Molecular modelling: principles and applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Harlow [u.a.]
Pearson Prentice Hall
2007
|
Ausgabe: | 2. ed., [Nachdr.] |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXIII, 744 S., [8] Bl. Ill. graph. Darst. |
ISBN: | 9780582382107 0582382106 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023413318 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080724s2007 ad|| |||| 00||| eng d | ||
020 | |a 9780582382107 |9 978-0-582-38210-7 | ||
020 | |a 0582382106 |9 0-582-38210-6 | ||
035 | |a (OCoLC)255695780 | ||
035 | |a (DE-599)BVBBV023413318 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-703 | ||
082 | 0 | |a 541.22015118 | |
082 | 0 | |a 541.220113 | |
084 | |a VC 6250 |0 (DE-625)147086:253 |2 rvk | ||
100 | 1 | |a Leach, Andrew R. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Molecular modelling |b principles and applications |c Andrew R. Leach |
250 | |a 2. ed., [Nachdr.] | ||
264 | 1 | |a Harlow [u.a.] |b Pearson Prentice Hall |c 2007 | |
300 | |a XXIII, 744 S., [8] Bl. |b Ill. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Molekulardesign | |
650 | 0 | 7 | |a Molekülmodell |0 (DE-588)4170375-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Molekulardesign |0 (DE-588)4265444-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Computersimulation |0 (DE-588)4148259-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Molekulardesign |0 (DE-588)4265444-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Molekülmodell |0 (DE-588)4170375-3 |D s |
689 | 1 | 1 | |a Computersimulation |0 (DE-588)4148259-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595897&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016595897 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137802363830272 |
---|---|
adam_text | Contents
Preface
to the Second Edition
xiii
Preface to the First Edition
xv
Symbols and Physical Constants
xvii
Acknowledgements
xxi
Useful Concepts in Molecular Modelling
1
1.1
Introduction
1
1.2
Coordinate Systems
2
1.3
Potential Energy Surfaces
4
1.4
Molecular Graphics
5
1.5
Surfaces
6
1.6
Computer Hardware and Software
8
1.7
Units of Length and Energy
9
1.8
The Molecular Modelling Literature
9
1.9
The Internet
9
1.10
Mathematical Concepts
10
Further Reading
24
References
24
2
An Introduction to Computational Quantum Mechanics
26
2.1
Introduction
26
2.2
One-electron Atoms
30
2.3
Polyelectronic Atoms and Molecules
34
2.4
Molecular Orbital Calculations
41
2.5
The Hartree-Fock Equations
51
2.6
Basis Sets
65
2.7
Calculating Molecular Properties Using
ab
initia
Quantum Mechanics
74
2.8
Approximate Molecular Orbital Theories
86
2.9
Semi-empirical Methods
86
2.10 Hückel
Theory
99
2.11
Performance of Semi-empirical Methods
102
Appendix
2.1
Some Common Acronyms Used in Computational
Quantum Chemistry
104
Further Reading
105
References
105
vi
Contents
3 Advanced ab initio
Methods, Density Functional Theory and Solid-state
Quantum Mechanics
108
3.1
Introduction
108
3.2
Open-shell Systems
108
3.3
Electron Correlation
110
3.4
Practical Considerations When Performing ah initio Calculations
117
3.5
Energy Component Analysis
122
3.6
Valence Bond Theories
124
3.7
Density Functional Theory
126
3.8
Quantum Mechanical Methods for Studying the Solid State
138
3.9
The Future Role of Quantum Mechanics: Theory and Experiment
Working Together
160
Appendix
3.1
Alternative Expression for a Wavefunction Satisfying Bloch s
Function
161
Further Reading
161
References
162
4
Empirical Force Field Models: Molecular Mechanics
165
4.1
Introduction
165
4.2
Some General Features of Molecular Mechanics Force Fields
168
4.3
Bond Stretching
170
4.4
Angle Bending
173
4.5
Torsionai
Terms
173
4.6
Improper Torsions and Out-of-plane Bending Motions
176
4.7
Cross Terms: Class
1, 2
and
3
Force Fields
178
4.8
Introduction to Non-bonded Interactions
181
4.9
Electrostatic Interactions
181
4.10
Van
der Waals
Interactions
204
4.11
Many-body Effects in Empirical Potentials
212
4.12
Effective Pair Potentials
214
4.13
Hydrogen Bonding in Molecular Mechanics
215
4.14
Force Field Models for the Simulation of Liquid Water
216
4.15
United Atom Force Fields and Reduced Representations
221
4.16
Derivatives of the Molecular Mechanics Energy Function
225
4.17
Calculating Thermodynamic Properties Using a Force Field
226
4.18
Force Field Parametrisation
228
4.19
Transferability of Force Field Parameters
231
4.20
The Treatment of Delocalised
π
Systems
233
4.21
Force Fields for Inorganic Molecules
234
4.22
Force Fields for Solid-state Systems
236
4.23
Empirical Potentials for Metals and Semiconductors
240
Appendix
4.1
The Interaction Between Two
Drude
Molecules
246
Further Reading
247
References
247
Contents
vii
5 Energy
Minimisation and Related Methods for Exploring the Energy Surface
253
5.1
Introduction
253
5.2
Non-derivative Minimisation Methods
258
5.3
Introduction to Derivative Minimisation Methods
261
5.4
First-order Minimisation Methods
262
5.5
Second Derivative Methods: The Newton-Raphson Method
267
5.6
Quasi-Newton
Methods
268
5.7
Which Minimisation Method Should I Use?
270
5.8
Applications of Energy Minimisation
273
5.9
Determination of Transition Structures and Reaction Pathways
279
5.10
Solid-state Systems: Lattice Statics and Lattice Dynamics
295
Further Reading
300
References
301
6
Computer Simulation Methods
303
6.1
Introduction
303
6.2
Calculation of Simple Thermodynamic Properties
307
6.3
Phase Space
312
6.4
Practical Aspects of Computer Simulation
315
6.5
Boundaries
317
6.6
Monitoring the Equilibration
321
6.7
Truncating the Potential and the Minimum Image Convention
324
6.8
Long-range Forces
334
6.9
Analysing the Results of a Simulation and Estimating Errors
343
Appendix
6.1
Basic Statistical Mechanics
347
Appendix
6.2
Heat Capacity and Energy Fluctuations
348
Appendix
6.3
The Real Gas Contribution to the Virial
349
Appendix
6.4
Translating Particle Back into Central Box for Three Box Shapes
350
Further Reading
351
References
351
7
Molecular Dynamics Simulation Methods
353
7.1
Introduction
353
7.2
Molecular Dynamics Using Simple Models
353
7.3
Molecular Dynamics with Continuous Potentials
355
7.4
Setting up and Running a Molecular Dynamics Simulation
364
7.5
Constraint Dynamics
368
7.6
Time-dependent Properties
374
7.7
Molecular Dynamics at Constant Temperature and Pressure
382
7.8
Incorporating Solvent Effects into Molecular Dynamics: Potentials of
Mean Force and Stochastic Dynamics
387
7.9
Conformational Changes from Molecular Dynamics Simulations
392
7.10
Molecular Dynamics Simulations of Chain Amphiphiles
394
viii
Contents
Appendix 7.1 Energy
Conservation
in
Molecular
Dynamics 405
Further Reading
406
References
406
8 Monte Carlo Simulation
Methods
410
8.1
Introduction
410
8.2
Calculating Properties by Integration
412
8.3
Some Theoretical Background to the Metropolis Method
414
8.4
Implementation of the Metropolis Monte Carlo Method
417
8.5
Monte Carlo Simulation of Molecules
420
8.6
Models Used in Monte Carlo Simulations of Polymers
423
8.7
Biased Monte Carlo Methods
432
8.8
Tackling the Problem of Quasi-ergodicity: J-walking and Multicanonical
Monte Carlo
433
8.9
Monte Carlo Sampling from Different Ensembles
438
8.10
Calculating the Chemical Potential
442
8.11
The Configurational Bias Monte Carlo Method
443
8.12
Simulating Phase Equilibria by the Gibbs Ensemble Monte Carlo Method
450
8.13
Monte Carlo or Molecular Dynamics?
452
Appendix
8.1
The Marsaglia Random Number Generator
453
Further Reading
454
References
454
9
Conformational Analysis
457
9.1
Introduction
457
9.2
Systematic Methods for Exploring Conformational Space
458
9.3
Model-building Approaches
464
9.4
Random Search Methods
465
9.5
Distance Geometry
467
9.6
Exploring Conformational Space Using Simulation Methods
475
9.7
Which Conformational Search Method Should I Use? A Comparison of
Different Approaches
476
9.8
Variations on the Standard Methods
477
9.9
Finding the Global Energy Minimum: Evolutionary Algorithms and
Simulated Annealing
479
9.10
Solving Protein Structures Using Restrained Molecular Dynamics and
Simulated Annealing
483
9.11
Structural Databases
489
9.12
Molecular Fitting
490
9.13
Clustering Algorithms and Pattern Recognition Techniques
491
9.14
Reducing the Dimensionality of a Data Set
497
9.15
Covering Conformational Space: Poling
499
9.16
A Classic Optimisation Problem: Predicting Crystal Structures
501
Contents ix
Further Reading
505
References
506
10
Protein Structure Prediction, Sequence Analysis and Protein Folding
509
10.1
Introduction
509
10.2
Some Basic Principles of Protein Structure
513
10.3
First-principles Methods for Predicting Protein Structure
517
10.4
Introduction to Comparative Modelling
522
10.5
Sequence Alignment
522
10.6
Constructing and Evaluating a Comparative Model
539
10.7
Predicting Protein Structures by Threading
545
10.8
A Comparison of Protein Structure Prediction Methods: CASP
547
10.9
Protein Folding and Unfolding
549
Appendix
10.1
Some Common Abbreviations and Acronyms Used in
Bioinformatics
553
Appendix
10.2
Some of the Most Common Sequence and Structural Databases
Used in Bioinformatics
555
Appendix
10.3
Mutation Probability Matrix for
1
РАМ
556
Appendix
10.4
Mutation Probability Matrix for
250
РАМ
557
Further Reading
557
References
558
11
Four Challenges in Molecular Modelling: Free Energies, Solvation, Reactions
and Solid-state Defects
563
11.1
Free Energy Calculations
563
11.2
The Calculation of Free Energy Differences
564
11.3
Applications of Methods for Calculating Free Energy Differences
569
11.4
The Calculation of Enthalpy and Entropy Differences
574
11.5
Partitioning the Free Energy
574
11.6
Potential Pitfalls with Free Energy Calculations
577
11.7
Potentials of Mean Force
580
11.8
Approximate/ Rapid Free Energy Methods
585
11.9
Continuum Representations of the Solvent
592
11.10
The Electrostatic Contribution to the Free Energy of Solvation:
The Born and Onsager Models
593
11.11
Non-electrostatic Contributions to the Solvation Free Energy
608
11.12
Very Simple Solvation Models
609
11.13
Modelling Chemical Reactions
610
11.14
Modelling Solid-state Defects
622
Appendix
11.1
Calculating Free Energy Differences Using Thermodynamic
Integration
630
Appendix
11.2
Using the Slow Growth Method for Calculating Free Energy
Differences
631
Contents
Appendix 11.3 Expansion
of
Zwanzig Expression
for the Free
Energy
Difference for the Linear Response Method
631
Further Reading
632
References
633
12
The Use of Molecular Modelling and Chemoinf ormatics to Discover and
Design New Molecules
640
12.1
Molecular Modelling in Drug Discovery
640
12.2
Computer Representations of Molecules, Chemical Databases and 2D
Substructure Searching
642
12.3 3D
Database Searching
647
12.4
Deriving and Using Three-dimensional Pharmacophores
648
12.5
Sources of Data for
3D
Databases
659
12.6
Molecular Docking
661
12.7
Applications of
3D
Database Searching and Docking
667
12.8
Molecular Similarity and Similarity Searching
668
12.9
Molecular Descriptors
668
12.10
Selecting Diverse Sets of Compounds
680
12.11
Structure-based
De
Νοόο
Ligand Design
687
12.12
Quantitative Structure-Activity Relationships
695
12.13
Partial Least Squares
706
12.14
Combinatorial Libraries
711
Further Reading
719
References
720
Index
727
|
adam_txt |
Contents
Preface
to the Second Edition
xiii
Preface to the First Edition
xv
Symbols and Physical Constants
xvii
Acknowledgements
xxi
Useful Concepts in Molecular Modelling
1
1.1
Introduction
1
1.2
Coordinate Systems
2
1.3
Potential Energy Surfaces
4
1.4
Molecular Graphics
5
1.5
Surfaces
6
1.6
Computer Hardware and Software
8
1.7
Units of Length and Energy
9
1.8
The Molecular Modelling Literature
9
1.9
The Internet
9
1.10
Mathematical Concepts
10
Further Reading
24
References
24
2
An Introduction to Computational Quantum Mechanics
26
2.1
Introduction
26
2.2
One-electron Atoms
30
2.3
Polyelectronic Atoms and Molecules
34
2.4
Molecular Orbital Calculations
41
2.5
The Hartree-Fock Equations
51
2.6
Basis Sets
65
2.7
Calculating Molecular Properties Using
ab
initia
Quantum Mechanics
74
2.8
Approximate Molecular Orbital Theories
86
2.9
Semi-empirical Methods
86
2.10 Hückel
Theory
99
2.11
Performance of Semi-empirical Methods
102
Appendix
2.1
Some Common Acronyms Used in Computational
Quantum Chemistry
104
Further Reading
105
References
105
vi
Contents
3 Advanced ab initio
Methods, Density Functional Theory and Solid-state
Quantum Mechanics
108
3.1
Introduction
108
3.2
Open-shell Systems
108
3.3
Electron Correlation
110
3.4
Practical Considerations When Performing ah initio Calculations
117
3.5
Energy Component Analysis
122
3.6
Valence Bond Theories
124
3.7
Density Functional Theory
126
3.8
Quantum Mechanical Methods for Studying the Solid State
138
3.9
The Future Role of Quantum Mechanics: Theory and Experiment
Working Together
160
Appendix
3.1
Alternative Expression for a Wavefunction Satisfying Bloch's
Function
161
Further Reading
161
References
162
4
Empirical Force Field Models: Molecular Mechanics
165
4.1
Introduction
165
4.2
Some General Features of Molecular Mechanics Force Fields
168
4.3
Bond Stretching
170
4.4
Angle Bending
173
4.5
Torsionai
Terms
173
4.6
Improper Torsions and Out-of-plane Bending Motions
176
4.7
Cross Terms: Class
1, 2
and
3
Force Fields
178
4.8
Introduction to Non-bonded Interactions
181
4.9
Electrostatic Interactions
181
4.10
Van
der Waals
Interactions
204
4.11
Many-body Effects in Empirical Potentials
212
4.12
Effective Pair Potentials
214
4.13
Hydrogen Bonding in Molecular Mechanics
215
4.14
Force Field Models for the Simulation of Liquid Water
216
4.15
United Atom Force Fields and Reduced Representations
221
4.16
Derivatives of the Molecular Mechanics Energy Function
225
4.17
Calculating Thermodynamic Properties Using a Force Field
226
4.18
Force Field Parametrisation
228
4.19
Transferability of Force Field Parameters
231
4.20
The Treatment of Delocalised
π
Systems
233
4.21
Force Fields for Inorganic Molecules
234
4.22
Force Fields for Solid-state Systems
236
4.23
Empirical Potentials for Metals and Semiconductors
240
Appendix
4.1
The Interaction Between Two
Drude
Molecules
246
Further Reading
247
References
247
Contents
vii
5 Energy
Minimisation and Related Methods for Exploring the Energy Surface
253
5.1
Introduction
253
5.2
Non-derivative Minimisation Methods
258
5.3
Introduction to Derivative Minimisation Methods
261
5.4
First-order Minimisation Methods
262
5.5
Second Derivative Methods: The Newton-Raphson Method
267
5.6
Quasi-Newton
Methods
268
5.7
Which Minimisation Method Should I Use?
270
5.8
Applications of Energy Minimisation
273
5.9
Determination of Transition Structures and Reaction Pathways
279
5.10
Solid-state Systems: Lattice Statics and Lattice Dynamics
295
Further Reading
300
References
301
6
Computer Simulation Methods
303
6.1
Introduction
303
6.2
Calculation of Simple Thermodynamic Properties
307
6.3
Phase Space
312
6.4
Practical Aspects of Computer Simulation
315
6.5
Boundaries
317
6.6
Monitoring the Equilibration
321
6.7
Truncating the Potential and the Minimum Image Convention
324
6.8
Long-range Forces
334
6.9
Analysing the Results of a Simulation and Estimating Errors
343
Appendix
6.1
Basic Statistical Mechanics
347
Appendix
6.2
Heat Capacity and Energy Fluctuations
348
Appendix
6.3
The Real Gas Contribution to the Virial
349
Appendix
6.4
Translating Particle Back into Central Box for Three Box Shapes
350
Further Reading
351
References
351
7
Molecular Dynamics Simulation Methods
353
7.1
Introduction
353
7.2
Molecular Dynamics Using Simple Models
353
7.3
Molecular Dynamics with Continuous Potentials
355
7.4
Setting up and Running a Molecular Dynamics Simulation
364
7.5
Constraint Dynamics
368
7.6
Time-dependent Properties
374
7.7
Molecular Dynamics at Constant Temperature and Pressure
382
7.8
Incorporating Solvent Effects into Molecular Dynamics: Potentials of
Mean Force and Stochastic Dynamics
387
7.9
Conformational Changes from Molecular Dynamics Simulations
392
7.10
Molecular Dynamics Simulations of Chain Amphiphiles
394
viii
Contents
Appendix 7.1 Energy
Conservation
in
Molecular
Dynamics 405
Further Reading
406
References
406
8 Monte Carlo Simulation
Methods
410
8.1
Introduction
410
8.2
Calculating Properties by Integration
412
8.3
Some Theoretical Background to the Metropolis Method
414
8.4
Implementation of the Metropolis Monte Carlo Method
417
8.5
Monte Carlo Simulation of Molecules
420
8.6
Models Used in Monte Carlo Simulations of Polymers
423
8.7
'Biased' Monte Carlo Methods
432
8.8
Tackling the Problem of Quasi-ergodicity: J-walking and Multicanonical
Monte Carlo
433
8.9
Monte Carlo Sampling from Different Ensembles
438
8.10
Calculating the Chemical Potential
442
8.11
The Configurational Bias Monte Carlo Method
443
8.12
Simulating Phase Equilibria by the Gibbs Ensemble Monte Carlo Method
450
8.13
Monte Carlo or Molecular Dynamics?
452
Appendix
8.1
The Marsaglia Random Number Generator
453
Further Reading
454
References
454
9
Conformational Analysis
457
9.1
Introduction
457
9.2
Systematic Methods for Exploring Conformational Space
458
9.3
Model-building Approaches
464
9.4
Random Search Methods
465
9.5
Distance Geometry
467
9.6
Exploring Conformational Space Using Simulation Methods
475
9.7
Which Conformational Search Method Should I Use? A Comparison of
Different Approaches
476
9.8
Variations on the Standard Methods
477
9.9
Finding the Global Energy Minimum: Evolutionary Algorithms and
Simulated Annealing
479
9.10
Solving Protein Structures Using Restrained Molecular Dynamics and
Simulated Annealing
483
9.11
Structural Databases
489
9.12
Molecular Fitting
490
9.13
Clustering Algorithms and Pattern Recognition Techniques
491
9.14
Reducing the Dimensionality of a Data Set
497
9.15
Covering Conformational Space: Poling
499
9.16
A 'Classic' Optimisation Problem: Predicting Crystal Structures
501
Contents ix
Further Reading
505
References
506
10
Protein Structure Prediction, Sequence Analysis and Protein Folding
509
10.1
Introduction
509
10.2
Some Basic Principles of Protein Structure
513
10.3
First-principles Methods for Predicting Protein Structure
517
10.4
Introduction to Comparative Modelling
522
10.5
Sequence Alignment
522
10.6
Constructing and Evaluating a Comparative Model
539
10.7
Predicting Protein Structures by 'Threading'
545
10.8
A Comparison of Protein Structure Prediction Methods: CASP
547
10.9
Protein Folding and Unfolding
549
Appendix
10.1
Some Common Abbreviations and Acronyms Used in
Bioinformatics
553
Appendix
10.2
Some of the Most Common Sequence and Structural Databases
Used in Bioinformatics
555
Appendix
10.3
Mutation Probability Matrix for
1
РАМ
556
Appendix
10.4
Mutation Probability Matrix for
250
РАМ
557
Further Reading
557
References
558
11
Four Challenges in Molecular Modelling: Free Energies, Solvation, Reactions
and Solid-state Defects
563
11.1
Free Energy Calculations
563
11.2
The Calculation of Free Energy Differences
564
11.3
Applications of Methods for Calculating Free Energy Differences
569
11.4
The Calculation of Enthalpy and Entropy Differences
574
11.5
Partitioning the Free Energy
574
11.6
Potential Pitfalls with Free Energy Calculations
577
11.7
Potentials of Mean Force
580
11.8
Approximate/'Rapid' Free Energy Methods
585
11.9
Continuum Representations of the Solvent
592
11.10
The Electrostatic Contribution to the Free Energy of Solvation:
The Born and Onsager Models
593
11.11
Non-electrostatic Contributions to the Solvation Free Energy
608
11.12
Very Simple Solvation Models
609
11.13
Modelling Chemical Reactions
610
11.14
Modelling Solid-state Defects
622
Appendix
11.1
Calculating Free Energy Differences Using Thermodynamic
Integration
630
Appendix
11.2
Using the Slow Growth Method for Calculating Free Energy
Differences
631
Contents
Appendix 11.3 Expansion
of
Zwanzig Expression
for the Free
Energy
Difference for the Linear Response Method
631
Further Reading
632
References
633
12
The Use of Molecular Modelling and Chemoinf ormatics to Discover and
Design New Molecules
640
12.1
Molecular Modelling in Drug Discovery
640
12.2
Computer Representations of Molecules, Chemical Databases and 2D
Substructure Searching
642
12.3 3D
Database Searching
647
12.4
Deriving and Using Three-dimensional Pharmacophores
648
12.5
Sources of Data for
3D
Databases
659
12.6
Molecular Docking
661
12.7
Applications of
3D
Database Searching and Docking
667
12.8
Molecular Similarity and Similarity Searching
668
12.9
Molecular Descriptors
668
12.10
Selecting 'Diverse' Sets of Compounds
680
12.11
Structure-based
De
Νοόο
Ligand Design
687
12.12
Quantitative Structure-Activity Relationships
695
12.13
Partial Least Squares
706
12.14
Combinatorial Libraries
711
Further Reading
719
References
720
Index
727 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Leach, Andrew R. |
author_facet | Leach, Andrew R. |
author_role | aut |
author_sort | Leach, Andrew R. |
author_variant | a r l ar arl |
building | Verbundindex |
bvnumber | BV023413318 |
classification_rvk | VC 6250 |
ctrlnum | (OCoLC)255695780 (DE-599)BVBBV023413318 |
dewey-full | 541.22015118 541.220113 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541.22015118 541.220113 |
dewey-search | 541.22015118 541.220113 |
dewey-sort | 3541.22015118 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
edition | 2. ed., [Nachdr.] |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01735nam a2200445 c 4500</leader><controlfield tag="001">BV023413318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080724s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780582382107</subfield><subfield code="9">978-0-582-38210-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0582382106</subfield><subfield code="9">0-582-38210-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255695780</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023413318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.22015118</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541.220113</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VC 6250</subfield><subfield code="0">(DE-625)147086:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Leach, Andrew R.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular modelling</subfield><subfield code="b">principles and applications</subfield><subfield code="c">Andrew R. Leach</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., [Nachdr.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Harlow [u.a.]</subfield><subfield code="b">Pearson Prentice Hall</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 744 S., [8] Bl.</subfield><subfield code="b">Ill. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molekulardesign</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekülmodell</subfield><subfield code="0">(DE-588)4170375-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Molekulardesign</subfield><subfield code="0">(DE-588)4265444-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Molekulardesign</subfield><subfield code="0">(DE-588)4265444-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Molekülmodell</subfield><subfield code="0">(DE-588)4170375-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Computersimulation</subfield><subfield code="0">(DE-588)4148259-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595897&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016595897</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023413318 |
illustrated | Illustrated |
index_date | 2024-07-02T21:28:24Z |
indexdate | 2024-07-09T21:18:05Z |
institution | BVB |
isbn | 9780582382107 0582382106 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016595897 |
oclc_num | 255695780 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-703 |
owner_facet | DE-355 DE-BY-UBR DE-703 |
physical | XXIII, 744 S., [8] Bl. Ill. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Pearson Prentice Hall |
record_format | marc |
spelling | Leach, Andrew R. Verfasser aut Molecular modelling principles and applications Andrew R. Leach 2. ed., [Nachdr.] Harlow [u.a.] Pearson Prentice Hall 2007 XXIII, 744 S., [8] Bl. Ill. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Molekulardesign Molekülmodell (DE-588)4170375-3 gnd rswk-swf Molekulardesign (DE-588)4265444-0 gnd rswk-swf Computersimulation (DE-588)4148259-1 gnd rswk-swf Molekulardesign (DE-588)4265444-0 s DE-604 Molekülmodell (DE-588)4170375-3 s Computersimulation (DE-588)4148259-1 s 1\p DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595897&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Leach, Andrew R. Molecular modelling principles and applications Molekulardesign Molekülmodell (DE-588)4170375-3 gnd Molekulardesign (DE-588)4265444-0 gnd Computersimulation (DE-588)4148259-1 gnd |
subject_GND | (DE-588)4170375-3 (DE-588)4265444-0 (DE-588)4148259-1 |
title | Molecular modelling principles and applications |
title_auth | Molecular modelling principles and applications |
title_exact_search | Molecular modelling principles and applications |
title_exact_search_txtP | Molecular modelling principles and applications |
title_full | Molecular modelling principles and applications Andrew R. Leach |
title_fullStr | Molecular modelling principles and applications Andrew R. Leach |
title_full_unstemmed | Molecular modelling principles and applications Andrew R. Leach |
title_short | Molecular modelling |
title_sort | molecular modelling principles and applications |
title_sub | principles and applications |
topic | Molekulardesign Molekülmodell (DE-588)4170375-3 gnd Molekulardesign (DE-588)4265444-0 gnd Computersimulation (DE-588)4148259-1 gnd |
topic_facet | Molekulardesign Molekülmodell Computersimulation |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016595897&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT leachandrewr molecularmodellingprinciplesandapplications |