Band theory and electronic properties of solids:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2008
|
Ausgabe: | 1. publ., reprinted |
Schriftenreihe: | Oxford master series in condensed matter physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XVI, 222 S. Ill., graph. Darst. |
ISBN: | 9780198506454 9780198506447 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023371821 | ||
003 | DE-604 | ||
005 | 20190709 | ||
007 | t | ||
008 | 080701s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780198506454 |9 978-0-19-850645-4 | ||
020 | |a 9780198506447 |9 978-0-19-850644-7 | ||
035 | |a (OCoLC)444307333 | ||
035 | |a (DE-599)BVBBV023371821 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-355 |a DE-634 |a DE-384 |a DE-91G |a DE-83 | ||
080 | |a 538.9 | ||
082 | 0 | |a 530.4/12 |2 21 | |
084 | |a UP 3600 |0 (DE-625)146385: |2 rvk | ||
084 | |a UP 4000 |0 (DE-625)146396: |2 rvk | ||
084 | |a PHY 660f |2 stub | ||
100 | 1 | |a Singleton, John |d 1960- |e Verfasser |0 (DE-588)137652259 |4 aut | |
245 | 1 | 0 | |a Band theory and electronic properties of solids |c John Singleton |
250 | |a 1. publ., reprinted | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2008 | |
300 | |a XVI, 222 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Oxford master series in condensed matter physics | |
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Energy-band theory of solids | |
650 | 4 | |a Solids |x Electric properties | |
650 | 0 | 7 | |a Elektronische Eigenschaft |0 (DE-588)4235053-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörper |0 (DE-588)4016918-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bandstruktur |0 (DE-588)4143994-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Festkörper |0 (DE-588)4016918-2 |D s |
689 | 0 | 1 | |a Elektronische Eigenschaft |0 (DE-588)4235053-0 |D s |
689 | 0 | 2 | |a Bandstruktur |0 (DE-588)4143994-6 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016555078&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016555078 |
Datensatz im Suchindex
_version_ | 1804137739815223296 |
---|---|
adam_text | Contents
1 Metals:
the
Drude and Sommerfeld
models
1
1.1
Introduction
1
1.2
What do we know about metals?
1
1.3
The
Drude
model
2
1.3.1
Assumptions
2
1.3.2
The relaxation-time approximation
3
1.4
The failure of the
Drude
model
4
1.4.1
Electronic heat capacity
4
1.4.2
Thermal conductivity and the Wiedemann-Franz ratio
4
1.4.3
Hall effect
6
1.4.4
Summary
7
1.5
The
Sommerfeld
model
7
1.5.1
The introduction of quantum mechanics
7
1.5.2
The Fermi-Dirac distribution function
9
1.5.3
The electronic density of states
9
1.5.4
The electronic density of states at
E
«
Ep
10
1.5.5
The electronic heat capacity
11
1.6
Successes and failures of the
Sommerfeld
model
13
2
The quantum mechanics of particles in a periodic potential:
Bloch s theorem
16
2.1
Introduction and health warning
16
2.2
Introducing the periodic potential
16
2.3
Born-von
Karman
boundary conditions
17
2.4
The
Schrödinger
equation in a periodic potential
18
2.5
Bloch s theorem
19
2.6
Electronic bandstracture
20
3
The nearly-free electron model
23
3.1
Introduction
23
3.2
Vanishing potential
23
3.2.1
Single electron energy state
23
3.2.2
Several degenerate energy levels
24
3.2.3
Two degenerate free-electron levels
24
3.3
Consequences of the nearly-free-electron model
26
3.3.1
The alkali metals
27
3.3.2
Elements with even numbers of valence electrons
27
3.3.3
More complex Fermi surface shapes
29
xii Contents
The tight-binding model 32
4.1
Introduction
32
4.2
Band arising from a single electronic level
32
4.2.1
Electronic wavefunctions
32
4.2.2
Simple crystal structure.
33
4.2.3
The potential and Hamiltonian
33
4.3
General points about the formation of tight-binding bands
35
4.3.1
The group IA and IIA metals; the tight-binding model
viewpoint
36
4.3.2
The Group IV elements
36
4.3.3
The transition metals
37
Some general points about bandstructure
5.1
Comparison of tight-binding and nearly-free-electron
bandstructure
41
5.2
The importance of
к
42
5.2.1
Skis not the momentum
42
5.2.2
Group velocity
42
5.2.3
The effective mass
42
5.2.4
The effective mass and the density of states
43
5.2.5
Summary of the properties of
к
44
5.2.6
Scattering in the Bloch approach
45
5.3
Holes
45
5.4
Postscript
46
Semiconductors and Insulators
49
6.1
Introduction
49
6.2
Bandstructure of Si and Ge
50
6.2.1
General points
50
6.2.2
Heavy and light holes
51
6.2.3
Optical absorption
51
6.2.4
Constant energy surfaces in the conduction bands of Si
andGe
52
6.3
Bandstructure of the direct-gap
ПІ
-V
and II-VI semiconductors
53
6.3.1
Introduction
53
6.3.2
General points
53
6.3.3
Optical absorption and
excitons
54
6.3.4
Excitons
55
6.3.5
Constant energy surfaces in direct-gap III-V
semiconductors
56
6.4
Thermal population of bands in semiconductors
56
6.4.1
The law of mass action
56
6.4.2
The motion of the chemical potential
58
6.4.3
Intrinsic carrier density
58
6.4.4
Impurities and extrinsic carriers
59
6.4.5
Extrinsic carrier density
60
6.4.6
Degenerate semiconductors
62
Contents xiii
6.4.7
Impurity bands
62
6.4.8
Is it a semiconductor or an insulator?
62
6.4.9
A note on photoconductivity
63
7
Bandstructure engineering
65
7.1
Introduction
65
7.2
Semiconductor alloys
65
7.3
Artificial structures
66
7.3.1
Growth of semiconductor multilayers
66
7.3.2
Substrate and buffer layer
68
7.3.3
Quantum wells
68
7.3.4
Optical properties of quantum wells
69
7.3.5
Use of quantum wells in opto-electronics
70
7.3.6
Superlattices
71
7.3.7
Type I and type II superlattices
71
7.3.8
Heterojunctions and modulation doping
73
7.3.9
The envelope-function approximation
74
7.4
Band engineering using organic molecules
75
7.4.1
Introduction
75
7.4.2
Molecular building blocks
75
7.4.3
Typical Fermi surfaces
77
7.4.4
A note on the effective dimensionality of Fermi-surface
sections
78
7.5
Layered conducting oxides
78
7.6
The Peierls transition
81
8
Measurement of bandstructure
85
8.1
Introduction
85
8.2
Lorentz
force and orbits
85
8.2.1
General considerations
85
8.2.2
The cyclotron frequency
85
8.2.3
Orbits on a Fermi surface
87
8.3
The introduction of quantum mechanics
87
8.3.1
Landau levels
87
8.3.2
Application of Bohr s correspondence principle to
arbitrarily-shaped Fermi surfaces in a magnetic field
89
8.3.3
Quantisation of the orbit area
90
8.3.4
The electronic density of states in a magnetic field
91
8.4
Quantum oscillatory phenomena
91
8.4.1
Types of quantum oscillation
93
8.4.2
The
de Haas-van Alphen
effect
94
8.4.3
Other parameters which can be deduced from quantum
oscillations
96
8.4.4
Magnetic breakdown
97
8.5
Cyclotron resonance
97
8.5.1
Cyclotron resonance in metals
98
8.5.2
Cyclotron resonance in semiconductors
98
8.6
Interband
magneto-optics in semiconductors
100
xiv Contents
8.7
Other techniques
Ю2
8.7.1
Angle-resolved photoelectron spectroscopy
(ARPES)
103
8.7.2
Electroreflectance spectroscopy
104
8.8
Some case studies
Ю5
8.8.1
Copper
105
8.8.2
Recent controversy: Sr2RuO4
106
8.8.3
Studies of the Fermi surface of an organic molecular
metal
106
8.9
Quasiparticles: interactions between electrons
П2
Transport of heat and electricity in metals and semiconductors
117
9.1
A brief digression; life without scattering would be difficult!
117
9.2
Thermal and electrical conductivity of metals
119
9.2.1
Metals: the Kinetic theory of electron transport
119
9.2.2
What do
τσ
and xK represent?
120
9.2.3
Matthiessen s rule
122
9.2.4
Emission and absorption of phonons
122
9.2.5
What is the characteristic energy of the phonons
involved? I23
9.2.6
Electron-phonon scattering at room temperature
123
9.2.7
Electron-phonon scattering at
Τ
«;
ви І23
9.2.8
Departures from the low temperature
σ
ос Т
dependence
124
9.2.9
Very low temperatures and/or very dirty metals
124
9.2.10
Summary
125
9.2.11
Electron-electron scattering
125
9.3
Electrical conductivity of semiconductors
127
9.3.1
Temperature dependence of the carrier densities
127
9.3.2
The temperature dependence of the mobility
128
9.4
Disordered systems and hopping conduction
129
9.4.1
Thermally-activated hopping
129
9.4.2
Variable range hopping
130
10 Magnetoresistance
in three-dimensional systems
133
10.1
Introduction
133
10.2
Hall effect with more than one type of carrier
133
10.2.1
General considerations
133
10.2.2
Hall effect in the presence of electrons and holes
135
10.2.3
A clue about the origins of magnetoresistance
135
10.3
Magnetoresistance in metals
135
10.3.1
The absence of magnetoresistance in the
Sommerfeld
model of metals
135
10.3.2
The presence of magnetoresistance in real metals
13?
10.3.3
The use of magnetoresistance in finding the
Fermi-surface shape
138
10.4
The magnetophonon effect
139
Contents xv
11 Magnetoresistance in
two-dimensional systems and the quantum
Hall effect
143
11.1
Introduction: two-dimensional systems
143
11.2
Two-dimensional Landau-level density of states
144
11.2.1
Resistivity and conductivity tensors for a
two-dimensional system
145
11.3
Quantisation of the Hall resistivity
147
11.3.1
Localised and extended states
148
11.3.2
A further refinement-spin splitting
148
11.4
Summary
149
11.5
The fractional quantum Hall effect
150
11.6
More than one subband populated
151
12
Inhomogeneous and hot carrier distributions in semiconductors
154
12.1
Introduction: inhomogeneous carrier distributions
154
12.1.1
The excitation of minority carriers
154
12.1.2
Recombination
155
12.1.3
Diffusion and recombination
155
12.2
Drift, diffusion and the Einstein equations
156
12.2.1
Characterisation of minority carriers; the
Shockley-Haynes experiment
156
12.3
Hot carrier effects and ballistic transport
158
12.3.1
Drift velocity saturation and the Gunn effect
158
12.3.2
Avalanching
160
12.3.3
A simple resonant tunnelling structure
160
12.3.4
Ballistic transport and the quantum point contact
161
A Useful terminology in condensed matter physics
165
A.I Introduction
165
A.2 Crystal
165
A.3 Lattice
165
A.4 Basis
165
A.5 Physical properties of crystals
166
A.6 Unit cell
166
A.7 Wigner-Seitz cell
167
A.8 Designation of directions
167
A.9 Designation of planes; Miller indices
168
A
. 10
Conventional or
primiti
ve? 1
69
Α.
11
The
14
Bravais
lattices
171
В
Derivation of density of states in ¿-space
172
B.I Introduction
172
B.LI Density of states
173
B.1.2 Reading
174
С
Derivation of distribution functions
175
C.I Introduction
175
С
1.1
Bosons
178
C.I.2
Fermions
178
C. í
.3
The Maxwell-Boltzmann distribution function
178
C. 1
.4
Mean energy and heat capacity of the classical gas
179
xvi Contents
D
Phonons
I81
D.I Introduction
181
D.2 A simple model
182
D.2.1 Extension to three dimensions
183
D.3 The Debye model
185
D.3.1 Phonon number I87
D.3.2 Summary; the Debye temperature as a useful energy
scale in solids I88
D.3.3 A note on the effect of dimensionality
188
E
The Bohr model of hydrogen i91
E.I Introduction
191
E.2 Hydrogenic impurities
192
E.3
Excitons I92
F
Experimental considerations in measuring resistivity and Hall
effect I94
F.I Introduction
194
F.2 The four-wire method 194
F.3 Sample geometries
196
F.4 The van
der Pauw
method.
197
F.5 Mobility spectrum analysis
198
F.6 The resistivity of layered samples
198
G
Canonical momentum
200
H
Superconductivity
201
H.1 Introduction
201
H.2 Pairing
201
H.3 Pairing and the Meissner effect
203
I List of selected symbols
205
J
Solutions and additional hints for selected exercises
209
Index
217
|
adam_txt |
Contents
1 Metals:
the
Drude and Sommerfeld
models
1
1.1
Introduction
1
1.2
What do we know about metals?
1
1.3
The
Drude
model
2
1.3.1
Assumptions
2
1.3.2
The relaxation-time approximation
3
1.4
The failure of the
Drude
model
4
1.4.1
Electronic heat capacity
4
1.4.2
Thermal conductivity and the Wiedemann-Franz ratio
4
1.4.3
Hall effect
6
1.4.4
Summary
7
1.5
The
Sommerfeld
model
7
1.5.1
The introduction of quantum mechanics
7
1.5.2
The Fermi-Dirac distribution function
9
1.5.3
The electronic density of states
9
1.5.4
The electronic density of states at
E
«
Ep
10
1.5.5
The electronic heat capacity
11
1.6
Successes and failures of the
Sommerfeld
model
13
2
The quantum mechanics of particles in a periodic potential:
Bloch's theorem
16
2.1
Introduction and health warning
16
2.2
Introducing the periodic potential
16
2.3
Born-von
Karman
boundary conditions
17
2.4
The
Schrödinger
equation in a periodic potential
18
2.5
Bloch's theorem
19
2.6
Electronic bandstracture
20
3
The nearly-free electron model
23
3.1
Introduction
23
3.2
Vanishing potential
23
3.2.1
Single electron energy state
23
3.2.2
Several degenerate energy levels
24
3.2.3
Two degenerate free-electron levels
24
3.3
Consequences of the nearly-free-electron model
26
3.3.1
The alkali metals
27
3.3.2
Elements with even numbers of valence electrons
27
3.3.3
More complex Fermi surface shapes
29
xii Contents
The tight-binding model 32
4.1
Introduction
32
4.2
Band arising from a single electronic level
32
4.2.1
Electronic wavefunctions
32
4.2.2
Simple crystal structure.
33
4.2.3
The potential and Hamiltonian
33
4.3
General points about the formation of tight-binding bands
35
4.3.1
The group IA and IIA metals; the tight-binding model
viewpoint
36
4.3.2
The Group IV elements
36
4.3.3
The transition metals
37
Some general points about bandstructure
5.1
Comparison of tight-binding and nearly-free-electron
bandstructure
41
5.2
The importance of
к
42
5.2.1
Skis not the momentum
42
5.2.2
Group velocity
42
5.2.3
The effective mass
42
5.2.4
The effective mass and the density of states
43
5.2.5
Summary of the properties of
к
44
5.2.6
Scattering in the Bloch approach
45
5.3
Holes
45
5.4
Postscript
46
Semiconductors and Insulators
49
6.1
Introduction
49
6.2
Bandstructure of Si and Ge
50
6.2.1
General points
50
6.2.2
Heavy and light holes
51
6.2.3
Optical absorption
51
6.2.4
Constant energy surfaces in the conduction bands of Si
andGe
52
6.3
Bandstructure of the direct-gap
ПІ
-V
and II-VI semiconductors
53
6.3.1
Introduction
53
6.3.2
General points
53
6.3.3
Optical absorption and
excitons
54
6.3.4
Excitons
55
6.3.5
Constant energy surfaces in direct-gap III-V
semiconductors
56
6.4
Thermal population of bands in semiconductors
56
6.4.1
The law of mass action
56
6.4.2
The motion of the chemical potential
58
6.4.3
Intrinsic carrier density
58
6.4.4
Impurities and extrinsic carriers
59
6.4.5
Extrinsic carrier density
60
6.4.6
Degenerate semiconductors
62
Contents xiii
6.4.7
Impurity bands
62
6.4.8
Is it a semiconductor or an insulator?
62
6.4.9
A note on photoconductivity
63
7
Bandstructure engineering
65
7.1
Introduction
65
7.2
Semiconductor alloys
65
7.3
Artificial structures
66
7.3.1
Growth of semiconductor multilayers
66
7.3.2
Substrate and buffer layer
68
7.3.3
Quantum wells
68
7.3.4
Optical properties of quantum wells
69
7.3.5
Use of quantum wells in opto-electronics
70
7.3.6
Superlattices
71
7.3.7
Type I and type II superlattices
71
7.3.8
Heterojunctions and modulation doping
73
7.3.9
The envelope-function approximation
74
7.4
Band engineering using organic molecules
75
7.4.1
Introduction
75
7.4.2
Molecular building blocks
75
7.4.3
Typical Fermi surfaces
77
7.4.4
A note on the effective dimensionality of Fermi-surface
sections
78
7.5
Layered conducting oxides
78
7.6
The Peierls transition
81
8
Measurement of bandstructure
85
8.1
Introduction
85
8.2
Lorentz
force and orbits
85
8.2.1
General considerations
85
8.2.2
The cyclotron frequency
85
8.2.3
Orbits on a Fermi surface
87
8.3
The introduction of quantum mechanics
87
8.3.1
Landau levels
87
8.3.2
Application of Bohr's correspondence principle to
arbitrarily-shaped Fermi surfaces in a magnetic field
89
8.3.3
Quantisation of the orbit area
90
8.3.4
The electronic density of states in a magnetic field
91
8.4
Quantum oscillatory phenomena
91
8.4.1
Types of quantum oscillation
93
8.4.2
The
de Haas-van Alphen
effect
94
8.4.3
Other parameters which can be deduced from quantum
oscillations
96
8.4.4
Magnetic breakdown
97
8.5
Cyclotron resonance
97
8.5.1
Cyclotron resonance in metals
98
8.5.2
Cyclotron resonance in semiconductors
98
8.6
Interband
magneto-optics in semiconductors
100
xiv Contents
8.7
Other techniques
Ю2
8.7.1
Angle-resolved photoelectron spectroscopy
(ARPES)
103
8.7.2
Electroreflectance spectroscopy
104
8.8
Some case studies
Ю5
8.8.1
Copper
105
8.8.2
Recent controversy: Sr2RuO4
106
8.8.3
Studies of the Fermi surface of an organic molecular
metal
106
8.9
Quasiparticles: interactions between electrons
П2
Transport of heat and electricity in metals and semiconductors
117
9.1
A brief digression; life without scattering would be difficult!
117
9.2
Thermal and electrical conductivity of metals
119
9.2.1
Metals: the 'Kinetic theory' of electron transport
119
9.2.2
What do
τσ
and xK represent?
120
9.2.3
Matthiessen's rule
122
9.2.4
Emission and absorption of phonons
122
9.2.5
What is the characteristic energy of the phonons
involved? I23
9.2.6
Electron-phonon scattering at room temperature
123
9.2.7
Electron-phonon scattering at
Τ
«;
ви І23
9.2.8
Departures from the low temperature
σ
ос Т"
dependence
124
9.2.9
Very low temperatures and/or very dirty metals
124
9.2.10
Summary
125
9.2.11
Electron-electron scattering
125
9.3
Electrical conductivity of semiconductors
127
9.3.1
Temperature dependence of the carrier densities
127
9.3.2
The temperature dependence of the mobility
128
9.4
Disordered systems and hopping conduction
129
9.4.1
Thermally-activated hopping
129
9.4.2
Variable range hopping
130
10 Magnetoresistance
in three-dimensional systems
133
10.1
Introduction
133
10.2
Hall effect with more than one type of carrier
133
10.2.1
General considerations
133
10.2.2
Hall effect in the presence of electrons and holes
135
10.2.3
A clue about the origins of magnetoresistance
135
10.3
Magnetoresistance in metals
135
10.3.1
The absence of magnetoresistance in the
Sommerfeld
model of metals
135
10.3.2
The presence of magnetoresistance in real metals
13?
10.3.3
The use of magnetoresistance in finding the
Fermi-surface shape
138
10.4
The magnetophonon effect
139
Contents xv
11 Magnetoresistance in
two-dimensional systems and the quantum
Hall effect
143
11.1
Introduction: two-dimensional systems
143
11.2
Two-dimensional Landau-level density of states
144
11.2.1
Resistivity and conductivity tensors for a
two-dimensional system
145
11.3
Quantisation of the Hall resistivity
147
11.3.1
Localised and extended states
148
11.3.2
A further refinement-spin splitting
148
11.4
Summary
149
11.5
The fractional quantum Hall effect
150
11.6
More than one subband populated
151
12
Inhomogeneous and hot carrier distributions in semiconductors
154
12.1
Introduction: inhomogeneous carrier distributions
154
12.1.1
The excitation of minority carriers
154
12.1.2
Recombination
155
12.1.3
Diffusion and recombination
155
12.2
Drift, diffusion and the Einstein equations
156
12.2.1
Characterisation of minority carriers; the
Shockley-Haynes experiment
156
12.3
Hot carrier effects and ballistic transport
158
12.3.1
Drift velocity saturation and the Gunn effect
158
12.3.2
Avalanching
160
12.3.3
A simple resonant tunnelling structure
160
12.3.4
Ballistic transport and the quantum point contact
161
A Useful terminology in condensed matter physics
165
A.I Introduction
165
A.2 Crystal
165
A.3 Lattice
165
A.4 Basis
165
A.5 Physical properties of crystals
166
A.6 Unit cell
166
A.7 Wigner-Seitz cell
167
A.8 Designation of directions
167
A.9 Designation of planes; Miller indices
168
A
. 10
Conventional or
primiti
ve? 1
69
Α.
11
The
14
Bravais
lattices
171
В
Derivation of density of states in ¿-space
172
B.I Introduction
172
B.LI Density of states
173
B.1.2 Reading
174
С
Derivation of distribution functions
175
C.I Introduction
175
С
1.1
Bosons
178
C.I.2
Fermions
178
C. í
.3
The Maxwell-Boltzmann distribution function
178
C. 1
.4
Mean energy and heat capacity of the classical gas
179
xvi Contents
D
Phonons
I81
D.I Introduction
181
D.2 A simple model
182
D.2.1 Extension to three dimensions
183
D.3 The Debye model
185
D.3.1 Phonon number I87
D.3.2 Summary; the Debye temperature as a useful energy
scale in solids I88
D.3.3 A note on the effect of dimensionality
188
E
The Bohr model of hydrogen i91
E.I Introduction
191
E.2 Hydrogenic impurities
192
E.3
Excitons I92
F
Experimental considerations in measuring resistivity and Hall
effect I94
F.I Introduction
194
F.2 The four-wire method 194
F.3 Sample geometries
196
F.4 The van
der Pauw
method.
197
F.5 Mobility spectrum analysis
198
F.6 The resistivity of layered samples
198
G
Canonical momentum
200
H
Superconductivity
201
H.1 Introduction
201
H.2 Pairing
201
H.3 Pairing and the Meissner effect
203
I List of selected symbols
205
J
Solutions and additional hints for selected exercises
209
Index
217 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Singleton, John 1960- |
author_GND | (DE-588)137652259 |
author_facet | Singleton, John 1960- |
author_role | aut |
author_sort | Singleton, John 1960- |
author_variant | j s js |
building | Verbundindex |
bvnumber | BV023371821 |
classification_rvk | UP 3600 UP 4000 |
classification_tum | PHY 660f |
ctrlnum | (OCoLC)444307333 (DE-599)BVBBV023371821 |
dewey-full | 530.4/12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4/12 |
dewey-search | 530.4/12 |
dewey-sort | 3530.4 212 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ., reprinted |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01944nam a2200481 c 4500</leader><controlfield tag="001">BV023371821</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190709 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080701s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506454</subfield><subfield code="9">978-0-19-850645-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198506447</subfield><subfield code="9">978-0-19-850644-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)444307333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023371821</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">538.9</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4/12</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 3600</subfield><subfield code="0">(DE-625)146385:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 4000</subfield><subfield code="0">(DE-625)146396:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 660f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singleton, John</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137652259</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Band theory and electronic properties of solids</subfield><subfield code="c">John Singleton</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprinted</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 222 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford master series in condensed matter physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Energy-band theory of solids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solids</subfield><subfield code="x">Electric properties</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektronische Eigenschaft</subfield><subfield code="0">(DE-588)4235053-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bandstruktur</subfield><subfield code="0">(DE-588)4143994-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Festkörper</subfield><subfield code="0">(DE-588)4016918-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elektronische Eigenschaft</subfield><subfield code="0">(DE-588)4235053-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Bandstruktur</subfield><subfield code="0">(DE-588)4143994-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016555078&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016555078</subfield></datafield></record></collection> |
id | DE-604.BV023371821 |
illustrated | Illustrated |
index_date | 2024-07-02T21:12:49Z |
indexdate | 2024-07-09T21:17:05Z |
institution | BVB |
isbn | 9780198506454 9780198506447 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016555078 |
oclc_num | 444307333 |
open_access_boolean | |
owner | DE-703 DE-29T DE-355 DE-BY-UBR DE-634 DE-384 DE-91G DE-BY-TUM DE-83 |
owner_facet | DE-703 DE-29T DE-355 DE-BY-UBR DE-634 DE-384 DE-91G DE-BY-TUM DE-83 |
physical | XVI, 222 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford Univ. Press |
record_format | marc |
series2 | Oxford master series in condensed matter physics |
spelling | Singleton, John 1960- Verfasser (DE-588)137652259 aut Band theory and electronic properties of solids John Singleton 1. publ., reprinted Oxford [u.a.] Oxford Univ. Press 2008 XVI, 222 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford master series in condensed matter physics Hier auch später erschienene, unveränderte Nachdrucke Energy-band theory of solids Solids Electric properties Elektronische Eigenschaft (DE-588)4235053-0 gnd rswk-swf Festkörper (DE-588)4016918-2 gnd rswk-swf Bandstruktur (DE-588)4143994-6 gnd rswk-swf Festkörper (DE-588)4016918-2 s Elektronische Eigenschaft (DE-588)4235053-0 s Bandstruktur (DE-588)4143994-6 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016555078&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Singleton, John 1960- Band theory and electronic properties of solids Energy-band theory of solids Solids Electric properties Elektronische Eigenschaft (DE-588)4235053-0 gnd Festkörper (DE-588)4016918-2 gnd Bandstruktur (DE-588)4143994-6 gnd |
subject_GND | (DE-588)4235053-0 (DE-588)4016918-2 (DE-588)4143994-6 |
title | Band theory and electronic properties of solids |
title_auth | Band theory and electronic properties of solids |
title_exact_search | Band theory and electronic properties of solids |
title_exact_search_txtP | Band theory and electronic properties of solids |
title_full | Band theory and electronic properties of solids John Singleton |
title_fullStr | Band theory and electronic properties of solids John Singleton |
title_full_unstemmed | Band theory and electronic properties of solids John Singleton |
title_short | Band theory and electronic properties of solids |
title_sort | band theory and electronic properties of solids |
topic | Energy-band theory of solids Solids Electric properties Elektronische Eigenschaft (DE-588)4235053-0 gnd Festkörper (DE-588)4016918-2 gnd Bandstruktur (DE-588)4143994-6 gnd |
topic_facet | Energy-band theory of solids Solids Electric properties Elektronische Eigenschaft Festkörper Bandstruktur |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016555078&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT singletonjohn bandtheoryandelectronicpropertiesofsolids |