Möbius Functions, incidence algebras and power series representations:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | Undetermined |
Veröffentlicht: |
Berlin <<[u.a.]>>
Springer
1986
|
Schriftenreihe: | Lecture notes in mathematics <Berlin>
1202 |
Schlagworte: | |
Beschreibung: | VIII, 134 S. |
ISBN: | 3540167714 0387167714 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV024668874 | ||
003 | DE-604 | ||
005 | 20090910 | ||
007 | t | ||
008 | 090924s1986 |||| 00||| und d | ||
020 | |a 3540167714 |9 3-540-16771-4 | ||
020 | |a 0387167714 |9 0-387-16771-4 | ||
035 | |a (OCoLC)230833348 | ||
035 | |a (DE-599)BVBBV024668874 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | |a und | ||
049 | |a DE-83 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
100 | 1 | |a Dür, Arne |e Verfasser |4 aut | |
245 | 1 | 0 | |a Möbius Functions, incidence algebras and power series representations |c Arne Dür |
264 | 1 | |a Berlin <<[u.a.]>> |b Springer |c 1986 | |
300 | |a VIII, 134 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lecture notes in mathematics <Berlin> |v 1202 | |
650 | 0 | 7 | |a Möbius-Umkehrformel |0 (DE-588)4698915-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Potenzreihe |0 (DE-588)4138577-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Möbius-Funktion |0 (DE-588)4128093-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Möbius-Funktion |0 (DE-588)4128093-3 |D s |
689 | 0 | 1 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 2 | 1 | |a Potenzreihe |0 (DE-588)4138577-9 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Möbius-Umkehrformel |0 (DE-588)4698915-8 |D s |
689 | 3 | 1 | |a Inzidenzalgebra |0 (DE-588)4128094-5 |D s |
689 | 3 | |5 DE-604 | |
689 | 4 | 0 | |a Potenzreihe |0 (DE-588)4138577-9 |D s |
689 | 4 | |5 DE-604 | |
689 | 5 | 0 | |a Möbius-Funktion |0 (DE-588)4128093-3 |D s |
689 | 5 | |5 DE-604 | |
940 | 1 | |q TUB-nve | |
999 | |a oai:aleph.bib-bvb.de:BVB01-018079889 |
Datensatz im Suchindex
_version_ | 1804140081896751104 |
---|---|
any_adam_object | |
author | Dür, Arne |
author_facet | Dür, Arne |
author_role | aut |
author_sort | Dür, Arne |
author_variant | a d ad |
building | Verbundindex |
bvnumber | BV024668874 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)230833348 (DE-599)BVBBV024668874 |
discipline | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01780nam a2200529 cb4500</leader><controlfield tag="001">BV024668874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090910 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s1986 |||| 00||| und d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540167714</subfield><subfield code="9">3-540-16771-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387167714</subfield><subfield code="9">0-387-16771-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)230833348</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024668874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">und</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dür, Arne</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Möbius Functions, incidence algebras and power series representations</subfield><subfield code="c">Arne Dür</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin <<[u.a.]>></subfield><subfield code="b">Springer</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 134 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in mathematics <Berlin></subfield><subfield code="v">1202</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Möbius-Umkehrformel</subfield><subfield code="0">(DE-588)4698915-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Potenzreihe</subfield><subfield code="0">(DE-588)4138577-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Möbius-Funktion</subfield><subfield code="0">(DE-588)4128093-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Möbius-Funktion</subfield><subfield code="0">(DE-588)4128093-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Potenzreihe</subfield><subfield code="0">(DE-588)4138577-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Möbius-Umkehrformel</subfield><subfield code="0">(DE-588)4698915-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Inzidenzalgebra</subfield><subfield code="0">(DE-588)4128094-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Potenzreihe</subfield><subfield code="0">(DE-588)4138577-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Möbius-Funktion</subfield><subfield code="0">(DE-588)4128093-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">TUB-nve</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018079889</subfield></datafield></record></collection> |
id | DE-604.BV024668874 |
illustrated | Not Illustrated |
indexdate | 2024-07-09T21:54:19Z |
institution | BVB |
isbn | 3540167714 0387167714 |
language | Undetermined |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018079889 |
oclc_num | 230833348 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | VIII, 134 S. |
psigel | TUB-nve |
publishDate | 1986 |
publishDateSearch | 1986 |
publishDateSort | 1986 |
publisher | Springer |
record_format | marc |
series2 | Lecture notes in mathematics <Berlin> |
spelling | Dür, Arne Verfasser aut Möbius Functions, incidence algebras and power series representations Arne Dür Berlin <<[u.a.]>> Springer 1986 VIII, 134 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics <Berlin> 1202 Möbius-Umkehrformel (DE-588)4698915-8 gnd rswk-swf Potenzreihe (DE-588)4138577-9 gnd rswk-swf Inzidenzalgebra (DE-588)4128094-5 gnd rswk-swf Möbius-Funktion (DE-588)4128093-3 gnd rswk-swf Möbius-Funktion (DE-588)4128093-3 s Inzidenzalgebra (DE-588)4128094-5 s DE-604 Potenzreihe (DE-588)4138577-9 s Möbius-Umkehrformel (DE-588)4698915-8 s |
spellingShingle | Dür, Arne Möbius Functions, incidence algebras and power series representations Möbius-Umkehrformel (DE-588)4698915-8 gnd Potenzreihe (DE-588)4138577-9 gnd Inzidenzalgebra (DE-588)4128094-5 gnd Möbius-Funktion (DE-588)4128093-3 gnd |
subject_GND | (DE-588)4698915-8 (DE-588)4138577-9 (DE-588)4128094-5 (DE-588)4128093-3 |
title | Möbius Functions, incidence algebras and power series representations |
title_auth | Möbius Functions, incidence algebras and power series representations |
title_exact_search | Möbius Functions, incidence algebras and power series representations |
title_full | Möbius Functions, incidence algebras and power series representations Arne Dür |
title_fullStr | Möbius Functions, incidence algebras and power series representations Arne Dür |
title_full_unstemmed | Möbius Functions, incidence algebras and power series representations Arne Dür |
title_short | Möbius Functions, incidence algebras and power series representations |
title_sort | mobius functions incidence algebras and power series representations |
topic | Möbius-Umkehrformel (DE-588)4698915-8 gnd Potenzreihe (DE-588)4138577-9 gnd Inzidenzalgebra (DE-588)4128094-5 gnd Möbius-Funktion (DE-588)4128093-3 gnd |
topic_facet | Möbius-Umkehrformel Potenzreihe Inzidenzalgebra Möbius-Funktion |
work_keys_str_mv | AT durarne mobiusfunctionsincidencealgebrasandpowerseriesrepresentations |