Gradient flows in metric spaces and in the space of probability measures:

Looking at the theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure, this text covers gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance and g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ambrosio, Luigi 1963- (VerfasserIn), Gigli, Nicola (VerfasserIn), Savaré, Giuseppe (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Basel ; Boston ; Berlin Birkhäuser 2008
Ausgabe:Second Edition
Schriftenreihe:Lectures in mathematics ETH Zürich
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Zusammenfassung:Looking at the theory of gradient flows in spaces which are not necessarily endowed with a natural linear or differentiable structure, this text covers gradient flows in the space of probability measures on a separable Hilbert space, endowed with the Kantorovich-Rubinstein-Wasserstein distance and gradient flows in metric spaces.
Beschreibung:Includes bibliographical references and index
Beschreibung:vii, 334 Seiten
ISBN:9783764387211