Mathematical models of granular matter:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Schriftenreihe: | Lecture notes in mathematics
1937 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 212 S. Ill., graph. Darst. |
ISBN: | 9783540782766 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023294256 | ||
003 | DE-604 | ||
005 | 20100519 | ||
007 | t | ||
008 | 080508s2008 ad|| |||| 00||| eng d | ||
016 | 7 | |a 988424819 |2 DE-101 | |
020 | |a 9783540782766 |9 978-3-540-78276-6 | ||
020 | |z 9783540782773 |9 978-3-540-78277-3 | ||
035 | |a (OCoLC)315880789 | ||
035 | |a (DE-599)DNB988424819 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-824 |a DE-91G |a DE-355 |a DE-83 |a DE-11 |a DE-188 | ||
082 | 0 | |a 620.43 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a MTA 510f |2 stub | ||
084 | |a 530 |2 sdnb | ||
084 | |a PHY 801f |2 stub | ||
084 | |a WER 460f |2 stub | ||
084 | |a 76T25 |2 msc | ||
084 | |a 510 |2 sdnb | ||
245 | 1 | 0 | |a Mathematical models of granular matter |c Gianfranco Capriz ... (eds.). With contributions by: A. Barrat ... |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XVI, 212 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1937 | |
650 | 7 | |a Granular materials - Mathematical models |2 blmsh | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Granulärer Stoff |0 (DE-588)4256351-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Granulärer Stoff |0 (DE-588)4256351-3 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Barrat, Alain |4 ctb | |
700 | 1 | |a Capriz, Gianfranco |d 1925- |0 (DE-588)135621232 |4 edt | |
830 | 0 | |a Lecture notes in mathematics |v 1937 |w (DE-604)BV000676446 |9 1937 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016478815&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016478815 |
Datensatz im Suchindex
_version_ | 1804137619244711936 |
---|---|
adam_text | Contents
From Granular Matter to Generalized Continuum
J.D. Goddard
.................................................... 1
1
Introduction
.................................................. 1
1.1
Mathematical Preliminaries
................................ 3
1.2
Balances
................................................. 4
2
Micromechanics
.............................................. 5
2.1
Granular
Microstructure
and Rotation
....................... 5
2.2
Graph Theory for Extrinsic Modes
.......................... 7
2.3
Extrinsic Power
........................................... 12
3
Energy-Based Homogenization
.................................. 13
3.1
Intrinsic Moments and Continuum Fields
..................... 15
4
Conclusions
.................................................. 17
Appendix: Simplex and Edge-Complex Gradients
.................... 17
References
...................................................... 20
Generalized Kinetic Maxwell Type Models
of Granular Gases
A. V. Bobylev, C. Cercignani, and I.M.
Gamba
....................... 23
1
Introduction
.................................................. 23
2
Maxwell Models of the Boltzmann Equation
...................... 26
3
Isotropie
Maxwell Model in the Fourier Representation
............. 28
4
Models with Multiple Interactions
............................... 30
4.1
Statement of the General Problem
........................... 31
5
The General Problem in Fourier Representation
................... 33
5.1
Existence and Uniqueness of Solutions
....................... 33
5.2
Large Time Asymptotics
................................... 34
5.3
Existence of Self-Similar Solutions
........................... 41
5.4
Properties of Self-Similar Solutions
.......................... 42
XII Contents
6
Main Results for Maxwell Models with Multiple Interactions
........ 45
6.1
Self-Similar Asymptotics
................................... 45
6.2
Distribution Functions, Moments and Power-Like Tails
......... 47
6.3
Applications to the Conservative or Dissipative
Boltzmann Equation
....................................... 51
References
...................................................... 56
Hydrodynamics from the Dissipative Boltzmann Equation
Giuseppe
Toscani
................................................ 59
1
Introduction
.................................................. 59
2
Modeling Dissipative Boltzmann Equation
........................ 62
3
Hydrodynamic Limit and the
Euler
Equations
.................... 65
4
Hydrodynamics from Homogeneous Cooling States
................ 67
5
Conclusions
.................................................. 71
References
...................................................... 72
Bodies with Kinetic Substructure
Gianfranco
Capriz
............................................... 77
1
Kinetics
...................................................... 77
2
A Shadow Speck of Matter
..................................... 79
3
Straining and Allied Notions
.................................... 81
4
Balance Laws
................................................. 84
5
Balance of Kinetic Energy
...................................... 86
6
The First Principle
............................................ 89
References
...................................................... 90
Erom
Extended Thermodynamics to Granular Materials
Tommaso Ruggeri
................................................ 91
1
Introduction
.................................................. 91
2
Boltzmann Equation and Moments
.............................. 92
2.1
The Closure of Extended Thermodynamics
................... 93
2.2
Macroscopic Approach of
ET in
the
13
Fields
................. 93
3
Extended Thermodynamics of Moments
.......................... 94
4
Maximization of Entropy
....................................... 97
5
Maximum Characteristic Velocity in Classical Theory
.............. 98
6
Nesting Theories and Principal Subsystems
....................... 99
6.1
Example of 13-Moments Principal Subsystems
................ 99
6.2
Lower Bound Estimate and Characteristic Velocities
for Large
η
...............................................100
7
Qualitative Analysis
...........................................102
7.1
Shizuta-Kawashima Condition
..............................103
7.2
Global Existence of Smooth Solutions
........................103
8
Comparison with Experiments: Sound Waves and Light Scattering
.. 104
References
......................................................105
Contents XIII
Influence
of Contact Modelling on the Macroscopic Plastic
Response of Granular Soils Under Cyclic Loading
R.
García-Rojo,
S.
McN
amara,
and
H. J.
Herrmann
..................109
1
Introduction
..................................................109
2
Discrete Element Methods
......................................
Ill
2.1
Boundary Conditions: Biaxial Test
..........................112
2.2
Molecular Dynamics
.......................................113
2.3
The Normal-Dashpot Model
................................114
2.4
Contact Dynamics
........................................115
3
Results
......................................................116
3.1
Comparing MD and CD
...................................117
3.2
Comparing Different Visco-Elastic Laws
......................118
4
Conclusions
..................................................123
References
......................................................123
Fluctuations in Granular Gases
A. Barrat,
A. Puglisi, E. Trizac, P.
Visco,
and F. van Wijland
........125
1
Introduction
..................................................125
2
A Brief Introduction to Granular Gases
..........................127
2.1
Boundary Driven Gases
....................................128
2.2
Randomly Driven Gases
...................................129
3
Total Energy Fluctuations in Vibrated
and Driven Granular Gases
.....................................131
3.1
The Inhomogeneous Boundary Driven Gas
...................131
3.2
The Homogeneously Driven Case
............................135
4
A Large Deviation Theory for the Injected Power Fluctuations
in the Homogeneous Driven Granular Gas
........................138
4.1
The
Cumulants
...........................................141
4.2
The Solvable Infinite Dimension Limit
.......................145
5
Fluctuations of Injected Power at Finite Times: Two Examples
.....146
5.1
The Homogeneous Driven Gas of Inelastic Hard Disks
.........146
5.2
The Boundary Driven Gas of Inelastic Hard Disks
.............153
6
The Dynamics of a Tracer Particle as a Non-Equilibrium
Markov Process
...............................................157
6.1
Detailed Balance
..........................................158
6.2
Action Functionals
........................................160
7
Conclusions
..................................................161
References
......................................................162
An Extended Continuum Theory for Granular Media
Pasquale Giovine................................................
167
1
Introduction
..................................................167
2
A First Model
................................................169
3
Rotations
....................................................171
XIV Contents
4 Balance
of Interactions for Material Bodies
with
Affine
Microstructure
.....................................173
5
Observers
....................................................175
6
Dilatant
Granular Materials with Rotating Grains
.................177
7
Inertia Forces and Balance of Granular Energy
....................179
8
Constitutive Restrictions in the Thermoelastic Case
...............182
9
Suspension of Rigid Granules in a Fluid Matrix
...................185
Appendix: Kinetic Energy Coefficients
..............................187
References
......................................................190
Slow Motion in Granular Matter
Paolo Maria Mariano
............................................193
1
Introduction
..................................................193
2
Representation of the Granularity
...............................194
3
Balance of Interactions: R3
к
SO(3)
Invariance
...................200
4
Evolution of the Local Numerosity of Granules
....................204
5
A Single Granule Coinciding with the Generic Material Element
.... 207
References
......................................................209
Index
..........................................................211
|
adam_txt |
Contents
From Granular Matter to Generalized Continuum
J.D. Goddard
. 1
1
Introduction
. 1
1.1
Mathematical Preliminaries
. 3
1.2
Balances
. 4
2
Micromechanics
. 5
2.1
Granular
Microstructure
and Rotation
. 5
2.2
Graph Theory for Extrinsic Modes
. 7
2.3
Extrinsic Power
. 12
3
Energy-Based Homogenization
. 13
3.1
Intrinsic Moments and Continuum Fields
. 15
4
Conclusions
. 17
Appendix: Simplex and Edge-Complex Gradients
. 17
References
. 20
Generalized Kinetic Maxwell Type Models
of Granular Gases
A. V. Bobylev, C. Cercignani, and I.M.
Gamba
. 23
1
Introduction
. 23
2
Maxwell Models of the Boltzmann Equation
. 26
3
Isotropie
Maxwell Model in the Fourier Representation
. 28
4
Models with Multiple Interactions
. 30
4.1
Statement of the General Problem
. 31
5
The General Problem in Fourier Representation
. 33
5.1
Existence and Uniqueness of Solutions
. 33
5.2
Large Time Asymptotics
. 34
5.3
Existence of Self-Similar Solutions
. 41
5.4
Properties of Self-Similar Solutions
. 42
XII Contents
6
Main Results for Maxwell Models with Multiple Interactions
. 45
6.1
Self-Similar Asymptotics
. 45
6.2
Distribution Functions, Moments and Power-Like Tails
. 47
6.3
Applications to the Conservative or Dissipative
Boltzmann Equation
. 51
References
. 56
Hydrodynamics from the Dissipative Boltzmann Equation
Giuseppe
Toscani
. 59
1
Introduction
. 59
2
Modeling Dissipative Boltzmann Equation
. 62
3
Hydrodynamic Limit and the
Euler
Equations
. 65
4
Hydrodynamics from Homogeneous Cooling States
. 67
5
Conclusions
. 71
References
. 72
Bodies with Kinetic Substructure
Gianfranco
Capriz
. 77
1
Kinetics
. 77
2
A Shadow Speck of Matter
. 79
3
Straining and Allied Notions
. 81
4
Balance Laws
. 84
5
Balance of Kinetic Energy
. 86
6
The First Principle
. 89
References
. 90
Erom
Extended Thermodynamics to Granular Materials
Tommaso Ruggeri
. 91
1
Introduction
. 91
2
Boltzmann Equation and Moments
. 92
2.1
The Closure of Extended Thermodynamics
. 93
2.2
Macroscopic Approach of
ET in
the
13
Fields
. 93
3
Extended Thermodynamics of Moments
. 94
4
Maximization of Entropy
. 97
5
Maximum Characteristic Velocity in Classical Theory
. 98
6
Nesting Theories and Principal Subsystems
. 99
6.1
Example of 13-Moments Principal Subsystems
. 99
6.2
Lower Bound Estimate and Characteristic Velocities
for Large
η
.100
7
Qualitative Analysis
.102
7.1
Shizuta-Kawashima Condition
.103
7.2
Global Existence of Smooth Solutions
.103
8
Comparison with Experiments: Sound Waves and Light Scattering
. 104
References
.105
Contents XIII
Influence
of Contact Modelling on the Macroscopic Plastic
Response of Granular Soils Under Cyclic Loading
R.
García-Rojo,
S.
McN
amara,
and
H. J.
Herrmann
.109
1
Introduction
.109
2
Discrete Element Methods
.
Ill
2.1
Boundary Conditions: Biaxial Test
.112
2.2
Molecular Dynamics
.113
2.3
The Normal-Dashpot Model
.114
2.4
Contact Dynamics
.115
3
Results
.116
3.1
Comparing MD and CD
.117
3.2
Comparing Different Visco-Elastic Laws
.118
4
Conclusions
.123
References
.123
Fluctuations in Granular Gases
A. Barrat,
A. Puglisi, E. Trizac, P.
Visco,
and F. van Wijland
.125
1
Introduction
.125
2
A Brief Introduction to Granular Gases
.127
2.1
Boundary Driven Gases
.128
2.2
Randomly Driven Gases
.129
3
Total Energy Fluctuations in Vibrated
and Driven Granular Gases
.131
3.1
The Inhomogeneous Boundary Driven Gas
.131
3.2
The Homogeneously Driven Case
.135
4
A Large Deviation Theory for the Injected Power Fluctuations
in the Homogeneous Driven Granular Gas
.138
4.1
The
Cumulants
.141
4.2
The Solvable Infinite Dimension Limit
.145
5
Fluctuations of Injected Power at Finite Times: Two Examples
.146
5.1
The Homogeneous Driven Gas of Inelastic Hard Disks
.146
5.2
The Boundary Driven Gas of Inelastic Hard Disks
.153
6
The Dynamics of a Tracer Particle as a Non-Equilibrium
Markov Process
.157
6.1
Detailed Balance
.158
6.2
Action Functionals
.160
7
Conclusions
.161
References
.162
An Extended Continuum Theory for Granular Media
Pasquale Giovine.
167
1
Introduction
.167
2
A First Model
.169
3
Rotations
.171
XIV Contents
4 Balance
of Interactions for Material Bodies
with
Affine
Microstructure
.173
5
Observers
.175
6
Dilatant
Granular Materials with Rotating Grains
.177
7
Inertia Forces and Balance of Granular Energy
.179
8
Constitutive Restrictions in the Thermoelastic Case
.182
9
Suspension of Rigid Granules in a Fluid Matrix
.185
Appendix: Kinetic Energy Coefficients
.187
References
.190
Slow Motion in Granular Matter
Paolo Maria Mariano
.193
1
Introduction
.193
2
Representation of the Granularity
.194
3
Balance of Interactions: R3
к
SO(3)
Invariance
.200
4
Evolution of the Local Numerosity of Granules
.204
5
A Single Granule Coinciding with the Generic Material Element
. 207
References
.209
Index
.211 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Barrat, Alain Capriz, Gianfranco 1925- |
author2_role | ctb edt |
author2_variant | a b ab g c gc |
author_GND | (DE-588)135621232 |
author_facet | Barrat, Alain Capriz, Gianfranco 1925- |
building | Verbundindex |
bvnumber | BV023294256 |
classification_rvk | SI 850 |
classification_tum | MTA 510f PHY 801f WER 460f |
ctrlnum | (OCoLC)315880789 (DE-599)DNB988424819 |
dewey-full | 620.43 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.43 |
dewey-search | 620.43 |
dewey-sort | 3620.43 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Werkstoffwissenschaften Mathematik |
discipline_str_mv | Physik Werkstoffwissenschaften Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01923nam a2200493 cb4500</leader><controlfield tag="001">BV023294256</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100519 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080508s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">988424819</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540782766</subfield><subfield code="9">978-3-540-78276-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9783540782773</subfield><subfield code="9">978-3-540-78277-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315880789</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB988424819</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.43</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MTA 510f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 801f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 460f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">76T25</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical models of granular matter</subfield><subfield code="c">Gianfranco Capriz ... (eds.). With contributions by: A. Barrat ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 212 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1937</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Granular materials - Mathematical models</subfield><subfield code="2">blmsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Granulärer Stoff</subfield><subfield code="0">(DE-588)4256351-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Granulärer Stoff</subfield><subfield code="0">(DE-588)4256351-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barrat, Alain</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Capriz, Gianfranco</subfield><subfield code="d">1925-</subfield><subfield code="0">(DE-588)135621232</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1937</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1937</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016478815&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016478815</subfield></datafield></record></collection> |
id | DE-604.BV023294256 |
illustrated | Illustrated |
index_date | 2024-07-02T20:44:16Z |
indexdate | 2024-07-09T21:15:10Z |
institution | BVB |
isbn | 9783540782766 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016478815 |
oclc_num | 315880789 |
open_access_boolean | |
owner | DE-706 DE-824 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-83 DE-11 DE-188 |
owner_facet | DE-706 DE-824 DE-91G DE-BY-TUM DE-355 DE-BY-UBR DE-83 DE-11 DE-188 |
physical | XVI, 212 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Mathematical models of granular matter Gianfranco Capriz ... (eds.). With contributions by: A. Barrat ... Berlin [u.a.] Springer 2008 XVI, 212 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1937 Granular materials - Mathematical models blmsh Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Granulärer Stoff (DE-588)4256351-3 gnd rswk-swf Granulärer Stoff (DE-588)4256351-3 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Barrat, Alain ctb Capriz, Gianfranco 1925- (DE-588)135621232 edt Lecture notes in mathematics 1937 (DE-604)BV000676446 1937 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016478815&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mathematical models of granular matter Lecture notes in mathematics Granular materials - Mathematical models blmsh Mathematisches Modell (DE-588)4114528-8 gnd Granulärer Stoff (DE-588)4256351-3 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4256351-3 |
title | Mathematical models of granular matter |
title_auth | Mathematical models of granular matter |
title_exact_search | Mathematical models of granular matter |
title_exact_search_txtP | Mathematical models of granular matter |
title_full | Mathematical models of granular matter Gianfranco Capriz ... (eds.). With contributions by: A. Barrat ... |
title_fullStr | Mathematical models of granular matter Gianfranco Capriz ... (eds.). With contributions by: A. Barrat ... |
title_full_unstemmed | Mathematical models of granular matter Gianfranco Capriz ... (eds.). With contributions by: A. Barrat ... |
title_short | Mathematical models of granular matter |
title_sort | mathematical models of granular matter |
topic | Granular materials - Mathematical models blmsh Mathematisches Modell (DE-588)4114528-8 gnd Granulärer Stoff (DE-588)4256351-3 gnd |
topic_facet | Granular materials - Mathematical models Mathematisches Modell Granulärer Stoff |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016478815&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT barratalain mathematicalmodelsofgranularmatter AT caprizgianfranco mathematicalmodelsofgranularmatter |