The physics of interstellar dust:
Interstellar dust grains catalyse chemical reactions, absorb, scatter, polarise and re-radiate starlight and constitute the building blocks for the formation of planets. Understanding this interstellar component is therefore of primary importance in many areas of astronomy & astrophysics. For ex...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Bristol [u.a.]
IOP
2003
|
Schriftenreihe: | Series in astronomy and astrophysics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Interstellar dust grains catalyse chemical reactions, absorb, scatter, polarise and re-radiate starlight and constitute the building blocks for the formation of planets. Understanding this interstellar component is therefore of primary importance in many areas of astronomy & astrophysics. For example, observers need to understand how dust effects light passing through molecular clouds. Astrophysicists wish to comprehend how dust enables the collapse of clouds or how it determines the spectral behaviour of protostars, star forming regions or whole galaxies. This book gives a thorough theoretical description of the fundamental physics of interstellar dust: its composition, morphology, size distribution, dynamics, optical and thermal properties, alignment, polarisation, scattering, radiation and spectral features. This encyclopedic book provides the basic physics towards understanding the solid matter in interstellar space. It includes all the necessary physics, including solid state physics, radiative transport, optical properties, thermodynamics, statistical mechanics and quantum mechanics. It then uses all of this basic physics in the specific case of dust grains in the interstellar medium. |
Beschreibung: | XIX, 559 S. Ill., graph. Darst. |
ISBN: | 0750308613 9780367454654 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV024501871 | ||
003 | DE-604 | ||
005 | 20240330 | ||
007 | t | ||
008 | 090924s2003 ad|| |||| 00||| eng d | ||
020 | |a 0750308613 |c hbk. |9 0-7503-0861-3 | ||
020 | |a 9780367454654 |c pbk. (2020) |9 978-0367454654 | ||
035 | |a (OCoLC)249621592 | ||
035 | |a (DE-599)BVBBV024501871 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-83 |a DE-188 | ||
084 | |a WK 7000 |0 (DE-625)149292: |2 rvk | ||
100 | 1 | |a Krügel, Endrik |e Verfasser |4 aut | |
245 | 1 | 0 | |a The physics of interstellar dust |c Endrik Krügel |
264 | 1 | |a Bristol [u.a.] |b IOP |c 2003 | |
300 | |a XIX, 559 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Series in astronomy and astrophysics | |
520 | 3 | |a Interstellar dust grains catalyse chemical reactions, absorb, scatter, polarise and re-radiate starlight and constitute the building blocks for the formation of planets. Understanding this interstellar component is therefore of primary importance in many areas of astronomy & astrophysics. For example, observers need to understand how dust effects light passing through molecular clouds. Astrophysicists wish to comprehend how dust enables the collapse of clouds or how it determines the spectral behaviour of protostars, star forming regions or whole galaxies. This book gives a thorough theoretical description of the fundamental physics of interstellar dust: its composition, morphology, size distribution, dynamics, optical and thermal properties, alignment, polarisation, scattering, radiation and spectral features. This encyclopedic book provides the basic physics towards understanding the solid matter in interstellar space. It includes all the necessary physics, including solid state physics, radiative transport, optical properties, thermodynamics, statistical mechanics and quantum mechanics. It then uses all of this basic physics in the specific case of dust grains in the interstellar medium. | |
650 | 0 | 7 | |a Interstellarer Staub |0 (DE-588)4162143-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemie |0 (DE-588)4009816-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Interstellarer Staub |0 (DE-588)4162143-8 |D s |
689 | 0 | 1 | |a Chemie |0 (DE-588)4009816-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Interstellarer Staub |0 (DE-588)4162143-8 |D s |
689 | 1 | 1 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Interstellarer Staub |0 (DE-588)4162143-8 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018476577&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-018476577 |
Datensatz im Suchindex
_version_ | 1804140498386944000 |
---|---|
adam_text | SERIES IN ASTRONOMY AND ASTROPHYSICS THE PHYSICS OF INTERSTELLAR DUST
ENDRIK KRIIGEL MAX-PLANCK-INSTITUT FUR RADIOASTRONOMIE, BONN, GERMANY
IOP INSTITUTE OF PHYSICS PUBLISHING BRISTOL AND PHILADELPHIA CONTENTS
PREFACE XIX 1 THE DIELECTRIC PERMEABILITY 1 1.1 MAXWELL S EQUATIONS 1
1.1.1 ELECTRIC FIELD AND MAGNETIC INDUCTION 1 1.1.2 ELECTRIC
POLARIZATION OF THE MEDIUM 2 1.1.3 THE DEPENDENCE OF THE DIELECTRIC
PERMEABILITY ON DIRECTION AND FREQUENCY 3 * 1.1.4 THE PHYSICAL MEANING
OF THE ELECTRIC SUSCEPTIBILITY / 4 1.1.5 MAGNETIC POLARIZATION OF THE
MEDIUM 6 1.1.6 THE MAGNETIC SUSCEPTIBILITY 7 1.1.7 DIELECTRICS AND
METALS 7 1.1.8 FREE CHARGES AND POLARIZATION CHARGES 8 1.1.9 THE FIELD
EQUATIONS 9 1.2 WAVES IN A DIELECTRIC MEDIUM 10 1.2.1 THE WAVE EQUATION
10 1.2.2 THE WAVENUMBER 11 1.2.3 THE OPTICAL CONSTANT OR REFRACTIVE
INDEX 12 1.2.4 ENERGY DISSIPATION OF A GRAIN IN A VARIABLE FIELD 13 1.3
THE HARMONIC OSCILLATOR 15 1.3.1 THE LORENTZ MODEL 15 1.3.2 FREE
OSCILLATIONS 16 1.3.3 THE GENERAL SOLUTION TO THE OSCILLATOR EQUATION 17
1.3.4 DISSIPATION OF ENERGY IN A FORCED OSCILLATION 18 1.3.5 DISSIPATION
OF ENERGY IN A FREE OSCILLATION 19 1.3.6 THE PLASMA FREQUENCY 20 1.3.7
DISPERSION RELATION OF THE DIELECTRIC PERMEABILITY 20 1.4 THE HARMONIC
OSCILLATOR AND LIGHT 22 1.4.1 ATTENUATION AND REFRACTION OF LIGHT 23
1.4.2 RETARDED POTENTIALS OF A MOVING CHARGE 24 1.4.3 EMISSION OF AN
HARMONIC OSCILLATOR 26 1.4.4 RADIATION OF HIGHER ORDER 27 1.4.5
RADIATION DAMPING 28 VIII CONTENTS 1.4.6 THE CROSS SECTION OF AN
HARMONIC OSCILLATOR 29 1.4.7 THE OSCILLATOR STRENGTH 30 1.4.8 THE
NATURAL LINEWIDTH 31 1.5 WAVES IN A CONDUCTING MEDIUM 32 1.5.1 THE
DIELECTRIC PERMEABILITY OF A CONDUCTOR 33 1.5.2 CONDUCTIVITY AND THE
DRUDE PROFILE 34 1.5.3 ELECTROMAGNETIC WAVES IN A PLASMA WITH A MAGNETIC
FIELD 36 1.5.4 GROUP VELOCITY OF ELECTROMAGNETIC WAVES IN A PLASMA 37
1.6 POLARIZATION THROUGH ORIENTATION 38 1.6.1 POLARIZATION IN A CONSTANT
FIELD 38 1.6.2 POLARIZATION IN A TIME-VARIABLE FIELD 39 1.6.3 RELAXATION
AFTER SWITCHING OFF THE FIELD 40 1.6.4 THE DIELECTRIC PERMEABILITY IN
DEBYE RELAXATION 41 2 HOW TO EVALUATE GRAIN CROSS SECTIONS 44 2.1
DEFINING CROSS SECTIONS 44 2.1.1 CROSS SECTION FOR SCATTERING,
ABSORPTION AND EXTINCTION 44 2.1.2 CROSS SECTION FOR RADIATION PRESSURE
46 2.1.3 EFFICIENCIES, MASS AND VOLUME COEFFICIENTS 47 2.2 THE OPTICAL
THEOREM * 47 2.2.1 THE INTENSITY OF FORWARD SCATTERED LIGHT 47 2.2.2 THE
REFRACTIVE INDEX OF A DUSTY MEDIUM 50 2.3 MIE THEORY FOR A SPHERE 51
2.3.1 THE GENERATING FUNCTION 52 2.3.2 SEPARATION OF VARIABLES 52 2.3.3
SERIES EXPANSION OF WAVES 54 2.3.4 EXPANSION COEFFICIENTS 54 2.3.5
SCATTERED AND ABSORBED POWER 56 2.3.6 ABSORPTION AND SCATTERING
EFFICIENCIES 57 2.4 POLARIZATION AND SCATTERING 57 2.4.1 THE AMPLITUDE
SCATTERING MATRIX 57 2.4.2 ANGLE-DEPENDENCE OF SCATTERING 58 2.4.3 THE
POLARIZATION ELLIPSE 60 2.4.4 STOKES PARAMETERS 61 2.4.5 STOKES
PARAMETERS OF SCATTERED LIGHT FOR A SPHERE 62 2.5 THE KRAMERS-KRONIG
RELATIONS 64 2.5.1 MATHEMATICAL FORMULATION OF THE RELATIONS 64 2.5.2
THE ELECTRIC SUSCEPTIBILITY AND CAUSALITY 66 2.5.3 THE KRAMERS-KRONIG
RELATION FOR THE DIELECTRIC PERMEABILITY 67 2.5.4 EXTENSION TO METALS 67
2.5.5 DISPERSION OF THE MAGNETIC SUSCEPTIBILITY 68 2.5.6 THREE
COROLLARIES OF THE KK RELATION 69 2.6 COMPOSITE GRAINS 71 2.6.1
EFFECTIVE MEDIUM THEORIES 72 CONTENTS IX 2.6.2 GARNETT S MIXING RULE 73
2.6.3 THE MIXING RULE OF BRUGGEMAN 74 2.6.4 COMPOSITION OF GRAINS IN
PROTOSTELLAR CORES 74 2.6.5 HOW SIZE, ICE AND POROSITY CHANGE THE
ABSORPTION COEFFICIENT 76 VERY SMALL AND VERY BIG PARTICLES 80 3.1 TINY
SPHERES 80 3.1.1 WHEN IS A PARTICLE IN THE RAYLEIGH LIMIT? 80 3.1.2
EFFICIENCIES OF SMALL SPHERES FROM MIE THEORY 81 3.1.3 A DIELECTRIC
SPHERE IN A CONSTANT ELECTRIC FIELD 82 3.1.4 SCATTERING AND ABSORPTION
IN THE ELECTROSTATIC APPROXIMATION 84 3.1.5 POLARIZATION AND
ANGLE-DEPENDENT SCATTERING 85 3.1.6 SMALL-SIZE EFFECTS BEYOND MIE THEORY
86 3.2 A SMALL METALLIC SPHERE IN A MAGNETIC FIELD 87 3.2.1 SLOWLY
VARYING FIELD 87 3.2.2 THE MAGNETIC POLARIZABILITY 89 3.2.3 THE
PENETRATION DEPTH 89 3.2.4 LIMITING VALUES OF THE MAGNETIC
POLARIZABILITY 90 3.3 TINY ELLIPSOIDS 90 3.3.1 ELLIPTICAL COORDINATES 91
3.3.2 AN ELLIPSOID IN A CONSTANT ELECTRIC FIELD 92 3.3.3 CROSS SECTION
AND SHAPE FACTOR 93 3.3.4 RANDOMLY ORIENTED ELLIPSOIDS 95 3.3.5 PANCAKES
AND CIGARS 95 3.3.6 ROTATION ABOUT THE AXIS OF GREATEST MOMENT OF
INERTIA 97 3.4 THE FIELDS INSIDE A DIELECTRIC PARTICLE 99 3.4.1 INTERNAL
FIELD AND DEPOLARIZATION FIELD 99 3.4.2 DEPOLARIZATION FIELD AND THE
DISTRIBUTION OF SURFACE CHARGES 100 3.4.3 THE LOCAL FIELD AT AN ATOM 101
3.4.4 THE CLAUSIUS-MOSSOTTI RELATION 101 3.5 VERY LARGE PARTICLES 103
3.5.1 BABINET S THEOREM 103 3.5.2 REFLECTION AND TRANSMISSION AT A PLANE
SURFACE 104 3.5.3 HUYGENS PRINCIPLE 106 3.5.4 FRESNEL ZONES AND A CHECK
ON HUYGENS PRINCIPLE 109 3.5.5 THE RECIPROCITY THEOREM 111 3.5.6
DIFFRACTION BY A CIRCULAR HOLE OR A SPHERE 111 3.5.7 DIFFRACTION BEHIND
A HALF-PLANE 113 3.5.8 PARTICLES OF SMALL REFRACTIVE INDEX 116 3.5.9
X-RAY SCATTERING 117 X CONTENTS 4 CASE STUDIES OF MIE CALCULUS 119 4.1
EFFICIENCIES OF BARE SPHERES 119 4.1.1 PURE SCATTERING 119 4.1.2 A WEAK
ABSORBER 120 4.1.3 A STRONG ABSORBER 122 4.1.4 A METAL SPHERE 123 4.1.5
EFFICIENCY VERSUS CROSS SECTION AND VOLUME COEFFICIENT 123 4.1.6 THE
ATMOSPHERE OF THE EARTH 126 4.2 SCATTERING BY BARE SPHERES 127 4.2.1 THE
SCATTERING DIAGRAM 127 4.2.2 THE POLARIZATION OF SCATTERED LIGHT 128
4.2.3 THE INTENSITY OF SCATTERED LIGHT IN A REFLECTION NEBULA 131 4.3
COATED SPHERES 132 4.4 SURFACE MODES IN SMALL GRAINS 133 4.5
EFFICIENCIES OF IDEALIZED DIELECTRICS AND METALS 136 4.5.1 DIELECTRIC
SPHERE CONSISTING OF IDENTICAL HARMONIC OSCILLATORS 136 4.5.2 DIELECTRIC
SPHERE WITH DEBYE RELAXATION 138 4.5.3 MAGNETIC AND ELECTRIC DIPOLE
ABSORPTION OF SMALL METAL SPHERES 139 4.5.4 EFFICIENCIES FOR DRUDE
PROFILES 141 4.5.5 ELONGATED METALLIC PARTICLES 142 5 PARTICLE
STATISTICS 145 5.1 BOLTZMANN STATISTICS 145 5.1.1 THE PROBABILITY OF AN
ARBITRARY ENERGY DISTRIBUTION 145 5.1.2 THE DISTRIBUTION OF MAXIMUM
PROBABILITY 146 5.1.3 PARTITION FUNCTION AND POPULATION OF ENERGY CELLS
147 5.1.4 THE MEAN ENERGY OF HARMONIC OSCILLATORS 149 5.1.5 THE
MAXWELLIAN VELOCITY DISTRIBUTION 149 5.2 QUANTUM STATISTICS 151 5.2.1
THE UNIT CELL /I 3 OF THE PHASE SPACE 151 5.2.2 BOSONS AND FERMIONS 152
5.2.3 BOSE STATISTICS 154 5.2.4 BOSE STATISTICS FOR PHOTONS 156 5.2.5
FERMI STATISTICS 157 5.2.6 IONIZATION EQUILIBRIUM AND THE SAHA EQUATION
158 5.3 THERMODYNAMICS 160 5.3.1 THE ERGODIC HYPOTHESIS 160 5.3.2
DEFINITION OF ENTROPY AND TEMPERATURE 162 5.3.3 THE CANONICAL
DISTRIBUTION 163 5.3.4 THERMODYNAMIC RELATIONS FOR A GAS 164 5.3.5
EQUILIBRIUM CONDITIONS OF THE STATE FUNCTIONS 166 5.3.6 SPECIFIC HEAT OF
A GAS 168 CONTENTS XI 5.3.7 THE WORK DONE BY MAGNETIZATION 168 5.3.8
SUSCEPTIBILITY AND SPECIFIC HEAT OF MAGNETIC SUBSTANCES 169 5.4
BLACKBODY RADIATION 170 5.4.1 THE PLANCK FUNCTION 170 5.4.2 LOW-AND
HIGH-FREQUENCY LIMIT 171 5.4.3 WIEN S DISPLACEMENT LAW AND THE
STEFAN-BOLTZMANN LAW 172 5.4.4 THE PLANCK FUNCTION AND HARMONIC
OSCILLATORS 173 THE RADIATIVE TRANSITION PROBABILITY 175 6.1 A CHARGED
PARTICLE IN AN ELECTROMAGNETIC FIELD 175 6.1.1 THE CLASSICAL HAMILTONIAN
175 6.1.2 THE HAMILTONIAN OF AN ELECTRON IN AN ELECTROMAGNETIC FIELD 176
6.2 6.3 ( 6.4 6.1.3 THE HAMILTON OPERATOR IN QUANTUM MECHANICS 6.1.4 THE
DIPOLE MOMENT IN QUANTUM MECHANICS 6.1.5 THE QUANTIZED HARMONIC
OSCILLATOR SMALL PERTURBATIONS 6.2.1 THE PERTURBATION ENERGY 6.2.2 THE
TRANSITION PROBABILITY 6.2.3 TRANSITION PROBABILITY FOR A TIME-VARIABLE
PERTURBATION THE EINSTEIN COEFFICIENTS A AND B 6.3.1 INDUCED AND
SPONTANEOUS TRANSITIONS 6.3.2 SELECTION RULES AND POLARIZATION RULES
6.3.3 QUANTIZATION OF THE ELECTROMAGNETIC FIELD 6.3.4 QUANTUM-MECHANICAL
DERIVATION OF A AND B POTENTIAL WELLS AND TUNNELING 6.4.1 WAVEFUNCTION
OF A PARTICLE IN A CONSTANT POTENTIAL 6.4.2 POTENTIAL WALLS AND FERMI
ENERGY 6.4.3 RECTANGULAR POTENTIAL BARRIERS 6.4.4 THE DOUBLE POTENTIAL
WELL 7 STRUCTURE AND COMPOSITION OF DUST 7.1 7.2 7.3 CRYSTAL STRUCTURE
7.1.1 TRANSLATIONAL SYMMETRY 7.1.2 LATTICE TYPES 7.1.3 THE RECIPROCAL
LATTICE BINDING IN CRYSTALS 7.2.1 COVALENT BONDING 7.2.2 IONIC BONDING
7.2.3 METALS 7.2.4 VAN DER WAALS FORCES AND HYDROGEN BRIDGES REDDENING
BY INTERSTELLAR GRAINS 7.3.1 STELLAR PHOTOMETRY 7.3.2 THE INTERSTELLAR
EXTINCTION CURVE 7.3.3 TWO-COLOR DIAGRAMS 7.3.4 SPECTRAL INDICES 177 179
179 181 181 181 182 183 183 186 186 188 192 192 192 194 198 201 201 201
203 207 207 208 209 211 213 214 214 216 219 220 XII CONTENTS 7.3.5 THE
MASS ABSORPTION COEFFICIENT 222 7.4 CARBONACEOUS GRAINS AND SILICATE
GRAINS 224 7.4.1 ORIGIN OF THE TWO MAJOR DUST CONSTITUENTS 224 7.4.2 THE
BONDING IN CARBON 225 7.4.3 CARBON COMPOUNDS 227 7.4.4 SILICATES 232
7.4.5 A STANDARD SET OF OPTICAL CONSTANTS 233 7.5 GRAIN SIZES AND
OPTICAL CONSTANTS 234 7.5.1 THE SIZE DISTRIBUTION 234 7.5.2 COLLISIONAL
FRAGMENTATION 236 8 DUST RADIATION 239 8.1 KIRCHHOFF S LAW 239 8.1.1 THE
EMISSIVITY OF DUST 239 8.1.2 THERMAL EMISSION OF GRAINS 240 8.1.3
ABSORPTION AND EMISSION IN THERMAL EQUILIBRIUM 241 8.1.4 EQUIPARTITION
OF ENERGY 242 8.2 THE TEMPERATURE OF BIG GRAINS 243 8.2.1 THE ENERGY
EQUATION 243 8.2.2 APPROXIMATE ABSORPTION EFFICIENCY AT INFRARED
WAVELENGTHS 243 8.2.3 TEMPERATURE ESTIMATES 245 8.2.4 RELATION BETWEEN
GRAIN SIZE AND GRAIN TEMPERATURE 247 8.2.5 TEMPERATURE OF DUST GRAINS
NEAR A STAR 248 8.2.6 DUST TEMPERATURES FROM OBSERVATIONS 249 8.3 THE
EMISSION SPECTRUM OF BIG GRAINS 251 8.3.1 CONSTANT TEMPERATURE AND LOW
OPTICAL DEPTH 251 8.3.2 CONSTANT TEMPERATURE AND ARBITRARY OPTICAL DEPTH
253 8.4 CALORIFIC PROPERTIES OF SOLIDS 254 8.4.1 NORMAL COORDINATES 254
8.4.2 INTERNAL ENERGY OF A GRAIN 256 8.4.3 STANDING WAVES IN A CRYSTAL
257 8.4.4 THE DENSITY OF VIBRATIONAL MODES IN A CRYSTAL 258 8.4.5
SPECIFIC HEAT 259 8.4.6 TWO-DIMENSIONAL LATTICES 261 8.5 TEMPERATURE
FLUCTUATIONS OF VERY SMALL GRAINS 262 8.5.1 THE PROBABILITY DENSITY P(T)
263 8.5.2 THE TRANSITION MATRIX 263 8.5.3 PRACTICAL CONSIDERATIONS 265
8.5.4 THE STOCHASTIC TIME EVOLUTION OF GRAIN TEMPERATURE 266 8.6 THE
EMISSION SPECTRUM OF VERY SMALL GRAINS 268 8.6.1 SMALL AND MODERATE
FLUCTUATIONS 268 8.6.2 STRONG FLUCTUATIONS 270 8.6.3 TEMPERATURE
FLUCTUATIONS AND FLUX RATIOS 272 CONTENTS XIII 9 DUST AND ITS
ENVIRONMENT 275 9.1 GRAIN SURFACES 275 9.1.1 GAS ACCRETION ON GRAINS 275
9.1.2 PHYSICAL ADSORPTION AND CHEMISORPTION 276 9.1.3 THE STICKING
PROBABILITY 279 9.1.4 THERMAL HOPPING, EVAPORATION AND REACTIONS WITH
ACTIVATION BARRIER 281 9.1.5 TUNNELING BETWEEN SURFACE SITES 283 9.1.6
SCANNING TIME 284 9.2 GRAIN CHARGE 285 9.2.1 CHARGE EQUILIBRIUM IN THE
ABSENCE OF A UV RADIATION FIELD 285 9.2.2 THE PHOTOELECTRIC EFFECT 286
9.3 GRAIN MOTION 289 9.3.1 RANDOM WALK 289 9.3.2 THE DRAG ON A GRAIN
SUBJECTED TO A CONSTANT OUTER FORCE 289 9.3.3 BROWNIAN MOTION OF A GRAIN
292 9.3.4 THE DISORDER TIME 293 9.3.5 LAMINAR AND TURBULENT FRICTION 295
9.3.6 A FALLING RAIN DROP 296 * 9.3.7 THE POYNTING-ROBERTSON EFFECT 297
9.4 GRAIN DESTRUCTION 298 9.4.1 MASS BALANCE IN THE MILKY WAY 298 9.4.2
DESTRUCTION PROCESSES 299 9.5 GRAIN FORMATION 301 9.5.1 EVAPORATION
TEMPERATURE OF DUST 301 9.5.2 VAPOR PRESSURE OF SMALL GRAINS 304 9.5.3
CRITICAL SATURATION 305 9.5.4 EQUATIONS FOR TIME-DEPENDENT HOMOGENEOUS
NUCLEATION 307 9.5.5 EQUILIBRIUM DISTRIBUTION AND STEADY-STATE
NUCLEATION 308 9.5.6 SOLUTIONS TO TIME-DEPENDENT HOMOGENEOUS NUCLEATION
311 9.5.7 SIMILARITY RELATIONS 316 10 POLARIZATION 319 10.1 EFFICIENCY
OF INFINITE CYLINDERS 319 10.1.1 NORMAL INCIDENCE AND PICKET FENCE
ALIGNMENT 319 10.1.2 OBLIQUE INCIDENCE 322 10.1.3 ROTATING CYLINDERS 322
10.1.4 ABSORPTION EFFICIENCY AS A FUNCTION OF WAVELENGTH 325 10.2 LINEAR
POLARIZATION THROUGH EXTINCTION 327 10.2.1 EFFECTIVE OPTICAL DEPTH AND
DEGREE OF POLARIZATION P(X) 327 10.2.2 THE SERKOWSKI CURVE 329 10.2.3
POLARIZATION P{K) OF INFINITE CYLINDERS 331 10.2.4 POLARIZATION P(X) OF
ELLIPSOIDS IN THE RAYLEIGH LIMIT 334 10.2.5 POLARIZATION P (A.) OF
SPHEROIDS AT OPTICAL WAVELENGTHS 337 XIV CONTENTS 10.2.6 POLARIZATION
AND REDDENING 338 10.3 POLARIZED EMISSION 339 10.3.1 THE WAVELENGTH
DEPENDENCE OF POLARIZED EMISSION FOR CYLINDERS 340 10.3.2 INFRARED
EMISSION OF SPHEROIDS 340 10.3.3 POLARIZED EMISSION VERSUS POLARIZED
EXTINCTION 341 10.4 CIRCULAR POLARIZATION 342 10.4.1 THE PHASE SHIFT
INDUCED BY GRAINS 343 10.4.2 THE WAVELENGTH DEPENDENCE OF CIRCULAR
POLARIZATION 344 11 GRAIN ALIGNMENT 347 11.1 GRAIN ROTATION 347 11.1.1
EULER S EQUATIONS FOR A ROTATING BODY 347 11.1.2 SYMMETRIC TOPS 349
11.1.3 ATOMIC MAGNET INAMAGNETICFIELD 351 11.1.4 ROTATIONAL BROWNIAN
MOTION 351 11.1.5 SUPRATHERMAL ROTATION 353 11.2 MAGNETIC DISSIPATION
355 11.2.1 DIAMAGNETISM 355 11.2.2 PARAMAGNETISM , 355 11.2.3
FERROMAGNETISM 357 11.2.4 THE MAGNETIZATION OF IRON ABOVE AND BELOW THE
CURIE POINT 358 11.2.5 PARAMAGNETIC DISSIPATION: SPIN-SPIN AND
SPIN-LATTICE RELAXATION 359 11.2.6 THE MAGNETIC SUSCEPTIBILITY FOR
SPIN-LATTICE RELAXATION 360 11.2.7 THE MAGNETIC SUSCEPTIBILITY IN
SPIN-SPIN RELAXATION 362 11.3 MAGNETIC ALIGNMENT 364 11.3.1 A ROTATING
DIPOLE IN A MAGNETIC FIELD 365 11.3.2 TIMESCALES FOR ALIGNMENT AND
DISORDER 367 11.3.3 SUPER-PARAMAGNETISM 368 11.3.4 FERROMAGNETIC
RELAXATION 369 11.3.5 ALIGNMENT OF ANGULAR MOMENTUM WITH THE AXIS OF
GREATEST INERTIA 371 11.3.6 MECHANICAL AND MAGNETIC DAMPING 372 11.4
NON-MAGNETIC ALIGNMENT 373 11.4.1 GAS STREAMING 373 11.4.2 ANISOTROPIC
ILLUMINATION 375 12 PAHS AND SPECTRAL FEATURES OF DUST 377 12.1
THERMODYNAMICS OF PAHS 377 12.1.1 WHAT ARE PAHS? 377 12.1.2 MICROCANONIC
EMISSION OF PAHS 378 12.1.3 THE VIBRATIONAL MODES OF ANTHRACENE 379
12.1.4 MICROCANONIC VERSUS THERMAL LEVEL POPULATION 381 12.1.5 DOES AN
ENSEMBLE OF PAHS HAVE A TEMPERATURE? 382 CONTENTS XV 12.2 PAH EMISSION
384 12.2.1 PHOTOEXCITATIONOFPAHS 384 12.2.2 CUTOFF WAVELENGTH FOR
ELECTRONIC EXCITATION 385 12.2.3 PHOTO-DESTRUCTION AND IONIZATION 386
12.2.4 CROSS SECTIONS AND LINE PROFILES OF PAHS 387 12.3 BIG GRAINS AND
ICES 388 12.3.1 THE SILICATE FEATURES AND THE BAND AT 3.4 FXM 389 12.3.2
ICY GRAIN MANTLES 389 12.4 AN OVERALL DUST MODEL 390 12.4.1 THE THREE
DUST COMPONENTS 392 12.4.2 EXTINCTION COEFFICIENT IN THE DIFFUSE MEDIUM
395 12.4.3 EXTINCTION COEFFICIENT IN PROTOSTELLAR CORES 395 13 RADIATIVE
TRANSPORT 396 13.1 BASIC TRANSFER RELATIONS 396 13.1.1 RADIATIVE
INTENSITY AND FLUX 396 13.1.2 THE TRANSFER EQUATION AND ITS FORMAL
SOLUTION 398 13.1.3 THEBRIGHTNESSTEMPERATURE 400 13.1.4 THE
MAIN-BEAM-BRIGHTNESS TEMPERATURE OF A TELESCOPE 401 13.2 SPHERICAL
CLOUDS 402 13.2.1 MOMENT EQUATIONS FOR SPHERES 403 13.2.2 FREQUENCY
AVERAGES 404 13.2.3 DIFFERENTIAL EQUATIONS FOR THE INTENSITY 405 13.2.4
INTEGRAL EQUATIONS FOR THE INTENSITY 407 13.2.5 PRACTICAL HINTS . 407
13.3 PASSIVE DISKS 409 13.3.1 RADIATIVE TRANSFER IN A PLANE PARALLEL
LAYER 409 13.3.2 THE GRAZING ANGLE IN AN INFLATED DISK 414 13.4 GALACTIC
NUCLEI 415 13.4.1 HOT SPOTS IN A SPHERICAL STELLAR CLUSTER 415 13.4.2
LOW AND HIGH LUMINOSITY STARS 416 13.5 LINE RADIATION 418 13.5.1
ABSORPTION COEFFICIENT AND ABSORPTION PROFILE 418 13.5.2 THE EXCITATION
TEMPERATURE OF A LINE 419 13.5.3 RADIATIVE TRANSFER IN LINES 420 14
DIFFUSE MATTER IN THE MILKY WAY 425 14.1 OVERVIEW OF THE MILKY WAY 425
14.1.1 GLOBAL PARAMETERS 425 14.1.2 THE RELEVANCE OF DUST 426 14.2
MOLECULAR CLOUDS 427 14.2.1 THE CO MOLECULE 428 14.2.2 POPULATION OF
LEVELS IN CO 431 14.2.3 MOLECULAR HYDROGEN 435 14.2.4 FORMATION OF
MOLECULAR HYDROGEN ON DUST SURFACES 435 XVI CONTENTS 14.3 CLOUDS OF
ATOMIC HYDROGEN 438 14.3.1 GENERAL PROPERTIES OF THE DIFFUSE GAS 438
14.3.2 THE 21 CM LINE OF ATOMIC HYDROGEN 439 14.3.3 HOW THE HYPERFINE
LEVELS OF ATOMIC HYDROGEN ARE EXCITED 440 14.3.4 GAS DENSITY AND
TEMPERATURE FROM THE 21 CM LINE 443 14.3.5 THE DEUTERIUM HYPERFINE LINE
444 14.3.6 ELECTRON DENSITY AND MAGNETIC FIELD IN THE DIFFUSE GAS 446
14.4 HII REGIONS 448 14.4.1 IONIZATION AND RECOMBINATION 448 14.4.2
DUST-FREE HII REGIONS 450 14.4.3 DUSTY HII REGIONS 453 14.4.4
BREMSSTRAHLUNG 455 14.4.5 RECOMBINATION LINES 456 14.5 MASS ESTIMATES OF
INTERSTELLAR CLOUDS 457 14.5.1 FROM OPTICALLY THIN CO LINES 457 14.5.2
FROM THE CO LUMINOSITY 458 14.5.3 FROM DUST EMISSION 459 15 STARS AND
THEIR FORMATION 461 15.1 STARS ON AND BEYOND THE MAIN SEQUENCE 461
15.1.1 NUCLEAR BURNING AND THE CREATION OF ELEMENTS 461 15.1.2 THE
BINDING ENERGY OF AN ATOMIC NUCLEUS 463 15.1.3 HYDROGEN BURNING 465
15.1.4 THE 3A PROCESS 467 15.1.5 LIFETIME AND LUMINOSITY OF STARS 469
15.1.6 THE INITIAL MASS FUNCTION 470 15.2 CLOUDS NEAR GRAVITATIONAL
EQUILIBRIUM 471 15.2.1 VIRIALIZED CLOUDS 471 15.2.2 ISOTHERMAL CLOUD IN
PRESSURE EQUILIBRIUM 474 15.2.3 STRUCTURE AND STABILITY OF EBERT-BONNOR
SPHERES 475 15.2.4 FREE-FALL OF A GAS BALL 479 15.2.5 THE CRITICAL MASS
FOR GRAVITATIONAL INSTABILITY 480 15.2.6 IMPLICATIONS OF THE JEANS
CRITERION 482 15.2.7 MAGNETIC FIELDS AND AMBIPOLAR DIFFUSION 484 15.3
GRAVITATIONAL COLLAPSE 486 15.3.1 THE PRESOLAR NEBULA 486 15.3.2
HYDRODYNAMIC COLLAPSE SIMULATIONS 487 15.3.3 SIMILARITY SOLUTIONS OF
COLLAPSE 491 15.4 DISKS 494 15.4.1 VISCOUS LAMINAR FLOWS 494 15.4.2
DYNAMICAL EQUATIONS OF THE THIN ACCRETION DISK 497 15.4.3 THE KEPLER
DISK 498 15.4.4 WHY A STAR ACCRETES FROM A DISK 499 15.4.5 THE
STATIONARY ACCRETION DISK 501 CONTENTS XVII 15.4.6 THEA-DISK 501 15.4.7
DISK HEATING BY VISCOSITY 503 16 EMISSION FROM YOUNG STARS 505 16.1 THE
EARLIEST STAGES OF STAR FORMATION 505 16.1.1 GLOBULES 505 16.1.2
ISOTHERMAL GRAVITATIONALLY-BOUND CLUMPS 506 16.2 THE COLLAPSE PHASE 508
16.2.1 THE DENSITY STRUCTURE OF A PROTOSTAR 508 16.2.2 DUST EMISSION
FROM A SOLAR-TYPE PROTOSTAR 513 16.2.3 KINEMATICS OF PROTOSTELLAR
COLLAPSE 515 16.3 ACCRETION DISKS 518 16.3.1 A FLAT BLACKBODY DISK 518
16.3.2 A FLAT NON-BLACKBODY DISK 521 16.3.3 RADIATIVE TRANSFER IN AN
INFLATED DISK 522 16.4 REFLECTION NEBULAE 524 16.5 COLD AND WARM DUST IN
GALAXIES 526 16.6 STARBURST NUCLEI 531 16.6.1 REPETITIVE BURSTS OF STAR
FORMATION 531 16.6.2 DUST EMISSION FROM STARBURST NUCLEI 535 APPENDIX A
MATHEMATICAL FORMULAE 539 APPENDIX B LIST OF SYMBOLS 545 REFERENCES 549
INDEX 552
|
any_adam_object | 1 |
author | Krügel, Endrik |
author_facet | Krügel, Endrik |
author_role | aut |
author_sort | Krügel, Endrik |
author_variant | e k ek |
building | Verbundindex |
bvnumber | BV024501871 |
classification_rvk | WK 7000 |
ctrlnum | (OCoLC)249621592 (DE-599)BVBBV024501871 |
discipline | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02872nam a2200445 c 4500</leader><controlfield tag="001">BV024501871</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240330 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">090924s2003 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0750308613</subfield><subfield code="c">hbk.</subfield><subfield code="9">0-7503-0861-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780367454654</subfield><subfield code="c">pbk. (2020)</subfield><subfield code="9">978-0367454654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)249621592</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV024501871</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WK 7000</subfield><subfield code="0">(DE-625)149292:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krügel, Endrik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The physics of interstellar dust</subfield><subfield code="c">Endrik Krügel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Bristol [u.a.]</subfield><subfield code="b">IOP</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 559 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Series in astronomy and astrophysics</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Interstellar dust grains catalyse chemical reactions, absorb, scatter, polarise and re-radiate starlight and constitute the building blocks for the formation of planets. Understanding this interstellar component is therefore of primary importance in many areas of astronomy & astrophysics. For example, observers need to understand how dust effects light passing through molecular clouds. Astrophysicists wish to comprehend how dust enables the collapse of clouds or how it determines the spectral behaviour of protostars, star forming regions or whole galaxies. This book gives a thorough theoretical description of the fundamental physics of interstellar dust: its composition, morphology, size distribution, dynamics, optical and thermal properties, alignment, polarisation, scattering, radiation and spectral features. This encyclopedic book provides the basic physics towards understanding the solid matter in interstellar space. It includes all the necessary physics, including solid state physics, radiative transport, optical properties, thermodynamics, statistical mechanics and quantum mechanics. It then uses all of this basic physics in the specific case of dust grains in the interstellar medium.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interstellarer Staub</subfield><subfield code="0">(DE-588)4162143-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Interstellarer Staub</subfield><subfield code="0">(DE-588)4162143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Chemie</subfield><subfield code="0">(DE-588)4009816-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Interstellarer Staub</subfield><subfield code="0">(DE-588)4162143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Interstellarer Staub</subfield><subfield code="0">(DE-588)4162143-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018476577&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-018476577</subfield></datafield></record></collection> |
id | DE-604.BV024501871 |
illustrated | Illustrated |
indexdate | 2024-07-09T22:00:56Z |
institution | BVB |
isbn | 0750308613 9780367454654 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-018476577 |
oclc_num | 249621592 |
open_access_boolean | |
owner | DE-83 DE-188 |
owner_facet | DE-83 DE-188 |
physical | XIX, 559 S. Ill., graph. Darst. |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | IOP |
record_format | marc |
series2 | Series in astronomy and astrophysics |
spelling | Krügel, Endrik Verfasser aut The physics of interstellar dust Endrik Krügel Bristol [u.a.] IOP 2003 XIX, 559 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Series in astronomy and astrophysics Interstellar dust grains catalyse chemical reactions, absorb, scatter, polarise and re-radiate starlight and constitute the building blocks for the formation of planets. Understanding this interstellar component is therefore of primary importance in many areas of astronomy & astrophysics. For example, observers need to understand how dust effects light passing through molecular clouds. Astrophysicists wish to comprehend how dust enables the collapse of clouds or how it determines the spectral behaviour of protostars, star forming regions or whole galaxies. This book gives a thorough theoretical description of the fundamental physics of interstellar dust: its composition, morphology, size distribution, dynamics, optical and thermal properties, alignment, polarisation, scattering, radiation and spectral features. This encyclopedic book provides the basic physics towards understanding the solid matter in interstellar space. It includes all the necessary physics, including solid state physics, radiative transport, optical properties, thermodynamics, statistical mechanics and quantum mechanics. It then uses all of this basic physics in the specific case of dust grains in the interstellar medium. Interstellarer Staub (DE-588)4162143-8 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Chemie (DE-588)4009816-3 gnd rswk-swf Interstellarer Staub (DE-588)4162143-8 s Chemie (DE-588)4009816-3 s DE-604 Physik (DE-588)4045956-1 s GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018476577&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Krügel, Endrik The physics of interstellar dust Interstellarer Staub (DE-588)4162143-8 gnd Physik (DE-588)4045956-1 gnd Chemie (DE-588)4009816-3 gnd |
subject_GND | (DE-588)4162143-8 (DE-588)4045956-1 (DE-588)4009816-3 |
title | The physics of interstellar dust |
title_auth | The physics of interstellar dust |
title_exact_search | The physics of interstellar dust |
title_full | The physics of interstellar dust Endrik Krügel |
title_fullStr | The physics of interstellar dust Endrik Krügel |
title_full_unstemmed | The physics of interstellar dust Endrik Krügel |
title_short | The physics of interstellar dust |
title_sort | the physics of interstellar dust |
topic | Interstellarer Staub (DE-588)4162143-8 gnd Physik (DE-588)4045956-1 gnd Chemie (DE-588)4009816-3 gnd |
topic_facet | Interstellarer Staub Physik Chemie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=018476577&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT krugelendrik thephysicsofinterstellardust |