GLASS POLYMERS
AND OTHER PROPERTIES
......................
673
22.13 GLASS TRANSITION
............................
673
22.14 THERMAL EXPANSION
...........................
675
22.15 OPTICAL PROPERTIES OF POLYMERS
.....................
676
22.15.1 ORIENTATION BIREFRINGENCE
*
N IN AMORPHOUS POLYMERS
.....
676
22.15.2 STRESS OPTICAL COEFFICIENT C
..................
676
22.15.3 FORM BIREFRINGENCE
*
N
F
IN TWO-PHASE SYSTEMS
........
676
22.15.4 BIREFRINGENCE
*
N OF ORIENTED CRYSTALLINE POLYMERS
......
676
22.15.5 BIREFRINGENCE OF SPHERULITES
*
N
SPH
..............
676
22.16 STRESS
*
IJ
AND DISPLACEMENT U
J
AT CRACK TIPS
.............
677
22.17 INTERNAL FRICTION PEAKS IN SEMICRYSTALLINE POLYMERS
..........
678
22.18 REPRESENTATIVE MECHANICAL PROPERTIES OF SOME COMMON STRUCTURAL
POLYMERS
................................
679
22.19 RHEOLOGY
................................
680
22.19.1 INTRODUCTION
..........................
680
22.19.2 LINEAR VISCOELASTICITY
.....................
680
22.20 ELECTRICAL PROPERTIES
..........................
684
22.20.1 DIPOLE MOMENTS
........................
684
22.20.2 TYPICAL ELECTRICAL PROPERTIES
..................
684
22.21 DIFFUSION AND PERMEATION
........................
685
22.21.1 DIFFUSION INTO PLANE SHEET
...................
685
22.21.2 DIFFUSION DATA
.........................
686
22.21.3 GAS TRANSMISSION
.......................
686
22.22 NONLINEAR OPTICAL PROPERTIES
......................
686
22.23 REFERENCES
...............................
690
CONTENTS
XXVII
23. QUANTUM THEORY
...............................
693
M. P. SILVERMAN AND R. L. MALLETT
PART I. QUANTUM MECHANICS
..........................
694
23.1 BASIC FORMALISMS
............................
694
23.2 OPERATOR REPRESENTATIONS AND RELATIONSHIPS
..............
695
23.2.1 OPERATOR ALGEBRA
........................
695
23.2.2 COORDINATE AND LINEAR MOMENTUM OPERATORS
..........
695
23.2.3 ANGULAR MOMENTUM
......................
697
23.2.4 HAMILTONIAN
..........................
701
23.2.5 COMMUTATION AND UNCERTAINTY RELATIONS
............
701
23.3 QUANTUM DYNAMICS
..........................
703
23.3.1 TIME-DISPLACEMENT OPERATOR
..................
703
23.3.2 SINGLE-PARTICLE WAVE EQUATIONS
................
703
23.3.3 OPERATOR EQUATIONS OF MOTION
.................
705
23.4 APPROXIMATE METHODS: STATIONARY STATES
................
706
23.4.1 PERTURBATION THEORY (BOUND STATES)
...............
706
23.4.2 VARIATIONAL METHOD
......................
708
23.4.3 WENTZEL-KRAMERS-BRILLOUIN (WKB) THEORY
..........
708
23.4.4 SCATTERING THEORY (STATIONARY STATE)
..............
710
23.5 TIME-DEPENDENT PERTURBATION THEORY
.................
711
23.5.1 FIRST-ORDER TRANSITIONS
.....................
711
23.5.2 SECOND-ORDER TRANSITIONS
....................
711
23.5.3 FERMI GOLDEN RULE
......................
711
23.5.4 DENSITY OF STATES
........................
712
23.5.5 EXPONENTIAL DECAY
.......................
712
23.6 RADIATION THEORY
............................
712
23.6.1 INTERACTION HAMILTONIAN
....................
712
23.6.2 ABSORPTION AND EMISSION
...................
713
23.6.3 MULTIPOLE TRANSITIONS
.....................
713
23.6.4 SUM RULES
...........................
714
23.7 ADDITIONAL LINKS TO QUANTUM SYSTEMS IN OTHER CHAPTERS
........
715
23.7.1 COULOMB POTENTIAL
.......................
715
23.7.2 QUANTUM ROTATOR
........................
715
23.7.3 ANHARMONIC OSCILLATOR
.....................
715
PART II. QUANTUM FIELD THEORY
.........................
715
23.8 BRIEF HISTORY
..............................
715
23.9 FEYNMAN RULES FOR GAUGE THEORIES
..................
715
23.9.1 THE S MATRIX
.........................
715
23.9.2 CROSS SECTIONS
.........................
716
23.9.3 DECAY RATES
..........................
716
23.9.4 DIAGRAMMATIC CONSTRUCTION OF AMPLITUDES
...........
716
23.9.5 FERMION SPIN SUMS
......................
720
23.9.6 POLARIZATION SUMS
.......................
721
23.9.7 CONTRACTION AND TRACE RELATIONS
................
721
XXVIII
CONTENTS
23.10 QUANTUM CHROMODYNAMICS
.......................
721
23.11 STANDARD ELECTROWEAK MODEL
......................
722
23.11.1 COUPLING CONSTANTS AND FIELDS
.................
722
23.11.2 EXAMPLE: ELASTIC NEUTRINO-ELECTRON SCATTERING
.........
723
23.12 REFERENCES
...............................
724
24. SOLID STATE PHYSICS
..............................
725
COSTAS M. SOUKOULIS AND ELEFTHERIOS N. ECONOMOU
24.1 INTRODUCTION
..............................
727
24.2 CLASSIFICATION OF SOLIDS ACCORDING TO THEIR BONDING CHARACTER
.....
727
24.2.1 SIMPLE METALS
.........................
727
24.2.2 TRANSITION AND RARE-EARTH METALS
................
727
24.2.3 COVALENT SOLIDS
........................
728
24.2.4 IONIC SOLIDS
..........................
728
24.2.5 VAN DER WAALS SOLIDS
.....................
728
24.2.6 CRYSTALS WITH HYDROGEN BONDING
................
728
24.3 APPROXIMATIONS
............................
728
24.4 ELECTRONS IN PERIODIC SOLIDS
......................
729
24.4.1 BLOCH S THEOREM; RECIPROCAL LATTICE; BRILLOUIN ZONE
......
729
24.4.2 DENSITY OF STATES
........................
730
24.4.3 JELLIUM MODEL
.........................
732
24.5 METHODS FOR BAND-STRUCTURE CALCULATIONS
................
734
24.5.1 GENERAL COMPUTATIONAL FRAMEWORK
...............
734
24.5.2 LINEAR COMBINATION OF ATOMIC ORBITALS
.............
736
24.5.3 PLANE WAVE METHOD
......................
736
24.5.4 OTHER METHODS
.........................
737
24.6 IONIC VIBRATIONS
.............................
737
24.7 THERMODYNAMIC QUANTITIES
.......................
739
24.8 LINEAR RESPONSE TO PERTURBATIONS
....................
741
24.8.1 DIELECTRIC FUNCTION AND CONDUCTIVITY
..............
741
24.8.2 TEMPERATURE DEPENDENCE OF THE DC CONDUCTIVITY
.......
744
24.8.3 THERMAL CONDUCTIVITY AND THERMOELECTRIC POWER
........
746
24.8.4 HALL EFFECT AND MAGNETORESISTANCE
...............
746
24.8.5 CYCLOTRON RESONANCE, ESR, AND NMR
.............
747
24.9 DISORDERED SYSTEMS
..........................
747
24.9.1 LOCALIZATION AND METAL-INSULATOR TRANSITION
..........
747
24.9.2 METAL-INSULATOR TRANSITION IN 2D DISORDERED SYSTEMS
......
749
24.10 MAGNETISM
...............................
749
24.11 SUPERCONDUCTIVITY
...........................
751
24.12 ELEMENTARY EXCITATIONS
.........................
753
24.12.1 EXCITONS
............................
753
24.12.2 POLARONS AND BIPOLARONS
....................
753
24.12.3 SPIN WAVES
..........................
754
24.13 ARTIFICIAL SOLID STRUCTURES AND PHOTONIC CRYSTALS
............
754
24.14 REFERENCES
...............................
755
CONTENTS
XXIX
25. SURFACES AND FILMS
..............................
756
ROLAND RESCH AND BRUCE E. KOEL
25.1 INTRODUCTION
..............................
757
25.2 SURFACE ANALYSIS: PROBING SURFACES AND FILMS
.............
758
25.2.1 ELECTRON SPECTROSCOPY
.....................
758
25.2.2 ION SPECTROSCOPY
.......................
759
25.2.3 ELECTRON DIFFRACTION
......................
761
25.2.4 FIELD EMISSION
.........................
762
25.2.5 ELECTRON MICROSCOPY
......................
762
25.2.6 SCANNING PROBE MICROSCOPY
..................
762
25.3 STRUCTURE AND COMPOSITION OF SURFACES
.................
764
25.3.1 THERMODYNAMICS OF ONE-COMPONENT SURFACES
.........
764
25.3.2 SURFACE MORPHOLOGY, DEFECTS, AND DISLOCATIONS
........
765
25.3.3 SURFACE LATTICES AND SUPERSTRUCTURES
..............
765
25.3.4 ATOMISTIC STRUCTURE: RELAXATION AND RECONSTRUCTION
.......
767
25.3.5 SURFACES OF COMPOUNDS AND METAL ALLOYS
...........
767
25.4 ELECTRONIC STRUCTURE AT SURFACES
....................
767
25.5 THE GAS-SOLID INTERFACE
........................
769
25.5.1 SOLID-GAS INTERACTIONS
.....................
769
25.5.2 ENERGY ACCOMMODATION AND ADSORPTION
............
770
25.5.3 DESORPTION
...........................
772
25.5.4 SURFACE DIFFUSION
.......................
772
25.5.5 CHEMICAL REACTIONS AT SOLID SURFACES
..............
773
25.6 SOLID-LIQUID AND LIQUID-LIQUID INTERFACES
...............
774
25.6.1 ELECTROCHEMICAL PROCESSES AND THE DOUBLE LAYER
........
774
25.6.2 SOLID-LIQUID INTERACTIONS
....................
776
25.6.3 SOLID-LIQUID REACTIONS
.....................
777
25.7 FILM FORMATION AND STRUCTURE
.....................
778
25.7.1 NUCLEATION AND GROWTH MODES
.................
778
25.7.2 STRUCTURE AND PROPERTIES OF THIN FILMS
.............
781
25.7.3 FILM GROWTH FROM THE GASEOUS PHASE
.............
781
25.7.4 FILM GROWTH FROM THE LIQUID PHASE
...............
784
25.7.5 FILM GROWTH AT THE GAS-LIQUID INTERFACE
............
785
25.8 MECHANICAL PROPERTIES OF SURFACES AND THIN FILMS
...........
785
25.8.1 FRICTION
............................
785
25.8.2 LUBRICATION
..........................
787
25.8.3 WEAR
..............................
787
25.8.4 ADHESION
...........................
787
25.9 REFERENCES
...............................
788
26. THERMODYNAMICS AND THERMOPHYSICS
....................
791
J. P. MARTIN TRUSLER AND WILLIAM A. WAKEHAM
26.1 INTRODUCTION
..............................
792
26.2 CLASSICAL THERMODYNAMICS
.......................
792
26.2.1 THE LAWS OF THERMODYNAMICS
.................
792
XXX
CONTENTS
26.2.2 CONSEQUENCES OF THE FIRST AND SECOND LAWS
..........
795
26.2.3 DEPENDENCE OF THE THERMODYNAMIC PROPERTIES ON TEMPERATURE,
PRESSURE, AND COMPOSITION
...................
797
26.2.4 PHASE EQUILIBRIA
........................
800
26.2.5 CHEMICAL EQUILIBRIA
......................
801
26.3 STATISTICAL THERMODYNAMICS
......................
801
26.3.1 POSTULATES OF STATISTICAL THERMODYNAMICS
...........
802
26.3.2 THE PERFECT GAS
........................
804
26.3.3 REAL GASES
...........................
806
26.4 TRANSPORT PROPERTIES
..........................
807
26.4.1 FLUXES AND GRADIENTS
......................
807
26.4.2 DEFINITIONS OF TRANSPORT COEFFICIENTS
..............
809
26.4.3 MEASUREMENT OF TRANSPORT PROPERTIES
.............
810
26.5 KINETIC THEORY
.............................
812
26.5.1 THE BOLTZMANN EQUATION
...................
812
26.5.2 THE TRANSPORT PROPERTIES
....................
813
26.5.3 MONATOMIC GASES
.......................
814
26.5.4 DENSE FLUIDS
..........................
815
26.6 REFERENCES
...............................
816
27. PRACTICAL LABORATORY DATA
..........................
817
DAVID R. LIDE
27.1 INTRODUCTION
..............................
817
27.2 TABLE: PERIODIC TABLE
..........................
819
27.3 TABLE: PHYSICAL CONSTANTS OF ELEMENTS AND COMPOUNDS
........
820
27.4 TABLE: THERMAL AND ELECTRICAL PROPERTIES OF METALS
...........
826
27.5 TABLE: DIELECTRIC CONSTANT (RELATIVE PERMITTIVITY) OF LIQUIDS
......
828
27.6 TABLE: VISCOSITY OF LIQUIDS AND GASES
.................
830
27.7 TABLE: VAPOR PRESSURE OF THE ELEMENTS AND SELECTED COMPOUNDS
....
831
27.8 TABLE: VAPOR PRESSURE OF CRYOGENIC FLUIDS
...............
835
27.9 TABLE: AQUEOUS SOLUBILITY OF SOLIDS AND LIQUIDS
............
836
27.10 TABLE: SOLUBILITY OF GASES IN WATER
...................
838
27.11 TABLE: PROPERTIES OF MISCELLANEOUS SOLID MATERIALS
...........
838
27.12 TABLE: DENSITIES KNOWN TO HIGH ACCURACY
...............
840
27.13 FIXED POINTS ON THE INTERNATIONAL TEMPERATURE SCALE OF 1990
......
841
27.14 TABLE: PROPERTIES OF LIQUID HELIUM
...................
842
27.15 TABLE: PROPERTIES OF WATER AND ICE
...................
843
27.16 TABLE: VAPOR PRESSURE OF WATER ON THE ITS-90 TEMPERATURE SCALE
...
843
INDEX
.........................................
845
|
any_adam_object | 1 |
author2 | Cohen, E. Richard |
author2_role | edt |
author2_variant | e r c er erc |
author_facet | Cohen, E. Richard |
building | Verbundindex |
bvnumber | BV025260941 |
classification_rvk | UC 300 |
ctrlnum | (OCoLC)248637577 (DE-599)BVBBV025260941 |
dewey-full | 530 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530 |
dewey-search | 530 |
dewey-sort | 3530 |
dewey-tens | 530 - Physics |
discipline | Physik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01419nam a2200397 c 4500</leader><controlfield tag="001">BV025260941</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140804 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">100417s2003 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387989730</subfield><subfield code="9">0-387-98973-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387989785</subfield><subfield code="c">(softcover : alk. paper)</subfield><subfield code="9">978-0-387-98978-5</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)248637577</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV025260941</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UC 300</subfield><subfield code="0">(DE-625)145520:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">AIP physics desk reference</subfield><subfield code="c">E. Richard Cohen... (eds.)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 888 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Astronomie</subfield><subfield code="0">(DE-588)4003311-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4148875-1</subfield><subfield code="a">Datensammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Astronomie</subfield><subfield code="0">(DE-588)4003311-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cohen, E. Richard</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019897118&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-019897118</subfield></datafield></record></collection> |
genre | (DE-588)4148875-1 Datensammlung gnd-content |
genre_facet | Datensammlung |
id | DE-604.BV025260941 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:29:54Z |
institution | BVB |
isbn | 0387989730 9780387989785 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-019897118 |
oclc_num | 248637577 |
open_access_boolean | |
owner | DE-11 |
owner_facet | DE-11 |
physical | XXXV, 888 S. Ill. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer |
record_format | marc |
spelling | AIP physics desk reference E. Richard Cohen... (eds.) 3. ed. Berlin [u.a.] Springer 2003 XXXV, 888 S. Ill. txt rdacontent n rdamedia nc rdacarrier Physik (DE-588)4045956-1 gnd rswk-swf Astronomie (DE-588)4003311-9 gnd rswk-swf (DE-588)4148875-1 Datensammlung gnd-content Physik (DE-588)4045956-1 s DE-604 Astronomie (DE-588)4003311-9 s Cohen, E. Richard edt SWB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019897118&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | AIP physics desk reference Physik (DE-588)4045956-1 gnd Astronomie (DE-588)4003311-9 gnd |
subject_GND | (DE-588)4045956-1 (DE-588)4003311-9 (DE-588)4148875-1 |
title | AIP physics desk reference |
title_auth | AIP physics desk reference |
title_exact_search | AIP physics desk reference |
title_full | AIP physics desk reference E. Richard Cohen... (eds.) |
title_fullStr | AIP physics desk reference E. Richard Cohen... (eds.) |
title_full_unstemmed | AIP physics desk reference E. Richard Cohen... (eds.) |
title_short | AIP physics desk reference |
title_sort | aip physics desk reference |
topic | Physik (DE-588)4045956-1 gnd Astronomie (DE-588)4003311-9 gnd |
topic_facet | Physik Astronomie Datensammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=019897118&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cohenerichard aipphysicsdeskreference |