Optical fiber communications: principles and practice
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Harlow [u.a.]
Prentice Hall Financial Times
2009
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 1041 - 1050 |
Beschreibung: | L, 1075 S. Ill., graph. Darst., Kt. |
ISBN: | 9780130326812 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023404065 | ||
003 | DE-604 | ||
005 | 20101117 | ||
007 | t | ||
008 | 080718s2009 xxuabd| |||| 00||| eng d | ||
010 | |a 2008018133 | ||
020 | |a 9780130326812 |c alk. paper |9 978-0-13-032681-2 | ||
035 | |a (OCoLC)226304746 | ||
035 | |a (DE-599)BVBBV023404065 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-20 |a DE-703 |a DE-573 |a DE-1050 |a DE-83 |a DE-29T | ||
050 | 0 | |a TK5103.59 | |
082 | 0 | |a 621.382/75 | |
084 | |a ZN 6280 |0 (DE-625)157542: |2 rvk | ||
084 | |a ZN 6285 |0 (DE-625)157543: |2 rvk | ||
084 | |a ZN 6291 |0 (DE-625)157545: |2 rvk | ||
084 | |a ELT 680f |2 stub | ||
100 | 1 | |a Senior, John M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Optical fiber communications |b principles and practice |c John M. Senior, assisted by M. Yousif Jamro |
250 | |a 3. ed. | ||
264 | 1 | |a Harlow [u.a.] |b Prentice Hall Financial Times |c 2009 | |
300 | |a L, 1075 S. |b Ill., graph. Darst., Kt. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 1041 - 1050 | ||
650 | 4 | |a Optical communications | |
650 | 4 | |a Fiber optics | |
650 | 0 | 7 | |a Faseroptik |0 (DE-588)4016498-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optische Nachrichtentechnik |0 (DE-588)4035624-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optische Nachrichtenübertragung |0 (DE-588)4172668-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lichtwellenleiter |0 (DE-588)4267405-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Faseroptik |0 (DE-588)4016498-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Optische Nachrichtentechnik |0 (DE-588)4035624-3 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Optische Nachrichtenübertragung |0 (DE-588)4172668-6 |D s |
689 | 2 | 1 | |a Lichtwellenleiter |0 (DE-588)4267405-0 |D s |
689 | 2 | |5 DE-604 | |
700 | 1 | |a Jamro, M. Yousif |e Sonstige |4 oth | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016586792&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016586792 |
Datensatz im Suchindex
_version_ | 1804137788249997312 |
---|---|
adam_text | Contents
Preface
xix
Acknowledgements
xxiii
List ofsymbob and abbreviations
xxxii
Chapter
1:
Introduction
1
1.1
Historical development
1
1.2
The general system
5
1.3
Advantages of optical fiber communication
7
References
10
Chapter
2:
Optical fiber waveguides
12
2.1
Introduction
12
2.2
Ray theory transmission
14
2.2.1
Total internal reflection
14
2.2.2
Acceptance angle
16
2.2.3
Numerical aperture
17
2.2.4
Skew rays
20
2.3
Electromagnetic mode theory for optical propagation
24
2.3.1
Electromagnetic waves
24
2.3.2
Modes in a planar guide
26
2.3.3
Phase and group velocity
28
2.3.4
Phase shift with total internal reflection and the
evanescent field
30
2.3.5
Goos-Haenchen shift
35
2.4
Cylindrical fiber
35
2.4.1
Modes
35
2.4.2
Mode coupling
42
2.4.3
Step index fibers
43
2.4.4
Graded index fibers
46
2.5
Single-mode fibers
54
2.5.1
Cutoff wavelength
59
2.5.2
Mode-field diameter and spot size
60
2.5.3
Effective refractive index
61
viii
Contents
2.5.4
Group
delay and mode delay factor
64
2.5.5
The Gaussian approximation
65
2.5.6
Equivalent step index methods
71
2.6
Photonic crystal fibers
75
2.6.1
Index-guided
microstructures
75
2.6.2
Photonic
bandgap
fibers
77
Problems
78
References
82
Chapter
3:
Transmission characteristics of
optical fibers
86
3.1
Introduction
87
3.2
Attenuation
88
3.3
Material absorption losses in silica glass fibers
90
3.3.1
Intrinsic absorption
90
3.3.2
Extrinsic absorption
91
3.4
Linear scattering losses
95
3.4.1
Rayleigh scattering
95
3.4.2
Mie
scattering
97
3.5
Nonlinear scattering losses
98
3.5.1
Stimulated Brillouin scattering
98
3.5.2
Stimulated Raman scattering
99
3.6
Fiber bend loss
100
3.7
Mid-infrared and far-infrared transmission
102
3.8
Dispersion
105
3.9
Chromatic dispersion
109
3.9.1
Material dispersion
110
3.9.2
Waveguide dispersion
113
3.10
Intermodal
dispersion
113
3.10.1
Multimode step index fiber
114
3.10.2
Multimode graded index fiber
119
3.10.3
Modal noise
122
3.11
Overall fiber dispersion
124
3.11.1
Multimode fibers
124
3.11.2
Single-mode fibers
125
3.12
Dispersion-modified single-mode fibers
132
3.12.1
Dispersion-shifted fibers
133
3.12.2
Dispersion-flattened fibers
137
3.12.3
Nonzero-dispersion-shifted fibers
137
Contents
ix
3.13
Polarization
140
3.13.1
Fiber birefringence
141
3.13.2
Polarization mode dispersion
144
3.13.3
Polarization-maintaining fibers
147
3.14
Nonlinear effects
151
3.14.1
Scattering effects
151
3.14.2
Kerr effects
154
3.15
Soliton propagation
155
Problems
158
References
163
ipte
r
4:
Optical fibers and cables
169
4.1
Introduction
169
4.2
Preparation of optical fibers
170
4.3
Liquid-phase (melting) techniques
171
4.3.1
Fiber drawing
172
4.4
Vapor-phase deposition techniques
175
4.4.1
Outside vapor-phase oxidation process
176
4.4.2
Vapor axial deposition
(VAD)
178
4.4.3
Modified chemical vapor deposition
180
4.4.4
Plasma-activated chemical vapor deposition
(PCVD)
181
4.4.5
Summary of vapor-phase deposition
techniques
182
4.5
Optical fibers
183
4.5.1
Multimode step index fibers
184
4.5.2
Multimode graded index fibers
185
4.5.3
Single-mode fibers
187
4.5.4
Plastic-clad fibers
190
4.5.5
Plastic optical fibers
191
4.6
Optical fiber cables
194
4.6.1
Fiber strength and durability
195
4.7
Stability of the fiber transmission characteristics
199
4.7.1
Microbending
199
4.7.2
Hydrogen absorption
200
4.7.3
Nuclear radiation exposure
201
4.8
Cable design
203
4.8.1
Fiber buffering
203
4.8.2
Cable structural and strength members
204
χ
Contents
4.8.3
Cable sheath, water barrier and cable core
206
4.8.4
Examples of fiber cables
207
Problems
212
References
213
Chapter
5:
Optical fiber connections: joints,
couplers and isolators
217
5.1
Introduction
217
5.2
Fiber alignment and joint loss
219
5.2.1
Multimode fiber joints
222
5.2.2
Single-mode fiber joints
230
5.3
Fiber splices
233
5.3.1
Fusion splices
234
5.3.2
Mechanical splices
236
5.3.3
Multiple splices
241
5.4
Fiber connectors
243
5.4.1
Cylindrical ferrule connectors
244
5.4.2
Duplex and multiple-fiber connectors
247
5.4.3
Fiber connector-type summary
249
5.5
Expanded beam connectors
251
5.5.1
GRIN-rod lenses
254
5.6
Fiber couplers
256
5.6.1
Three- and four-port couplers
259
5.6.2
Star couplers
264
5.6.3
Wavelength division multiplexing
couplers
269
5.7
Optical isolators and circulators
280
Problems
283
References
287
Chapter
6:
Optical sources
1:
the laser
294
6.1
Introduction
294
6.2
Basic concepts
297
6.2.1
Absorption and emission of radiation
297
6.2.2
The Einstein relations
299
6.2.3
Population inversion
302
6.2.4
Optical feedback and laser oscillation
303
6.2.5
Threshold condition for laser oscillation
307
Contents
xi
6.3
Optical emission from semiconductors
309
6.3.1
The
p
-п
junction
309
6.3.2
Spontaneous emission
311
6.3.3
Carrier recombination
313
6.3.4
Stimulated emission and lasing
317
6.3.5
Heterojunctions
323
6.3.6
Semiconductor materials
325
6.4
The semiconductor injection laser
327
6.4.1
Efficiency
328
6.4.2
Stripe geometry
330
6.4.3
Laser modes
332
6.4.4
Single-mode operation
333
6.5
Some injection laser structures
334
6.5.1
Gain-guided lasers
334
6.5.2
Index-guided lasers
336
6.5.3
Quantum-well lasers
339
6.5.4
Quantum-dot lasers
339
б.б
Single-frequency injection lasers
342
6.6.1
Short- and couple-cavity lasers
342
6.6.2
Distributed feedback lasers
344
6.6.3
Vertical cavity surface-emitting lasers
347
6.7
Injection laser characteristics
350
6.7.1
Threshold current temperature dependence
350
6.7.2
Dynamic response
354
6.7.3
Frequency chirp
355
6.7.4
Noise
356
6.7.5
Mode hopping
360
6.7.6
Reliability
361
6.8
Injection laser to fiber coupling
362
6.9
Nonsemiconductor lasers
364
6.9.1
The Nd:YAG laser
364
6.9.2
Glass fiber lasers
366
6.10
Narrow-linewidth and wavelength-tunable lasers
369
6.10.1
Long external cavity lasers
371
6.10.2
Integrated external cavity lasers
372
6.10.3
Fiber lasers
376
6.11
Mid-infrared and far-infrared lasers
378
6.11.1
Quantum cascade lasers
381
Problems
383
References
386
xii Contents
Chapter
7:
Optical sources
2:
the light-emitting diode
396
7.1
Introduction
396
7.2
LED power and efficiency
398
7.2.1
The double-heterojunction LED
405
7.3
LED structures
406
7.3.1
Planar LED
407
7.3.2
Dome LED
407
7.3.3
Surface emitter
LEDs
407
7.3.4
Edge emitter
LEDs
411
7.3.5 Superluminescent LEDs
414
7.3.6
Resonant cavity and quantum-dot
LEDs
416
7.3.7
Lens coupling to fiber
419
7.4
LED characteristics
422
7.4.1
Optical output power
422
7.4.2
Output spectrum
425
7.4.3
Modulation bandwidth
428
7.4.4
Reliability
433
7.5
Modulation
435
Problems
436
References
439
Chapter
8:
Optical detectors
444
8.1
Introduction
444
8.2
Device types
446
8.3
Optical detection principles
447
8.4
Absorption
448
8.4.1
Absorption coefficient
448
8.4.2
Direct and indirect absorption: silicon and
germanium
449
8.4.3
III-V alloys
450
8.5
Quantum efficiency
451
8.6
Responsivity
451
8.7
Long-wavelength cutoff
455
8.8
Semiconductor
photodiodes
without internal gain
456
8.8.1
The
p
-п
photodiode
456
8.8.2
The p-i-n
photodiode
457
8.8.3
Speed of response and traveling-wave
photodiodes
462
8.8.4
Noise
468
Contents xiii
8.9
Semiconductor photodiodes
with internal gain
470
8.9.1
Avalanche
photodiodes
470
8.9.2
Silicon reach through avalanche
photodiodes
472
8.9.3
Germanium avalanche
photodiodes
473
8.9.4
III-V alloy avalanche
photodiodes
474
8.9.5
Benefits and drawbacks with the avalanche
photodiode
480
8.9.6
Multiplication factor
482
8.10
Mid-infrared and far-infrared
photodiodes
482
8.10.1
Quantum-dot photodetectors
484
8.11
Phototransistors
485
8.12
Metal-semiconductor-metal photodetectors
489
Problems
493
References
496
Chapter
9:
Direct detection receiver performance
considerations
502
9.1
Introduction
502
9.2
Noise
503
9.2.1
Thermal noise
503
9.2.2
Dark current noise
504
9.2.3
Quantum noise
504
9.2.4
Digital signaling quantum noise
505
9.2.5
Analog transmission quantum noise
508
9.3
Receiver noise
510
9.3.1
The
p
-п
and p-i-n
photodiode
receiver
511
9.3.2
Receiver capacitance and bandwidth
515
9.3.3
Avalanche
photodiode (APD)
receiver
516
9.3.4
Excess avalanche noise factor
522
9.3.5
Gain-bandwidth product
523
9.4
Receiver structures
524
9.4.1
Low-impedance front-end
525
9.4.2
High-impedance (integrating) front-end
526
9.4.3
The transimpedance front-end
526
9.5
FET
preamplifiers
530
9.5.1
Gallium arsenide MESFETs
531
9.5.2
PIN-FET hybrid receivers
532
9.6
High-performance receivers
534
Problems
542
References
545
xiv Contents
Chapter
10:
Optical amplification, wavelength
conversion and regeneration
549
10.1
Introduction
549
10.2
Optical amplifiers
550
10.3
Semiconductor optical amplifiers
552
10.3.1
Theory
554
10.3.2
Performance characteristics
559
10.3.3
Gain clamping
563
10.3.4
Quantum dots
565
10.4
Fiber and waveguide amplifiers
567
10.4.1
Rare-earth-doped fiber amplifiers
568
10.4.2
Raman and Brillouin fiber amplifiers
571
10.4.3
Waveguide amplifiers and fiber amplets
575
10.4.4
Optical parametric amplifiers
578
10.4.5
Wideband fiber amplifiers
581
10.5
Wavelength conversion
583
10.5.1
Cross-gain modulation wavelength converter
584
10.5.2
Cross-phase modulation wavelength converter
586
10.5.3
Cross-absorption modulation wavelength converters
592
10.5.4
Coherent wavelength converters
593
10.6
Optical regeneration
595
Problems
598
References
600
Chapter
11:
Integrated optics and photonics
606
11.1
Introduction
606
11.2
Integrated optics and photonics technologies
607
11.3
Planar waveguides
610
11.4
Some integrated optical devices
615
11.4.1
Beam splitters, directional couplers and switches
616
11.4.2
Modulators
623
11.4.3
Periodic structures for filters and injection lasers
627
11.4.4
Polarization transformers and wavelength converters
634
11.5
Optoelectronic integration
636
11.6
Photonic integrated circuits
643
11.7
Optical bistability and digital optics
648
11.8
Optical computation
656
Problems
663
References
665
Contents xv
Chapter
12:
Optical fiber systems
1:
intensity
modulation/direct detection
673
12.1
Introduction
673
12.2
The optical transmitter circuit
675
12.2.1
Source limitations
676
12.2.2
LED drive circuits
679
12.2.3
Laser drive circuits
686
12.3
The optical receiver circuit
690
12.3.1
The preamplifier
691
12.3.2
Automatic gain control
694
12.3.3
Equalization
697
12.4
System design considerations
700
12.4.1
Component choice
701
12.4.2
Multiplexing
702
12.5
Digital systems
703
12.6
Digital system planning considerations
708
12.6.1
The optoelectronic regenerative repeater
708
12.6.2
The optical transmitter and modulation formats
711
12.6.3
The optical receiver
715
12.6.4
Channel losses
725
12.6.5
Temporal response
726
12.6.6
Optical power budgeting
731
12.6.7
Line coding and forward error correction
734
12.7
Analog systems
739
12.7.1
Direct intensity modulation (D-IM)
742
12.7.2
System planning
748
12.7.3
Subcarrier
intensity modulation
750
12.7.4
Subcarrier double-sideband modulation (DSB-IM)
752
12.7.5
Subcarrier frequency modulation (FM-IM)
754
12.7.6
Subcarrier phase modulation (PM-IM)
756
12.7.7
Pulse analog techniques
758
12.8
Distribution systems
760
12.9
Multiplexing strategies
765
12.9.1
Optical time division multiplexing
765
12.9.2
Subcarrier multiplexing
766
12.9.3
Orthogonal frequency division multiplexing
768
12.9.4
Wavelength division multiplexing
771
12.9.5
Optical code division multiplexing
777
12.9.6
Hybrid multiplexing
778
xvi Contents
12.10 Application
of optical amplifiers
778
12.11
Dispersion management
786
12.12
Soliton systems
792
Problems
802
References
811
Chapter
13:
Optical fiber systems
2:
coherent and
phase modulated
823
13.1
Introduction
823
13.2
Basic coherent system
827
13.3
Coherent
detection principles
830
13.4
Practical
constraints
835
13.4.1
Injection laser linewidth
835
13.4.2
State of polarization
836
13.4.3
Local oscillator power
840
13.4.4
Transmission medium limitations
843
13.5
Modulation formats
845
13.5.1
Amplitude shift keying
845
13.5.2
Frequency shift keying
846
13.5.3
Phase shift keying
847
13.5.4
Polarization shift keying
850
13.6
Demodulation schemes
851
13.6.1
Heterodyne synchronous detection
853
13.6.2
Heterodyne asynchronous detection
855
13.6.3
Homodyne
detection
856
13.6.4
Intradyne detection
859
13.6.5
Phase diversity reception
860
13.6.6
Polarization diversity reception and polarization
scrambling
863
13.7
Differential phase shift keying
864
13.8
Receiver
sensitivities
868
13.8.1
ASK heterodyne detection
868
13.8.2
FSK heterodyne detection
871
13.8.3
PSK heterodyne detection
873
13.8.4
ASK and PSK
homodyne
detection
874
13.8.5
Dual-filter direct detection FSK
875
13.8.6
Interferometrie
direct detection DPSK
876
13.8.7
Comparison of sensitivities
877
Contents xvii
13.9 Multicarrier
systems
886
13.9.1
Polarization multiplexing
889
13.9.2
High-capacity transmission
890
Problems
894
References
897
Chapter
14:
Optical fiber measurements
905
14.1
Introduction
905
14.2
Fiber attenuation measurements
909
14.2.1
Total fiber attenuation
910
14.2.2
Fiber absorption loss measurement
914
14.2.3
Fiber scattering loss measurement
917
14.3
Fiber dispersion measurements
919
14.3.1
Time domain measurement
920
14.3.2
Frequency domain measurement
923
14.4
Fiber refractive index profile measurements
926
14.4.1
Interferometrie
methods
927
14.4.2
Near-field scanning method
930
14.4.3
Refracted near-field method
932
14.5
Fiber cutoff wavelength measurements
934
14.6
Fiber numerical aperture measurements
938
14.7
Fiber diameter measurements
941
14.7.1
Outer diameter
941
14.7.2
Core diameter
943
14.8
Mode-field diameter for single-mode fiber
943
14.9
Reflectance and optical return loss
946
14.10
Field measurements
948
14.10.1
Optical time domain reflectometry
952
Problems
958
References
962
Chapter
15:
Optical networks
967
15.1
Introduction
967
15.2
Optical network concepts
969
15.2.1
Optical networking terminology
970
15.2.2
Optical network node and switching elements
974
15.2.3
Wavelength division multiplexed networks
976
15.2.4
Public telecommunications network overview
978
xviii Contents
15.3
Optical network transmission modes, Layers and protocols
979
15.3.1
Synchronous networks
980
15.3.2
Asynchronous transfer mode
985
15.3.3
Open Systems Interconnection reference model
985
15.3.4
Optical transport network
987
15.3.5
Internet Protocol
989
15.4
Wavelength routing networks
992
15.4.1
Wavelength routing and assignment
996
15.5
Optical switching networks
998
15.5.1
Optical circuit-switched networks
998
15.5.2
Optical packet-switched networks
1000
15.5.3
Multiprotocol Label Switching
1002
15.5.4
Optical burst switching networks
1004
15.6
Optical network deployment
1007
15.6.1
Long-haul networks
1008
15.6.2
Metropolitan area networks
1011
15.6.3
Access networks
1013
15.6.4
Local area networks
1023
15.7
Optical Ethernet
1028
15.8
Network protection, restoration and survivability
1034
Problems
1038
References
1041
Appendix A The field relations in a planar guide
1051
Appendix
В
Gaussian pulse response
1052
Appendix
С
Variance of a random variable
1053
Appendix
D
Variance of the sum of independent random variables
1055
Appendix
E
Closed loop transfer function for the transimpedance
amplifier
1056
Index
1057
Supporting resources
Visit www.pearsoned.co.uk/senior-optical to find valuable online resources
For instructors
•
An Instructor s Manual that provides full solutions to all the numerical
problems, which are provided at the end of each chapter in the book.
For more information please contact your local Pearson Education sales
representative or visit www.pearsoned.co.uk/senior-optical
|
adam_txt |
Contents
Preface
xix
Acknowledgements
xxiii
List ofsymbob and abbreviations
xxxii
Chapter
1:
Introduction
1
1.1
Historical development
1
1.2
The general system
5
1.3
Advantages of optical fiber communication
7
References
10
Chapter
2:
Optical fiber waveguides
12
2.1
Introduction
12
2.2
Ray theory transmission
14
2.2.1
Total internal reflection
14
2.2.2
Acceptance angle
16
2.2.3
Numerical aperture
17
2.2.4
Skew rays
20
2.3
Electromagnetic mode theory for optical propagation
24
2.3.1
Electromagnetic waves
24
2.3.2
Modes in a planar guide
26
2.3.3
Phase and group velocity
28
2.3.4
Phase shift with total internal reflection and the
evanescent field
30
2.3.5
Goos-Haenchen shift
35
2.4
Cylindrical fiber
35
2.4.1
Modes
35
2.4.2
Mode coupling
42
2.4.3
Step index fibers
43
2.4.4
Graded index fibers
46
2.5
Single-mode fibers
54
2.5.1
Cutoff wavelength
59
2.5.2
Mode-field diameter and spot size
60
2.5.3
Effective refractive index
61
viii
Contents
2.5.4
Group
delay and mode delay factor
64
2.5.5
The Gaussian approximation
65
2.5.6
Equivalent step index methods
71
2.6
Photonic crystal fibers
75
2.6.1
Index-guided
microstructures
75
2.6.2
Photonic
bandgap
fibers
77
Problems
78
References
82
Chapter
3:
Transmission characteristics of
optical fibers
86
3.1
Introduction
87
3.2
Attenuation
88
3.3
Material absorption losses in silica glass fibers
90
3.3.1
Intrinsic absorption
90
3.3.2
Extrinsic absorption
91
3.4
Linear scattering losses
95
3.4.1
Rayleigh scattering
95
3.4.2
Mie
scattering
97
3.5
Nonlinear scattering losses
98
3.5.1
Stimulated Brillouin scattering
98
3.5.2
Stimulated Raman scattering
99
3.6
Fiber bend loss
100
3.7
Mid-infrared and far-infrared transmission
102
3.8
Dispersion
105
3.9
Chromatic dispersion
109
3.9.1
Material dispersion
110
3.9.2
Waveguide dispersion
113
3.10
Intermodal
dispersion
113
3.10.1
Multimode step index fiber
114
3.10.2
Multimode graded index fiber
119
3.10.3
Modal noise
122
3.11
Overall fiber dispersion
124
3.11.1
Multimode fibers
124
3.11.2
Single-mode fibers
125
3.12
Dispersion-modified single-mode fibers
132
3.12.1
Dispersion-shifted fibers
133
3.12.2
Dispersion-flattened fibers
137
3.12.3
Nonzero-dispersion-shifted fibers
137
Contents
ix
3.13
Polarization
140
3.13.1
Fiber birefringence
141
3.13.2
Polarization mode dispersion
144
3.13.3
Polarization-maintaining fibers
147
3.14
Nonlinear effects
151
3.14.1
Scattering effects
151
3.14.2
Kerr effects
154
3.15
Soliton propagation
155
Problems
158
References
163
ipte
r
4:
Optical fibers and cables
169
4.1
Introduction
169
4.2
Preparation of optical fibers
170
4.3
Liquid-phase (melting) techniques
171
4.3.1
Fiber drawing
172
4.4
Vapor-phase deposition techniques
175
4.4.1
Outside vapor-phase oxidation process
176
4.4.2
Vapor axial deposition
(VAD)
178
4.4.3
Modified chemical vapor deposition
180
4.4.4
Plasma-activated chemical vapor deposition
(PCVD)
181
4.4.5
Summary of vapor-phase deposition
techniques
182
4.5
Optical fibers
183
4.5.1
Multimode step index fibers
184
4.5.2
Multimode graded index fibers
185
4.5.3
Single-mode fibers
187
4.5.4
Plastic-clad fibers
190
4.5.5
Plastic optical fibers
191
4.6
Optical fiber cables
194
4.6.1
Fiber strength and durability
195
4.7
Stability of the fiber transmission characteristics
199
4.7.1
Microbending
199
4.7.2
Hydrogen absorption
200
4.7.3
Nuclear radiation exposure
201
4.8
Cable design
203
4.8.1
Fiber buffering
203
4.8.2
Cable structural and strength members
204
χ
Contents
4.8.3
Cable sheath, water barrier and cable core
206
4.8.4
Examples of fiber cables
207
Problems
212
References
213
Chapter
5:
Optical fiber connections: joints,
couplers and isolators
217
5.1
Introduction
217
5.2
Fiber alignment and joint loss
219
5.2.1
Multimode fiber joints
222
5.2.2
Single-mode fiber joints
230
5.3
Fiber splices
233
5.3.1
Fusion splices
234
5.3.2
Mechanical splices
236
5.3.3
Multiple splices
241
5.4
Fiber connectors
243
5.4.1
Cylindrical ferrule connectors
244
5.4.2
Duplex and multiple-fiber connectors
247
5.4.3
Fiber connector-type summary
249
5.5
Expanded beam connectors
251
5.5.1
GRIN-rod lenses
254
5.6
Fiber couplers
256
5.6.1
Three- and four-port couplers
259
5.6.2
Star couplers
264
5.6.3
Wavelength division multiplexing
couplers
269
5.7
Optical isolators and circulators
280
Problems
283
References
287
Chapter
6:
Optical sources
1:
the laser
294
6.1
Introduction
294
6.2
Basic concepts
297
6.2.1
Absorption and emission of radiation
297
6.2.2
The Einstein relations
299
6.2.3
Population inversion
302
6.2.4
Optical feedback and laser oscillation
303
6.2.5
Threshold condition for laser oscillation
307
Contents
xi
6.3
Optical emission from semiconductors
309
6.3.1
The
p
-п
junction
309
6.3.2
Spontaneous emission
311
6.3.3
Carrier recombination
313
6.3.4
Stimulated emission and lasing
317
6.3.5
Heterojunctions
323
6.3.6
Semiconductor materials
325
6.4
The semiconductor injection laser
327
6.4.1
Efficiency
328
6.4.2
Stripe geometry
330
6.4.3
Laser modes
332
6.4.4
Single-mode operation
333
6.5
Some injection laser structures
334
6.5.1
Gain-guided lasers
334
6.5.2
Index-guided lasers
336
6.5.3
Quantum-well lasers
339
6.5.4
Quantum-dot lasers
339
б.б
Single-frequency injection lasers
342
6.6.1
Short- and couple-cavity lasers
342
6.6.2
Distributed feedback lasers
344
6.6.3
Vertical cavity surface-emitting lasers
347
6.7
Injection laser characteristics
350
6.7.1
Threshold current temperature dependence
350
6.7.2
Dynamic response
354
6.7.3
Frequency chirp
355
6.7.4
Noise
356
6.7.5
Mode hopping
360
6.7.6
Reliability
361
6.8
Injection laser to fiber coupling
362
6.9
Nonsemiconductor lasers
364
6.9.1
The Nd:YAG laser
364
6.9.2
Glass fiber lasers
366
6.10
Narrow-linewidth and wavelength-tunable lasers
369
6.10.1
Long external cavity lasers
371
6.10.2
Integrated external cavity lasers
372
6.10.3
Fiber lasers
376
6.11
Mid-infrared and far-infrared lasers
378
6.11.1
Quantum cascade lasers
381
Problems
383
References
386
xii Contents
Chapter
7:
Optical sources
2:
the light-emitting diode
396
7.1
Introduction
396
7.2
LED power and efficiency
398
7.2.1
The double-heterojunction LED
405
7.3
LED structures
406
7.3.1
Planar LED
407
7.3.2
Dome LED
407
7.3.3
Surface emitter
LEDs
407
7.3.4
Edge emitter
LEDs
411
7.3.5 Superluminescent LEDs
414
7.3.6
Resonant cavity and quantum-dot
LEDs
416
7.3.7
Lens coupling to fiber
419
7.4
LED characteristics
422
7.4.1
Optical output power
422
7.4.2
Output spectrum
425
7.4.3
Modulation bandwidth
428
7.4.4
Reliability
433
7.5
Modulation
435
Problems
436
References
439
Chapter
8:
Optical detectors
444
8.1
Introduction
444
8.2
Device types
446
8.3
Optical detection principles
447
8.4
Absorption
448
8.4.1
Absorption coefficient
448
8.4.2
Direct and indirect absorption: silicon and
germanium
449
8.4.3
III-V alloys
450
8.5
Quantum efficiency
451
8.6
Responsivity
451
8.7
Long-wavelength cutoff
455
8.8
Semiconductor
photodiodes
without internal gain
456
8.8.1
The
p
-п
photodiode
456
8.8.2
The p-i-n
photodiode
457
8.8.3
Speed of response and traveling-wave
photodiodes
462
8.8.4
Noise
468
Contents xiii
8.9
Semiconductor photodiodes
with internal gain
470
8.9.1
Avalanche
photodiodes
470
8.9.2
Silicon reach through avalanche
photodiodes
472
8.9.3
Germanium avalanche
photodiodes
473
8.9.4
III-V alloy avalanche
photodiodes
474
8.9.5
Benefits and drawbacks with the avalanche
photodiode
480
8.9.6
Multiplication factor
482
8.10
Mid-infrared and far-infrared
photodiodes
482
8.10.1
Quantum-dot photodetectors
484
8.11
Phototransistors
485
8.12
Metal-semiconductor-metal photodetectors
489
Problems
493
References
496
Chapter
9:
Direct detection receiver performance
considerations
502
9.1
Introduction
502
9.2
Noise
503
9.2.1
Thermal noise
503
9.2.2
Dark current noise
504
9.2.3
Quantum noise
504
9.2.4
Digital signaling quantum noise
505
9.2.5
Analog transmission quantum noise
508
9.3
Receiver noise
510
9.3.1
The
p
-п
and p-i-n
photodiode
receiver
511
9.3.2
Receiver capacitance and bandwidth
515
9.3.3
Avalanche
photodiode (APD)
receiver
516
9.3.4
Excess avalanche noise factor
522
9.3.5
Gain-bandwidth product
523
9.4
Receiver structures
524
9.4.1
Low-impedance front-end
525
9.4.2
High-impedance (integrating) front-end
526
9.4.3
The transimpedance front-end
526
9.5
FET
preamplifiers
530
9.5.1
Gallium arsenide MESFETs
531
9.5.2
PIN-FET hybrid receivers
532
9.6
High-performance receivers
534
Problems
542
References
545
xiv Contents
Chapter
10:
Optical amplification, wavelength
conversion and regeneration
549
10.1
Introduction
549
10.2
Optical amplifiers
550
10.3
Semiconductor optical amplifiers
552
10.3.1
Theory
554
10.3.2
Performance characteristics
559
10.3.3
Gain clamping
563
10.3.4
Quantum dots
565
10.4
Fiber and waveguide amplifiers
567
10.4.1
Rare-earth-doped fiber amplifiers
568
10.4.2
Raman and Brillouin fiber amplifiers
571
10.4.3
Waveguide amplifiers and fiber amplets
575
10.4.4
Optical parametric amplifiers
578
10.4.5
Wideband fiber amplifiers
581
10.5
Wavelength conversion
583
10.5.1
Cross-gain modulation wavelength converter
584
10.5.2
Cross-phase modulation wavelength converter
586
10.5.3
Cross-absorption modulation wavelength converters
592
10.5.4
Coherent wavelength converters
593
10.6
Optical regeneration
595
Problems
598
References
600
Chapter
11:
Integrated optics and photonics
606
11.1
Introduction
606
11.2
Integrated optics and photonics technologies
607
11.3
Planar waveguides
610
11.4
Some integrated optical devices
615
11.4.1
Beam splitters, directional couplers and switches
616
11.4.2
Modulators
623
11.4.3
Periodic structures for filters and injection lasers
627
11.4.4
Polarization transformers and wavelength converters
634
11.5
Optoelectronic integration
636
11.6
Photonic integrated circuits
643
11.7
Optical bistability and digital optics
648
11.8
Optical computation
656
Problems
663
References
665
Contents xv
Chapter
12:
Optical fiber systems
1:
intensity
modulation/direct detection
673
12.1
Introduction
673
12.2
The optical transmitter circuit
675
12.2.1
Source limitations
676
12.2.2
LED drive circuits
679
12.2.3
Laser drive circuits
686
12.3
The optical receiver circuit
690
12.3.1
The preamplifier
691
12.3.2
Automatic gain control
694
12.3.3
Equalization
697
12.4
System design considerations
700
12.4.1
Component choice
701
12.4.2
Multiplexing
702
12.5
Digital systems
703
12.6
Digital system planning considerations
708
12.6.1
The optoelectronic regenerative repeater
708
12.6.2
The optical transmitter and modulation formats
711
12.6.3
The optical receiver
715
12.6.4
Channel losses
725
12.6.5
Temporal response
726
12.6.6
Optical power budgeting
731
12.6.7
Line coding and forward error correction
734
12.7
Analog systems
739
12.7.1
Direct intensity modulation (D-IM)
742
12.7.2
System planning
748
12.7.3
Subcarrier
intensity modulation
750
12.7.4
Subcarrier double-sideband modulation (DSB-IM)
752
12.7.5
Subcarrier frequency modulation (FM-IM)
754
12.7.6
Subcarrier phase modulation (PM-IM)
756
12.7.7
Pulse analog techniques
758
12.8
Distribution systems
760
12.9
Multiplexing strategies
765
12.9.1
Optical time division multiplexing
765
12.9.2
Subcarrier multiplexing
766
12.9.3
Orthogonal frequency division multiplexing
768
12.9.4
Wavelength division multiplexing
771
12.9.5
Optical code division multiplexing
777
12.9.6
Hybrid multiplexing
778
xvi Contents
12.10 Application
of optical amplifiers
778
12.11
Dispersion management
786
12.12
Soliton systems
792
Problems
802
References
811
Chapter
13:
Optical fiber systems
2:
coherent and
phase modulated
823
13.1
Introduction
823
13.2
Basic coherent system
827
13.3
Coherent
detection principles
830
13.4
Practical
constraints
835
13.4.1
Injection laser linewidth
835
13.4.2
State of polarization
836
13.4.3
Local oscillator power
840
13.4.4
Transmission medium limitations
843
13.5
Modulation formats
845
13.5.1
Amplitude shift keying
845
13.5.2
Frequency shift keying
846
13.5.3
Phase shift keying
847
13.5.4
Polarization shift keying
850
13.6
Demodulation schemes
851
13.6.1
Heterodyne synchronous detection
853
13.6.2
Heterodyne asynchronous detection
855
13.6.3
Homodyne
detection
856
13.6.4
Intradyne detection
859
13.6.5
Phase diversity reception
860
13.6.6
Polarization diversity reception and polarization
scrambling
863
13.7
Differential phase shift keying
864
13.8
Receiver
sensitivities
868
13.8.1
ASK heterodyne detection
868
13.8.2
FSK heterodyne detection
871
13.8.3
PSK heterodyne detection
873
13.8.4
ASK and PSK
homodyne
detection
874
13.8.5
Dual-filter direct detection FSK
875
13.8.6
Interferometrie
direct detection DPSK
876
13.8.7
Comparison of sensitivities
877
Contents xvii
13.9 Multicarrier
systems
886
13.9.1
Polarization multiplexing
889
13.9.2
High-capacity transmission
890
Problems
894
References
897
Chapter
14:
Optical fiber measurements
905
14.1
Introduction
905
14.2
Fiber attenuation measurements
909
14.2.1
Total fiber attenuation
910
14.2.2
Fiber absorption loss measurement
914
14.2.3
Fiber scattering loss measurement
917
14.3
Fiber dispersion measurements
919
14.3.1
Time domain measurement
920
14.3.2
Frequency domain measurement
923
14.4
Fiber refractive index profile measurements
926
14.4.1
Interferometrie
methods
927
14.4.2
Near-field scanning method
930
14.4.3
Refracted near-field method
932
14.5
Fiber cutoff wavelength measurements
934
14.6
Fiber numerical aperture measurements
938
14.7
Fiber diameter measurements
941
14.7.1
Outer diameter
941
14.7.2
Core diameter
943
14.8
Mode-field diameter for single-mode fiber
943
14.9
Reflectance and optical return loss
946
14.10
Field measurements
948
14.10.1
Optical time domain reflectometry
952
Problems
958
References
962
Chapter
15:
Optical networks
967
15.1
Introduction
967
15.2
Optical network concepts
969
15.2.1
Optical networking terminology
970
15.2.2
Optical network node and switching elements
974
15.2.3
Wavelength division multiplexed networks
976
15.2.4
Public telecommunications network overview
978
xviii Contents
15.3
Optical network transmission modes, Layers and protocols
979
15.3.1
Synchronous networks
980
15.3.2
Asynchronous transfer mode
985
15.3.3
Open Systems Interconnection reference model
985
15.3.4
Optical transport network
987
15.3.5
Internet Protocol
989
15.4
Wavelength routing networks
992
15.4.1
Wavelength routing and assignment
996
15.5
Optical switching networks
998
15.5.1
Optical circuit-switched networks
998
15.5.2
Optical packet-switched networks
1000
15.5.3
Multiprotocol Label Switching
1002
15.5.4
Optical burst switching networks
1004
15.6
Optical network deployment
1007
15.6.1
Long-haul networks
1008
15.6.2
Metropolitan area networks
1011
15.6.3
Access networks
1013
15.6.4
Local area networks
1023
15.7
Optical Ethernet
1028
15.8
Network protection, restoration and survivability
1034
Problems
1038
References
1041
Appendix A The field relations in a planar guide
1051
Appendix
В
Gaussian pulse response
1052
Appendix
С
Variance of a random variable
1053
Appendix
D
Variance of the sum of independent random variables
1055
Appendix
E
Closed loop transfer function for the transimpedance
amplifier
1056
Index
1057
Supporting resources
Visit www.pearsoned.co.uk/senior-optical to find valuable online resources
For instructors
•
An Instructor's Manual that provides full solutions to all the numerical
problems, which are provided at the end of each chapter in the book.
For more information please contact your local Pearson Education sales
representative or visit www.pearsoned.co.uk/senior-optical |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Senior, John M. |
author_facet | Senior, John M. |
author_role | aut |
author_sort | Senior, John M. |
author_variant | j m s jm jms |
building | Verbundindex |
bvnumber | BV023404065 |
callnumber-first | T - Technology |
callnumber-label | TK5103 |
callnumber-raw | TK5103.59 |
callnumber-search | TK5103.59 |
callnumber-sort | TK 45103.59 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 6280 ZN 6285 ZN 6291 |
classification_tum | ELT 680f |
ctrlnum | (OCoLC)226304746 (DE-599)BVBBV023404065 |
dewey-full | 621.382/75 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382/75 |
dewey-search | 621.382/75 |
dewey-sort | 3621.382 275 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02154nam a2200553 c 4500</leader><controlfield tag="001">BV023404065</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101117 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080718s2009 xxuabd| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2008018133</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780130326812</subfield><subfield code="c">alk. paper</subfield><subfield code="9">978-0-13-032681-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226304746</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023404065</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5103.59</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382/75</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6280</subfield><subfield code="0">(DE-625)157542:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6285</subfield><subfield code="0">(DE-625)157543:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6291</subfield><subfield code="0">(DE-625)157545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 680f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Senior, John M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optical fiber communications</subfield><subfield code="b">principles and practice</subfield><subfield code="c">John M. Senior, assisted by M. Yousif Jamro</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Harlow [u.a.]</subfield><subfield code="b">Prentice Hall Financial Times</subfield><subfield code="c">2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">L, 1075 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 1041 - 1050</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fiber optics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faseroptik</subfield><subfield code="0">(DE-588)4016498-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optische Nachrichtentechnik</subfield><subfield code="0">(DE-588)4035624-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optische Nachrichtenübertragung</subfield><subfield code="0">(DE-588)4172668-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtwellenleiter</subfield><subfield code="0">(DE-588)4267405-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Faseroptik</subfield><subfield code="0">(DE-588)4016498-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Optische Nachrichtentechnik</subfield><subfield code="0">(DE-588)4035624-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Optische Nachrichtenübertragung</subfield><subfield code="0">(DE-588)4172668-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Lichtwellenleiter</subfield><subfield code="0">(DE-588)4267405-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jamro, M. Yousif</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016586792&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016586792</subfield></datafield></record></collection> |
id | DE-604.BV023404065 |
illustrated | Illustrated |
index_date | 2024-07-02T21:24:48Z |
indexdate | 2024-07-09T21:17:51Z |
institution | BVB |
isbn | 9780130326812 |
language | English |
lccn | 2008018133 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016586792 |
oclc_num | 226304746 |
open_access_boolean | |
owner | DE-20 DE-703 DE-573 DE-1050 DE-83 DE-29T |
owner_facet | DE-20 DE-703 DE-573 DE-1050 DE-83 DE-29T |
physical | L, 1075 S. Ill., graph. Darst., Kt. |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Prentice Hall Financial Times |
record_format | marc |
spelling | Senior, John M. Verfasser aut Optical fiber communications principles and practice John M. Senior, assisted by M. Yousif Jamro 3. ed. Harlow [u.a.] Prentice Hall Financial Times 2009 L, 1075 S. Ill., graph. Darst., Kt. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 1041 - 1050 Optical communications Fiber optics Faseroptik (DE-588)4016498-6 gnd rswk-swf Optische Nachrichtentechnik (DE-588)4035624-3 gnd rswk-swf Optische Nachrichtenübertragung (DE-588)4172668-6 gnd rswk-swf Lichtwellenleiter (DE-588)4267405-0 gnd rswk-swf Faseroptik (DE-588)4016498-6 s DE-604 Optische Nachrichtentechnik (DE-588)4035624-3 s Optische Nachrichtenübertragung (DE-588)4172668-6 s Lichtwellenleiter (DE-588)4267405-0 s Jamro, M. Yousif Sonstige oth Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016586792&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Senior, John M. Optical fiber communications principles and practice Optical communications Fiber optics Faseroptik (DE-588)4016498-6 gnd Optische Nachrichtentechnik (DE-588)4035624-3 gnd Optische Nachrichtenübertragung (DE-588)4172668-6 gnd Lichtwellenleiter (DE-588)4267405-0 gnd |
subject_GND | (DE-588)4016498-6 (DE-588)4035624-3 (DE-588)4172668-6 (DE-588)4267405-0 |
title | Optical fiber communications principles and practice |
title_auth | Optical fiber communications principles and practice |
title_exact_search | Optical fiber communications principles and practice |
title_exact_search_txtP | Optical fiber communications principles and practice |
title_full | Optical fiber communications principles and practice John M. Senior, assisted by M. Yousif Jamro |
title_fullStr | Optical fiber communications principles and practice John M. Senior, assisted by M. Yousif Jamro |
title_full_unstemmed | Optical fiber communications principles and practice John M. Senior, assisted by M. Yousif Jamro |
title_short | Optical fiber communications |
title_sort | optical fiber communications principles and practice |
title_sub | principles and practice |
topic | Optical communications Fiber optics Faseroptik (DE-588)4016498-6 gnd Optische Nachrichtentechnik (DE-588)4035624-3 gnd Optische Nachrichtenübertragung (DE-588)4172668-6 gnd Lichtwellenleiter (DE-588)4267405-0 gnd |
topic_facet | Optical communications Fiber optics Faseroptik Optische Nachrichtentechnik Optische Nachrichtenübertragung Lichtwellenleiter |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016586792&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT seniorjohnm opticalfibercommunicationsprinciplesandpractice AT jamromyousif opticalfibercommunicationsprinciplesandpractice |