Agrobacterium: from biology to biotechnology
"Agrobacterium is a comprehensive book on Agrobacterium research, including its history, application, and basic biology discoveries. Although the book largely focuses on providing a detailed review of virtually all molecular events of the genetic transformation process, it also provides coverag...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY [u.a.]
Springer
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Agrobacterium is a comprehensive book on Agrobacterium research, including its history, application, and basic biology discoveries. Although the book largely focuses on providing a detailed review of virtually all molecular events of the genetic transformation process, it also provides coverage of ethical and legal issues relevant to the use of Agrobacterium as a "genetic transformation machine." The result is an all-inclusive text which readers - including scientists and students involved in plant genetic engineering - will find useful as a reference source for all major aspects of the Agrobacterium-mediated genetic transformation of plant and non-plant organisms."--BOOK JACKET. |
Beschreibung: | XXX, 750 S. Ill., graph. Darst. |
ISBN: | 9780387722894 0387722890 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023227637 | ||
003 | DE-604 | ||
005 | 20101119 | ||
007 | t | ||
008 | 080328s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780387722894 |9 978-0-387-72289-4 | ||
020 | |a 0387722890 |9 0-387-72289-0 | ||
035 | |a (OCoLC)183917590 | ||
035 | |a (DE-599)BVBBV023227637 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-703 |a DE-11 | ||
050 | 0 | |a QR82.R45 | |
082 | 0 | |a 579.334 |2 22 | |
084 | |a WF 9735 |0 (DE-625)148464: |2 rvk | ||
084 | |a WG 4100 |0 (DE-625)148561: |2 rvk | ||
100 | 1 | |a Tzfira, Tzvi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Agrobacterium |b from biology to biotechnology |c ed. by Tzvi Tzfira ... |
264 | 1 | |a New York, NY [u.a.] |b Springer |c 2008 | |
300 | |a XXX, 750 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 1 | |a "Agrobacterium is a comprehensive book on Agrobacterium research, including its history, application, and basic biology discoveries. Although the book largely focuses on providing a detailed review of virtually all molecular events of the genetic transformation process, it also provides coverage of ethical and legal issues relevant to the use of Agrobacterium as a "genetic transformation machine." The result is an all-inclusive text which readers - including scientists and students involved in plant genetic engineering - will find useful as a reference source for all major aspects of the Agrobacterium-mediated genetic transformation of plant and non-plant organisms."--BOOK JACKET. | |
650 | 4 | |a Agrobacterium | |
650 | 4 | |a Agrobacterium | |
650 | 0 | 7 | |a Agrobacterium tumefaciens |0 (DE-588)4141656-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Agrobacterium tumefaciens |0 (DE-588)4141656-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016413410&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016413410 |
Datensatz im Suchindex
_version_ | 1804137518678933504 |
---|---|
adam_text | Table of Contents
Dedication v
Contributing Authors vii
Preface xxix
Acknowledgments xxxiii
Chapter 1 Agrobacterium: a disease-causing bacterium
1 Introduction 2
1.1 Strain classification 2
1.2 The infection process 3
2 Agrobacterium host range 4
3 Diversity of natural isolates 5
3.1 Strain diversity 5
3.2 pTi and pRi plasmid diversity 6
3.2.1 Opine classification 6
3.2.2 Incompatibility 8
3.3 T-DNA diversity 9
3.4 Other ecologically significant plasmids 11
4 Sources of infection and control of crown gall disease 12
4.1 Diagnostic methods 13
4.2 Soil as a potential source of infection 14
4.3 Propagating material as a source of infection 16
4.4 Selection for pathogen-free plant material: the
grapevine story 17
4.5 Production of Agrobacterium-fiee plant material 19
4.6 Biological control 20
4.7 Selection and breeding for crown gall-resistant crops 23
4.8 Introduction of crown gall resistance by genetic
engineering 24
xiv Table of Contents
4.8.1 Targeting T-DNA transfer and integration 25
4.8.2 Inhibition of oncogene expression 25
4.8.3 Manipulating plant genes for crown gall
resistance 25
5 Acknowledgments 26
6 References 26
Chapter 2 A brief history of research on Agrobacterium
tumefaciens: 1900-1980s
1 Introduction 47
2 Agrobacterium—the pathogen 49
2.1 Early studies 49
2.2 Agrobacterium transforms plant cells 50
2.3 The Tumor Inducing Principle (TIP) 52
2.4 Identification of T-DNA from the Ti plasmid as the
TIP 53
2.5 The T-DNA of the Ti plasmid: structure, function and
transfer 57
3 A. tumefaciens as the vector of choice for plant genetic
engineering 59
3.1 Setting the stage—the analysis of crown gall teratomas 60
3.2 Fate of the T-DNA in plants regenerated from
A. /Mme/frc/ews-transformed cells 61
3.3 Construction of selectable markers provides the capacity
to easily identify transformed cells carrying non-oncogenic
T-DNA 63
4 Conclusions 64
5 Acknowledgments 64
6 References 65
Chapter 3 Agrobacterium and plant biotechnology
1 Introduction 74
2 The development of Agrobacterium-mediated transformation 75
2.1 Requirements for generation of transgenic plants 76
2.2 Binary vectors 78
2.3 Transgene stacking 80
2.4 Marker genes and marker-free transformation 81
2.5 Elimination of foreign DNA other than the transgene
of interest 83
2.6 Influence of position effects and gene silencing on
transgene expression levels 84
Table of Contents xv
2.7 Targeting transgene insertions 85
2.8 Extending the range of susceptible hosts for
Agrobacterium-mediated transformation 87
2.9 Alternatives to Agrobacterium-mediated gene delivery 89
3 Applications of Agrobacterium-mediated transformation 91
3.1 Production of foreign proteins in plant cell cultures 91
3.2 Genetic modification of plants to generate useful
products 91
3.2.1 Biodegradable plastics 91
3.2.2 Primary and secondary metabolites
with desirable properties 92
3.2.3 Commercially relevant traits in ornamentals and trees 94
3.2.4 Biopharmaceuticals/edible vaccines 94
3.3 Bioremediation 96
3.4 Increasing crop plant productivity by altering plant
physiology and photosynthetic capacity 97
3.5 Enhancing crop productivity by mitigating external
constraints 98
3.5.1 Enhanced nutrient utilization 99
3.5.2 Enhanced tolerance to abiotic stress 100
3.5.3 Improved disease resistance 103
3.6 Reduction in the use of harmful agrochemicals by
enhancing plant resistance to herbicides and pests 107
3.6.1 Herbicide resistance 107
3.6.2 Insect resistance 108
3.7 Enhanced nutritional content in crop plants 110
3.7.1 Golden Rice 111
4 Gene flow and molecular approaches to transgene
containment/monitoring 113
5 Global status of agricultural biotechnology and technology
Transfer 116
6 Acknowledgments 122
7 References 122
Chapter 4 The Agrobacterium tumefaciens C58 genome
1 Introduction 150
2 General features of the genome 150
3 The linear chromosome 152
4 Phylogeny and whole-genome comparison 155
5 DNA replication and the cell cycle 156
6 Genus-specific genes 157
7 Plant transformation and tumorigenesis 158
xvi Table of Contents
8 Transport 159
9 Regulation 160
10 Response to plant defenses 162
11 General metabolism 163
12 Conclusions 166
13 Acknowledgments 169
14 References 169
Chapter 5 Agrobacterium—taxonomy of plant-pathogenic
Rhizobium species
1 Introduction 184
2 Historical perspective—origins 185
2.1 Taxonomy, classification and nomenclature 185
2.2 Early days of bacterial taxonomy 187
2.3 The genus Agrobacterium 187
2.4 History of species allocated to Agrobacterium 188
2.4.1 Species transferred when Agrobacterium was
first proposed 188
2.4.2 Additional species allocated to Agrobacterium
after Conn proposed the genus 189
2.5 Phenotypic species classification 190
2.5.1 Pathogenic species 190
2.5.2 Comparative studies of Agrobacterium species 190
2.6 The approved lists and Agrobacterium nomenclature 191
2.6.1 Pathogenicity is plasmid-borne 191
2.7 Natural Agrobacterium species 192
2.7.1 Pathogenic designations 195
3 Agrobacterium-Rhizobium relationships 195
3.1 Phenotypic comparisons of Agrobacterium and
Rhizobium 196
4 Genotypic relationships 196
4.1 Comparative molecular analysis of Agrobacterium 196
4.1.1 16SrDNA 196
4.1.2 Other sequences 198
4.1.3 Genomic comparisons 198
5 Plasmid transfer and genus reclassification 199
5.1 Transfer of oncogenic Ti and nodulating Sym plasmids 199
5.2 Revision of oncogenic Rhizobium species 199
5.2.1 Plant pathogenic Rhizobium species 199
6 Diversity within Rhizobium 200
6.1 Symbiotic Agrobacterium and oncogenic Rhizobium
(and other genera) 200
Table of Contents xvii
6.2 Clinical Agrobacterium species 202
6.3 Soil agrobacteria 203
7 Revision of Agrobacterium nomenclature 204
7.1 Why is the revision of Agrobacterium
nomenclature controversial? 204
7.1.1 Names are not descriptive 205
7.1.2 Binomial names should indicate natural
relationships 205
7.2 The status of Agrobacterium nomenclature 206
7.2.1 Species 206
7.2.2 Genus 206
7.2.3 Vernacular alternative 207
8 Relationship of Rhizobium to other members of the
Rhizobiaceae 207
9 Other Agrobacterium species 208
10 Summary 209
11 Acknowledgments 209
12 References 210
Chapter 6 The initial steps in Agrobacterium tumefaciens
pathogenesis: chemical biology of host recognition
1 Introduction 222
2 Signal diversity 223
2.1 Discovery of signals 223
2.2 Structural class and diversity 224
2.3 Signal landscape 225
3 Signal recognition, integration and transmission 226
3.1 Signal recognition 226
3.1.1 Phenols 227
3.1.2 Sugars 228
3.1.3 pH 228
3.2 Signal integration and transmission 229
3.2.1 HK/RR structures and transmission 229
3.2.2 Model for signal integration in VirA/VirG 231
4 Summary 236
5 Acknowledgments 236
6 References 236
Chapter 7 Agrobacterium-hosX attachment and biofilm formation
1 Introduction 244
1.1 A simple model for agrobacterial attachment to plants? 246
xviii Table of Contents
2 Presumptive adherence factors 247
2.1 Flagellar motility and chemotaxis 248
2.2 Lipopolysaccharide (LPS) 250
2.3 Rhicadhesin 250
2.4 ChvA/B and cyclic ß-1,2-glucans 251
2.5 The attachment (Att) genes—not required for
attachment? 253
2.6 Synthesis of cellulose fibrils and irreversible
attachment 255
2.7 Plant attachment via the T-pilus? 257
3 Plant receptors recognized during A. tumefaciens infection 258
4 Biofilm formation by A. tumefaciens 259
4.1 Adherent bacterial populations on plants and in the
rhizosphere 259
4.2 Biofilm formation and structure 260
4.3 Mutations that diminish biofilm formation and plant
attachment 261
4.4 Control of surface attachment by the ExoR protein 262
4.5 Control of biofilm maturation by an FNR homologue 264
4.6 Phosphorus limitation stimulates biofilm formation 265
5 A model for adherence and biofilm formation 266
6 A wide range of surface interactions 267
7 Conclusions 268
8 Acknowledgments 269
9 References 269
Chapter 8 Production of a mobile T-DNA by Agrobacterium
tumefaciens
1 Introduction 280
2 A. tumefaciens—nature s genetic engineer 280
3 Interkindom gene transfer 281
3.1 Overview 281
3.2 Key early experiments 281
3.3 Protein secretion apparatus 283
3.4 The conjugation model of T-DNA transfer 284
3.4.1 Promiscuous conjugation 284
3.4.2 Border sequences 285
3.4.3 The relaxosome 286
3.4.4 T-strands 288
Table of Contents xix
3.4.5 Secreted single-stranded DNA-binding protein:
VirE2 289
3.4.6 A pilot protein: VirD2 292
3.4.7 Functional domains of VirD2 292
3.4.8 Gateway to the pore: VirD4 coupling protein 293
4 VirD2 interacts with host proteins 294
4.1 Nuclear targeting: importin-a proteins 294
4.2 Protein phosphatase, kinase, and TATA box-binding
proteins 296
4.3 Cyclophilins 297
5 T-DNA integration 297
5.1 Integration products 279
5.2 The role ofVirD2 in T-DNA integration 298
6 Plant genetic engineering 299
6.1 Agrobacterium virulence proteins help preserve
T-DNA structure 299
6.2 Agrolistic transformation 299
6.3 Use of the VirD2 omega mutant to create marker-free
transgenic plants 300
6.4 Efficient transgene targeting by homologous
recombination is still elusive in plants 300
7 Acknowledgments 301
8 References 301
Chapter 9 Translocation of oncogenic T-DNA and effector
proteins to plant cells
1 Introduction 316
2 A historical overview 316
2.1 Discovery of the VirB/D4 transfer system 317
2.2 Renaming the mating pore as a type IV translocation
channel 318
3 A. tumefaciens VirB/D4 secretion substrates 320
3.1 T-DNA processing and recruitment to the VirB/D4
channel 320
3.2 Processing and recruitment of protein substrates 322
3.3 Secretion signals 324
3.4 Inhibitors of VirB/D4-mediated substrate translocation 325
4 The VÜ-B4/D4 machine 326
4.1 Energetic components 326
4.1.1 VirD4 326
xx Table of Contents
4.1.2 VirBll 327
4.1.3 VirB4 328
4.2 Inner-membrane translocase components 329
4.2.1 VirB6 329
4.2.2 VirB8 329
4.2.3 VirBlO 330
4.2.4 VirB3 330
4.3 Periplasmic/outer-membrane channel components 330
4.3.1 VirBl 331
4.3.2 VirB5 331
4.3.3 VirB2 332
4.3.4 VirB7 332
4.3.5 VirB9 333
5 VirB/D4 machine assembly and spatial positioning 333
5.1 A VirB/D4 stabilization pathway 334
5.2 Polar localization of the T-DNA transfer system 334
5.3 Latter-stage reactions required for machine
assembly and substrate transfer 336
5.3.1 VirB4 and VirBl 1 mediate T-pilus assembly 337
5.3.2 VirD4 and VirBl 1 induce assembly of a
stable VirB 10-VirB9-VirB7 channel complex 337
5.4 Interactions among the VirB/D4 T4S subunits 338
6 VirB/D4 channel/pilus architecture 339
7 T-DNA translocation across the cell envelope 341
7.1 Substrate recruitment to the T4S system 342
7.2 Transfer to the VirBl 1 hexameric ATPase 342
7.3 Transfer to the integral inner membrane proteins
VirB6 and VirB8 343
7.4 Transfer to the periplasmic and outer-
membrane-associated proteins VirB2 and VirB9 344
7.5 The transfer route 344
7.6 More jobs than two? 346
8 The Agrobacterium-plant cell interface 347
8.1 Environmental factors 348
8.2 Roles of the T-pilus and plant receptors 349
9 Summary and perspectives 350
10 Acknowledgments 352
11 References 352
Table of Contents xxi
Chapter 10 Intracellular transport of Agrobacterium T-DNA
1 Introduction 365
2 Structure and function of the T-complex 367
2.1 Structural requirements for T-complex subcellular
transport 367
2.2 T-complex formation 369
2.3 The T-complex s three-dimensional structure 370
2.4 Protection from host-cell nucleases 371
3 Cytoplasmic transport 372
4 Nuclear import 374
4.1 Function of bacterial proteins in the nuclear import
of T-complexes 375
4.2 Interactions of the T-complex with the host
nuclear-import machinery 376
4.3 Regulation of T-DNA nuclear import 379
5 Intranuclear movement of the T-complex 381
6 From the cytoplasm to the chromatin: a model for
T-complex import 382
7 Future prospects 384
8 Acknowledgments 384
9 References 385
Chapter 11 Mechanisms of T-DNA integration
1 Introduction 396
2 The T-DNA molecule 397
3 Proteins involved in T-DNA integration 398
3.1 The role of VirD2 in the integration process 398
3.2 The role of VirE2 in the integration process 400
3.3 The role of host proteins in the integration process 401
3.3.1 A lesson learnt from yeast 402
3.3.2 Plant proteins 403
4 Genomic aspects of T-DNA integration/target-site selection 408
4.1 T-DNA integration at the gene level 409
4.2 T-DNA integration at the chromosome level 412
4.3 The chromatin connection 415
4.4 Who makes the cut? 417
4.5 Target-site selection—a peek over the fence 419
5 Models for T-DNA integration 420
5.1 The single- and double-stranded T-DNA integration
models 420
xxii Table of Contents
5.2. The microhomology-based T-strand integration model 423
5.3 A model for double strand T-DNA integration into
double strand breaks 425
6 Future directions 428
7 Acknowledgments 429
8 References 429
Chapter 12 Agrobacterium tumefaciens-mediateA transformation:
patterns of T-DNA integration into the host genome
1 Introduction 442
2 T-DNA integration mechanism: successive steps leading to
stable integration of the T-DNA into the plant host genome 443
2.1 T-DNA integration can be a serious bottleneck to
obtaining transgenic plants with a high efficiency 444
2.2 T-DNA integration: involvement of bacterial and plant
host factors 446
2.3 The molecular mechanism that drives T-DNA
integration: illegitimate recombination 448
2.4 T-DNA integration: single-stranded gap repair (SSGR)
vs. double-stranded break repair (DSBR) models 448
2.4.1 SSGR model 449
2.4.2 DSBR model 452
2.5 T-DNA integration: involvement of DSBR via
non-homologous end joining (NHEJ) 453
3 Patterns of T-DNA integration into the host genome 458
3.1 Distribution of T-DNA inserts 458
3.2 T-DNA integration results in a transgene locus that
is either simple or complex 460
3.3 T-DNA integration can result in truncated T-DNA
inserts 461
3.4 T-DNA integration can result in multicopy T-DNA
loci 462
3.5 Transformation conditions may influence the number
of integrated T-DNAs 465
3.6 Integration of vector backbone sequences 466
3.7 Rearrangements of the host genomic locus as a result
of T-DNA integration 467
4 Acknowledgments 469
5 References 469
Table of Contents xxiii
Chapter 13 Function of host proteins in the Agrobacterium-mediated
plant transformation process
1 Introduction 484
2 A genetic basis exists for host susceptibility to
Agrobacterium-mediated transformation 485
3 The plant response to Agrobacterium: steps in the
transformation process, and plant genes/proteins involved
in each of these steps 488
3.1 Bacterial attachment and biofilm formation 489
3.1.1 Enhancement of plant defense signaling can
result in decreased Agrobacterium biofilm
formation 491
3.1.2 T-DNA and virulence protein transfer: a putative
receptor for the Agrobacterium T-pilus 491
3.2 T-DNA cytoplasmic trafficking and nuclear targeting 493
3.2.1 Interaction of the T-complex with other proteins
in the plant cytoplasm 498
3.2.2 Does the T-complex utilize the plant cytoskeleton
for intracellular trafficking? 499
3.3 Uncoating the T-strand in the nucleus 500
3.4 Proteins involved in T-DNA integration 501
3.4.1 Role of recombination proteins in T-DNA
integration 504
3.4.2 Role of chromatin proteins in Agrobacterium-
mediated transformation 505
3.4.3 Over-expression of some ra/ genes may alter
transgene expression 506
4 Conclusions 507
5 Acknowledgments 508
6 References 508
Chapter 14 The oncogenes of Agrobacterium tumefaciens
and Agrobacterium rhizogenes
1 Introduction 524
2 The A. tumefaciens oncogenes 525
2.1 iaaMjaaH and auxin synthesis 525
2.2 ipt and cytokinin synthesis 528
2.3 Gene 6b 530
2.4 Gene 5 531
2.5 Other A. tumefaciens oncogenes 531
xxiv Table of Contents
2.6 Tumorigenesis and hormone interactions
3 The A. rhizogenes oncogenes
3.1 rolA
3.2 rolB
3.3 rolBTR (rolB homologue in TÄ-DNA)
3.4 rolC
3.5 rolD
3.6 ORF3n
3.7 ORF8
3.8 ORF13
3.9 Others, rhizogenes T-DNA genes
3.10 Plant homologues to Ri genes
3.11 Ri T-DNA genetic interactions
4 Conclusions
5 References
Chapter 15 Biology of crown gall tumors
532
533
534
535
537
538
540
541
541
543
544
545
546
549
550
1 Introduction 566
2 Crown gall vascularization 567
3 Oncogenic-induced phytohormone cascade 570
3.1 Auxin 570
3.1.1 Regulation of auxin accumulation 572
3.1.2 Enhancement of tumor induction by host plant
auxin 574
3.2 Cytokinins 574
3.3 Ethylene 575
3.4 Abscisic acid 576
3.5 Jasmonic acid 578
3.6 Interactive reactions of JA, IAA, CK, ethylene and
ABA 578
4 Enhancement of water and solute transport 579
4.1 Water transport 579
4.2 Regulation of inorganic nutrient accumulation 580
4.3 Phloem transport and symplastic unloading 582
5 Kinetics and function of the sugar-cleaving enzymes
sucrose synthase, acid cell wall and vacuolar invertase 584
6 Conclusions 584
7 Acknowledgments 585
8 References 585
Table of Contents xxv
Chapter 16 The cell-cell communication system
of Agrobacterium tumefaciens
1 Introduction 594
2 A model of quorum sensing in A. tumefaciens 595
2.1 Regulation of tra gene expression 596
2.2 AntiactivatorsofTraR activity: TraM and TraR 598
2.3 Regulation of TraR activity through OOHL turnover 601
3 Structure and function studies of TraR 603
4 TraR in transcription activation 608
4.1 Activation of the Ti plasmid conjugation genes 608
4.2 Activation of the Ti plasmid vegetative replication
genes 610
4.3 TraR-OOHL interactions with RNA polymerase 612
5 Quorum sensing in tumors and infected plants 613
6 Acknowledgments 614
7 References 615
Chapter 17 Horizontal gene transfer
1 Introduction 624
2 Footprint of horizontal gene transfer from Agrobacterium
to tobacco plants 624
2.1 Cellular T-DNA (cT-DNA) in wild plants of tree
tobacco, Nicotiana glauca 624
2.2 cT-DNA is present in quite a few species of the genus
Nicotiana 627
2.3 Phylogenetic analysis of cT-DNA genes and their
evolution 629
2.4 Expression of the oncogenes on the cT-DNA 631
2.5 Function of the oncogenes on the cT-DNA 633
3 Other cT-DNAs 634
3.1 cT-DNAs outside of the genus Nicotiana 634
3.2 Presence ofcT-DNA originating from pTi T-DNA 635
4 Genetic tumors 635
4.1 Genetic tumors on interspecific hybrids in the genus
Nicotiana 635
4.2 Are cT-DNA genes related to genetic tumor formation? 637
5 Advantage of cT-DN A and creation of new species 639
6 Acknowledgments 642
7 References 642
xxvi Table of Contents
Chapter 18 Agrobacterium-mediated transformation
of non-plant organisms
1 Introduction 650
2 Non-plant organisms transformed by Agrobacterium 652
3 Experimental aspects of Agrobacterium-vaediaXed
transformation of non-plant organisms 656
3.1 Agrobacterium strains 656
3.2 Requirement of acetosyringone 656
3.3 Effect of co-cultivation conditions 657
3.4 Markers used for Agrobacterium-mediated
transformation 658
4 Role of virulence proteins in the Agrobacterium-mediated
transformation of non-plant organisms 658
4.1 Chromosomally-encoded virulence proteins 658
4.2 Ti-plasmid encoded virulence proteins 659
5 Targeted integration of T-DNA 659
6 Protein transfer from Agrobacterium to non-plant hosts 664
7 Prospects 664
8 Acknowledgments 666
9 References 666
Chapter 19 The bioethics and biosafety of gene transfer
1 Introduction 678
1.1 Responding to biosafery concerns: regulation 679
1.1.1 Product-based regulation 680
1.1.2 Process-based regulation 680
1.2 Risk analysis 682
1.2.1 Food safety risk assessment 683
1.2.2 Environmental risk assessment 684
2 Which risks are relevant? 685
2.1 The risk window 686
2.1.1 What risks associated with GM crops have
scientists judged relevant? 686
2.1.2 The risk window has changed with new
regulation 687
2.1.3 Scientists sometimes have different values-
the MON 863 maize example 688
3 Concerns beyond risk assessment 689
3.1 Usefulness 690
Table of Contents xxvii
3.2 Other socioeconomic issues 691
3.3 The consumer s right to choose-co-existence 691
3.4 Other moral concerns 693
3.4.1 Ethical criteria 694
4 Conclusions 694
5 Acknowledgments 695
6 References 695
Chapter 20 Agrobacterium-mediated gene transfer:
a lawyer s perspective
1 Introduction-Why should a scientist care about a lawyer s
view of Agrobacteriurril 700
1.1 Commercialization of research results 701
1.2 Advantages for scientific research 703
1.3 The myth of the experimental use exception 704
1.4 Freedom-to-commercialize and anti-commons
problems 707
2 Some basics about patents 709
2.1 Claims define the metes and bounds of protection 709
2.2 A patent application is not a patent 711
2.3 Parts of a patent document 711
3 Agrobacterium-mediated transformation and patent law 713
3.1 Vectors for transformation 716
3.1.1 Patents on binary vectors and methods 716
3.1.2 Patents on co-integrated vectors 719
3.2 Tissue types for transformation 720
3.2.1 Callus transformation 720
3.2.2 Immature embryo transformation 721
3.2.3 Inplanta transformation 721
3.2.4 Floral transformation 721
3.2.5 Seed transformation 722
3.2.6 Pollen transformation 723
3.2.7 Shoot apex transformation 723
3.2.8 Summary 723
3.3 Patents on transformation of monocots 724
3.3.1 General methods for transforming monocots 725
3.3.2 Gramineae and cereals 726
3.4 Patents on transformation of dicots 727
3.4.1 General transformation methods 727
3.4.2 Transformation of cotton 728
3.5 Agrobacterium and Rhizobiaceae 731
xxviii Table of Contents
4 Conclusions 732
5 Acknowledgments 733
6 References
Index 737
|
adam_txt |
Table of Contents
Dedication v
Contributing Authors vii
Preface xxix
Acknowledgments xxxiii
Chapter 1 Agrobacterium: a disease-causing bacterium
1 Introduction 2
1.1 Strain classification 2
1.2 The infection process 3
2 Agrobacterium host range 4
3 Diversity of natural isolates 5
3.1 Strain diversity 5
3.2 pTi and pRi plasmid diversity 6
3.2.1 Opine classification 6
3.2.2 Incompatibility 8
3.3 T-DNA diversity 9
3.4 Other ecologically significant plasmids 11
4 Sources of infection and control of crown gall disease 12
4.1 Diagnostic methods 13
4.2 Soil as a potential source of infection 14
4.3 Propagating material as a source of infection 16
4.4 Selection for pathogen-free plant material: the
grapevine story 17
4.5 Production of Agrobacterium-fiee plant material 19
4.6 Biological control 20
4.7 Selection and breeding for crown gall-resistant crops 23
4.8 Introduction of crown gall resistance by genetic
engineering 24
xiv Table of Contents
4.8.1 Targeting T-DNA transfer and integration 25
4.8.2 Inhibition of oncogene expression 25
4.8.3 Manipulating plant genes for crown gall
resistance 25
5 Acknowledgments 26
6 References 26
Chapter 2 A brief history of research on Agrobacterium
tumefaciens: 1900-1980s
1 Introduction 47
2 Agrobacterium—the pathogen 49
2.1 Early studies 49
2.2 Agrobacterium 'transforms' plant cells 50
2.3 The "Tumor Inducing Principle" (TIP) 52
2.4 Identification of T-DNA from the Ti plasmid as the
"TIP" 53
2.5 The T-DNA of the Ti plasmid: structure, function and
transfer 57
3 A. tumefaciens as the vector of choice for plant genetic
engineering 59
3.1 Setting the stage—the analysis of crown gall teratomas 60
3.2 Fate of the T-DNA in plants regenerated from
A. /Mme/frc/ews-transformed cells 61
3.3 Construction of selectable markers provides the capacity
to easily identify transformed cells carrying non-oncogenic
T-DNA 63
4 Conclusions 64
5 Acknowledgments 64
6 References 65
Chapter 3 Agrobacterium and plant biotechnology
1 Introduction 74
2 The development of Agrobacterium-mediated transformation 75
2.1 Requirements for generation of transgenic plants 76
2.2 Binary vectors 78
2.3 Transgene stacking 80
2.4 Marker genes and marker-free transformation 81
2.5 Elimination of foreign DNA other than the transgene
of interest 83
2.6 Influence of position effects and gene silencing on
transgene expression levels 84
Table of Contents xv
2.7 Targeting transgene insertions 85
2.8 Extending the range of susceptible hosts for
Agrobacterium-mediated transformation 87
2.9 Alternatives to Agrobacterium-mediated gene delivery 89
3 Applications of Agrobacterium-mediated transformation 91
3.1 Production of foreign proteins in plant cell cultures 91
3.2 Genetic modification of plants to generate useful
products 91
3.2.1 Biodegradable plastics 91
3.2.2 Primary and secondary metabolites
with desirable properties 92
3.2.3 Commercially relevant traits in ornamentals and trees 94
3.2.4 Biopharmaceuticals/edible vaccines 94
3.3 Bioremediation 96
3.4 Increasing crop plant productivity by altering plant
physiology and photosynthetic capacity 97
3.5 Enhancing crop productivity by mitigating external
constraints 98
3.5.1 Enhanced nutrient utilization 99
3.5.2 Enhanced tolerance to abiotic stress 100
3.5.3 Improved disease resistance 103
3.6 Reduction in the use of harmful agrochemicals by
enhancing plant resistance to herbicides and pests 107
3.6.1 Herbicide resistance 107
3.6.2 Insect resistance 108
3.7 Enhanced nutritional content in crop plants 110
3.7.1 "Golden Rice" 111
4 Gene flow and molecular approaches to transgene
containment/monitoring 113
5 Global status of agricultural biotechnology and technology
Transfer 116
6 Acknowledgments 122
7 References 122
Chapter 4 The Agrobacterium tumefaciens C58 genome
1 Introduction 150
2 General features of the genome 150
3 The linear chromosome 152
4 Phylogeny and whole-genome comparison 155
5 DNA replication and the cell cycle 156
6 Genus-specific genes 157
7 Plant transformation and tumorigenesis 158
xvi Table of Contents
8 Transport 159
9 Regulation 160
10 Response to plant defenses 162
11 General metabolism 163
12 Conclusions 166
13 Acknowledgments 169
14 References 169
Chapter 5 Agrobacterium—taxonomy of plant-pathogenic
Rhizobium species
1 Introduction 184
2 Historical perspective—origins 185
2.1 Taxonomy, classification and nomenclature 185
2.2 Early days of bacterial taxonomy 187
2.3 The genus Agrobacterium 187
2.4 History of species allocated to Agrobacterium 188
2.4.1 Species transferred when Agrobacterium was
first proposed 188
2.4.2 Additional species allocated to Agrobacterium
after Conn proposed the genus 189
2.5 Phenotypic species classification 190
2.5.1 Pathogenic species 190
2.5.2 Comparative studies of Agrobacterium species 190
2.6 The approved lists and Agrobacterium nomenclature 191
2.6.1 Pathogenicity is plasmid-borne 191
2.7 Natural Agrobacterium species 192
2.7.1 Pathogenic designations 195
3 Agrobacterium-Rhizobium relationships 195
3.1 Phenotypic comparisons of Agrobacterium and
Rhizobium 196
4 Genotypic relationships 196
4.1 Comparative molecular analysis of Agrobacterium 196
4.1.1 16SrDNA 196
4.1.2 Other sequences 198
4.1.3 Genomic comparisons 198
5 Plasmid transfer and genus reclassification 199
5.1 Transfer of oncogenic Ti and nodulating Sym plasmids 199
5.2 Revision of oncogenic Rhizobium species 199
5.2.1 Plant pathogenic Rhizobium species 199
6 Diversity within Rhizobium 200
6.1 Symbiotic Agrobacterium and oncogenic Rhizobium
(and other genera) 200
Table of Contents xvii
6.2 Clinical 'Agrobacterium' species 202
6.3 Soil agrobacteria 203
7 Revision of Agrobacterium nomenclature 204
7.1 Why is the revision of Agrobacterium
nomenclature controversial? 204
7.1.1 Names are not descriptive 205
7.1.2 Binomial names should indicate natural
relationships 205
7.2 The status of Agrobacterium nomenclature 206
7.2.1 Species 206
7.2.2 Genus 206
7.2.3 Vernacular alternative 207
8 Relationship of Rhizobium to other members of the
Rhizobiaceae 207
9 Other 'Agrobacterium'' species 208
10 Summary 209
11 Acknowledgments 209
12 References 210
Chapter 6 The initial steps in Agrobacterium tumefaciens
pathogenesis: chemical biology of host recognition
1 Introduction 222
2 Signal diversity 223
2.1 Discovery of signals 223
2.2 Structural class and diversity 224
2.3 Signal landscape 225
3 Signal recognition, integration and transmission 226
3.1 Signal recognition 226
3.1.1 Phenols 227
3.1.2 Sugars 228
3.1.3 pH 228
3.2 Signal integration and transmission 229
3.2.1 HK/RR structures and transmission 229
3.2.2 Model for signal integration in VirA/VirG 231
4 Summary 236
5 Acknowledgments 236
6 References 236
Chapter 7 Agrobacterium-hosX attachment and biofilm formation
1 Introduction 244
1.1 A simple model for agrobacterial attachment to plants? 246
xviii Table of Contents
2 Presumptive adherence factors 247
2.1 Flagellar motility and chemotaxis 248
2.2 Lipopolysaccharide (LPS) 250
2.3 Rhicadhesin 250
2.4 ChvA/B and cyclic ß-1,2-glucans 251
2.5 The attachment (Att) genes—not required for
attachment? 253
2.6 Synthesis of cellulose fibrils and irreversible
attachment 255
2.7 Plant attachment via the T-pilus? 257
3 Plant receptors recognized during A. tumefaciens infection 258
4 Biofilm formation by A. tumefaciens 259
4.1 Adherent bacterial populations on plants and in the
rhizosphere 259
4.2 Biofilm formation and structure 260
4.3 Mutations that diminish biofilm formation and plant
attachment 261
4.4 Control of surface attachment by the ExoR protein 262
4.5 Control of biofilm maturation by an FNR homologue 264
4.6 Phosphorus limitation stimulates biofilm formation 265
5 A model for adherence and biofilm formation 266
6 A wide range of surface interactions 267
7 Conclusions 268
8 Acknowledgments 269
9 References 269
Chapter 8 Production of a mobile T-DNA by Agrobacterium
tumefaciens
1 Introduction 280
2 A. tumefaciens—nature's genetic engineer 280
3 Interkindom gene transfer 281
3.1 Overview 281
3.2 Key early experiments 281
3.3 Protein secretion apparatus 283
3.4 The conjugation model of T-DNA transfer 284
3.4.1 Promiscuous conjugation 284
3.4.2 Border sequences 285
3.4.3 The relaxosome 286
3.4.4 T-strands 288
Table of Contents xix
3.4.5 Secreted single-stranded DNA-binding protein:
VirE2 289
3.4.6 A pilot protein: VirD2 292
3.4.7 Functional domains of VirD2 292
3.4.8 Gateway to the pore: VirD4 coupling protein 293
4 VirD2 interacts with host proteins 294
4.1 Nuclear targeting: importin-a proteins 294
4.2 Protein phosphatase, kinase, and TATA box-binding
proteins 296
4.3 Cyclophilins 297
5 T-DNA integration 297
5.1 Integration products 279
5.2 The role ofVirD2 in T-DNA integration 298
6 Plant genetic engineering 299
6.1 Agrobacterium virulence proteins help preserve
T-DNA structure 299
6.2 "Agrolistic" transformation 299
6.3 Use of the VirD2 omega mutant to create marker-free
transgenic plants 300
6.4 Efficient transgene targeting by homologous
recombination is still elusive in plants 300
7 Acknowledgments 301
8 References 301
Chapter 9 Translocation of oncogenic T-DNA and effector
proteins to plant cells
1 Introduction 316
2 A historical overview 316
2.1 Discovery of the VirB/D4 transfer system 317
2.2 Renaming the mating pore as a type IV translocation
channel 318
3 A. tumefaciens VirB/D4 secretion substrates 320
3.1 T-DNA processing and recruitment to the VirB/D4
channel 320
3.2 Processing and recruitment of protein substrates 322
3.3 Secretion signals 324
3.4 Inhibitors of VirB/D4-mediated substrate translocation 325
4 The VÜ-B4/D4 machine 326
4.1 Energetic components 326
4.1.1 VirD4 326
xx Table of Contents
4.1.2 VirBll 327
4.1.3 VirB4 328
4.2 Inner-membrane translocase components 329
4.2.1 VirB6 329
4.2.2 VirB8 329
4.2.3 VirBlO 330
4.2.4 VirB3 330
4.3 Periplasmic/outer-membrane channel components 330
4.3.1 VirBl 331
4.3.2 VirB5 331
4.3.3 VirB2 332
4.3.4 VirB7 332
4.3.5 VirB9 333
5 VirB/D4 machine assembly and spatial positioning 333
5.1 A VirB/D4 stabilization pathway 334
5.2 Polar localization of the T-DNA transfer system 334
5.3 Latter-stage reactions required for machine
assembly and substrate transfer 336
5.3.1 VirB4 and VirBl 1 mediate T-pilus assembly 337
5.3.2 VirD4 and VirBl 1 induce assembly of a
stable VirB 10-VirB9-VirB7 channel complex 337
5.4 Interactions among the VirB/D4 T4S subunits 338
6 VirB/D4 channel/pilus architecture 339
7 T-DNA translocation across the cell envelope 341
7.1 Substrate recruitment to the T4S system 342
7.2 Transfer to the VirBl 1 hexameric ATPase 342
7.3 Transfer to the integral inner membrane proteins
VirB6 and VirB8 343
7.4 Transfer to the periplasmic and outer-
membrane-associated proteins VirB2 and VirB9 344
7.5 The transfer route 344
7.6 More jobs than two? 346
8 The Agrobacterium-plant cell interface 347
8.1 Environmental factors 348
8.2 Roles of the T-pilus and plant receptors 349
9 Summary and perspectives 350
10 Acknowledgments 352
11 References 352
Table of Contents xxi
Chapter 10 Intracellular transport of Agrobacterium T-DNA
1 Introduction 365
2 Structure and function of the T-complex 367
2.1 Structural requirements for T-complex subcellular
transport 367
2.2 T-complex formation 369
2.3 The T-complex's three-dimensional structure 370
2.4 Protection from host-cell nucleases 371
3 Cytoplasmic transport 372
4 Nuclear import 374
4.1 Function of bacterial proteins in the nuclear import
of T-complexes 375
4.2 Interactions of the T-complex with the host
nuclear-import machinery 376
4.3 Regulation of T-DNA nuclear import 379
5 Intranuclear movement of the T-complex 381
6 From the cytoplasm to the chromatin: a model for
T-complex import 382
7 Future prospects 384
8 Acknowledgments 384
9 References 385
Chapter 11 Mechanisms of T-DNA integration
1 Introduction 396
2 The T-DNA molecule 397
3 Proteins involved in T-DNA integration 398
3.1 The role of VirD2 in the integration process 398
3.2 The role of VirE2 in the integration process 400
3.3 The role of host proteins in the integration process 401
3.3.1 A lesson learnt from yeast 402
3.3.2 Plant proteins 403
4 Genomic aspects of T-DNA integration/target-site selection 408
4.1 T-DNA integration at the gene level 409
4.2 T-DNA integration at the chromosome level 412
4.3 The chromatin connection 415
4.4 Who makes the cut? 417
4.5 Target-site selection—a peek "over the fence" 419
5 Models for T-DNA integration 420
5.1 The single- and double-stranded T-DNA integration
models 420
xxii Table of Contents
5.2. The microhomology-based T-strand integration model 423
5.3 A model for double strand T-DNA integration into
double strand breaks 425
6 Future directions 428
7 Acknowledgments 429
8 References 429
Chapter 12 Agrobacterium tumefaciens-mediateA transformation:
patterns of T-DNA integration into the host genome
1 Introduction 442
2 T-DNA integration mechanism: successive steps leading to
stable integration of the T-DNA into the plant host genome 443
2.1 T-DNA integration can be a serious bottleneck to
obtaining transgenic plants with a high efficiency 444
2.2 T-DNA integration: involvement of bacterial and plant
host factors 446
2.3 The molecular mechanism that drives T-DNA
integration: illegitimate recombination 448
2.4 T-DNA integration: single-stranded gap repair (SSGR)
vs. double-stranded break repair (DSBR) models 448
2.4.1 SSGR model 449
2.4.2 DSBR model 452
2.5 T-DNA integration: involvement of DSBR via
non-homologous end joining (NHEJ) 453
3 Patterns of T-DNA integration into the host genome 458
3.1 Distribution of T-DNA inserts 458
3.2 T-DNA integration results in a transgene locus that
is either simple or complex 460
3.3 T-DNA integration can result in truncated T-DNA
inserts 461
3.4 T-DNA integration can result in multicopy T-DNA
loci 462
3.5 Transformation conditions may influence the number
of integrated T-DNAs 465
3.6 Integration of vector backbone sequences 466
3.7 Rearrangements of the host genomic locus as a result
of T-DNA integration 467
4 Acknowledgments 469
5 References 469
Table of Contents xxiii
Chapter 13 Function of host proteins in the Agrobacterium-mediated
plant transformation process
1 Introduction 484
2 A genetic basis exists for host susceptibility to
Agrobacterium-mediated transformation 485
3 The plant response to Agrobacterium: steps in the
transformation process, and plant genes/proteins involved
in each of these steps 488
3.1 Bacterial attachment and biofilm formation 489
3.1.1 Enhancement of plant defense signaling can
result in decreased Agrobacterium biofilm
formation 491
3.1.2 T-DNA and virulence protein transfer: a putative
receptor for the Agrobacterium T-pilus 491
3.2 T-DNA cytoplasmic trafficking and nuclear targeting 493
3.2.1 Interaction of the T-complex with other proteins
in the plant cytoplasm 498
3.2.2 Does the T-complex utilize the plant cytoskeleton
for intracellular trafficking? 499
3.3 "Uncoating" the T-strand in the nucleus 500
3.4 Proteins involved in T-DNA integration 501
3.4.1 Role of "recombination" proteins in T-DNA
integration 504
3.4.2 Role of chromatin proteins in Agrobacterium-
mediated transformation 505
3.4.3 Over-expression of some "ra/" genes may alter
transgene expression 506
4 Conclusions 507
5 Acknowledgments 508
6 References 508
Chapter 14 The oncogenes of Agrobacterium tumefaciens
and Agrobacterium rhizogenes
1 Introduction 524
2 The A. tumefaciens oncogenes 525
2.1 iaaMjaaH and auxin synthesis 525
2.2 ipt and cytokinin synthesis 528
2.3 Gene 6b 530
2.4 Gene 5 531
2.5 Other A. tumefaciens oncogenes 531
xxiv Table of Contents
2.6 Tumorigenesis and hormone interactions
3 The A. rhizogenes oncogenes
3.1 rolA
3.2 rolB
3.3 rolBTR (rolB homologue in TÄ-DNA)
3.4 rolC
3.5 rolD
3.6 ORF3n
3.7 ORF8
3.8 ORF13
3.9 Others, rhizogenes T-DNA genes
3.10 Plant homologues to Ri genes
3.11 Ri T-DNA genetic interactions
4 Conclusions
5 References
Chapter 15 Biology of crown gall tumors
532
533
534
535
537
538
540
541
541
543
544
545
546
549
550
1 Introduction 566
2 Crown gall vascularization 567
3 Oncogenic-induced phytohormone cascade 570
3.1 Auxin 570
3.1.1 Regulation of auxin accumulation 572
3.1.2 Enhancement of tumor induction by host plant
auxin 574
3.2 Cytokinins 574
3.3 Ethylene 575
3.4 Abscisic acid 576
3.5 Jasmonic acid 578
3.6 Interactive reactions of JA, IAA, CK, ethylene and
ABA 578
4 Enhancement of water and solute transport 579
4.1 Water transport 579
4.2 Regulation of inorganic nutrient accumulation 580
4.3 Phloem transport and symplastic unloading 582
5 Kinetics and function of the sugar-cleaving enzymes
sucrose synthase, acid cell wall and vacuolar invertase 584
6 Conclusions 584
7 Acknowledgments 585
8 References 585
Table of Contents xxv
Chapter 16 The cell-cell communication system
of Agrobacterium tumefaciens
1 Introduction 594
2 A model of quorum sensing in A. tumefaciens 595
2.1 Regulation of tra gene expression 596
2.2 AntiactivatorsofTraR activity: TraM and TraR 598
2.3 Regulation of TraR activity through OOHL turnover 601
3 Structure and function studies of TraR 603
4 TraR in transcription activation 608
4.1 Activation of the Ti plasmid conjugation genes 608
4.2 Activation of the Ti plasmid vegetative replication
genes 610
4.3 TraR-OOHL interactions with RNA polymerase 612
5 Quorum sensing in tumors and infected plants 613
6 Acknowledgments 614
7 References 615
Chapter 17 Horizontal gene transfer
1 Introduction 624
2 Footprint of horizontal gene transfer from Agrobacterium
to tobacco plants 624
2.1 Cellular T-DNA (cT-DNA) in wild plants of tree
tobacco, Nicotiana glauca 624
2.2 cT-DNA is present in quite a few species of the genus
Nicotiana 627
2.3 Phylogenetic analysis of cT-DNA genes and their
evolution 629
2.4 Expression of the oncogenes on the cT-DNA 631
2.5 Function of the oncogenes on the cT-DNA 633
3 Other cT-DNAs 634
3.1 cT-DNAs outside of the genus Nicotiana 634
3.2 Presence ofcT-DNA originating from pTi T-DNA 635
4 Genetic tumors 635
4.1 Genetic tumors on interspecific hybrids in the genus
Nicotiana 635
4.2 Are cT-DNA genes related to genetic tumor formation? 637
5 Advantage of cT-DN A and creation of new species 639
6 Acknowledgments 642
7 References 642
xxvi Table of Contents
Chapter 18 Agrobacterium-mediated transformation
of non-plant organisms
1 Introduction 650
2 Non-plant organisms transformed by Agrobacterium 652
3 Experimental aspects of Agrobacterium-vaediaXed
transformation of non-plant organisms 656
3.1 Agrobacterium strains 656
3.2 Requirement of acetosyringone 656
3.3 Effect of co-cultivation conditions 657
3.4 Markers used for Agrobacterium-mediated
transformation 658
4 Role of virulence proteins in the Agrobacterium-mediated
transformation of non-plant organisms 658
4.1 Chromosomally-encoded virulence proteins 658
4.2 Ti-plasmid encoded virulence proteins 659
5 Targeted integration of T-DNA 659
6 Protein transfer from Agrobacterium to non-plant hosts 664
7 Prospects 664
8 Acknowledgments 666
9 References 666
Chapter 19 The bioethics and biosafety of gene transfer
1 Introduction 678
1.1 Responding to biosafery concerns: regulation 679
1.1.1 Product-based regulation 680
1.1.2 Process-based regulation 680
1.2 Risk analysis 682
1.2.1 Food safety risk assessment 683
1.2.2 Environmental risk assessment 684
2 Which risks are relevant? 685
2.1 The risk window 686
2.1.1 What risks associated with GM crops have
scientists judged relevant? 686
2.1.2 The risk window has changed with new
regulation 687
2.1.3 Scientists sometimes have different values-
the MON 863 maize example 688
3 Concerns beyond risk assessment 689
3.1 Usefulness 690
Table of Contents xxvii
3.2 Other socioeconomic issues 691
3.3 The consumer's right to choose-co-existence 691
3.4 Other moral concerns 693
3.4.1 Ethical criteria 694
4 Conclusions 694
5 Acknowledgments 695
6 References 695
Chapter 20 Agrobacterium-mediated gene transfer:
a lawyer's perspective
1 Introduction-Why should a scientist care about a lawyer's
view of Agrobacteriurril 700
1.1 Commercialization of research results 701
1.2 Advantages for scientific research 703
1.3 The myth of the "experimental use exception" 704
1.4 Freedom-to-commercialize and anti-commons
problems 707
2 Some basics about patents 709
2.1 Claims define the "metes and bounds" of protection 709
2.2 A patent application is not a patent 711
2.3 Parts of a patent document 711
3 Agrobacterium-mediated transformation and patent law 713
3.1 Vectors for transformation 716
3.1.1 Patents on binary vectors and methods 716
3.1.2 Patents on co-integrated vectors 719
3.2 Tissue types for transformation 720
3.2.1 Callus transformation 720
3.2.2 Immature embryo transformation 721
3.2.3 Inplanta transformation 721
3.2.4 Floral transformation 721
3.2.5 Seed transformation 722
3.2.6 Pollen transformation 723
3.2.7 Shoot apex transformation 723
3.2.8 Summary 723
3.3 Patents on transformation of monocots 724
3.3.1 General methods for transforming monocots 725
3.3.2 Gramineae and cereals 726
3.4 Patents on transformation of dicots 727
3.4.1 General transformation methods 727
3.4.2 Transformation of cotton 728
3.5 Agrobacterium and Rhizobiaceae 731
xxviii Table of Contents
4 Conclusions 732
5 Acknowledgments 733
6 References
Index 737 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Tzfira, Tzvi |
author_facet | Tzfira, Tzvi |
author_role | aut |
author_sort | Tzfira, Tzvi |
author_variant | t t tt |
building | Verbundindex |
bvnumber | BV023227637 |
callnumber-first | Q - Science |
callnumber-label | QR82 |
callnumber-raw | QR82.R45 |
callnumber-search | QR82.R45 |
callnumber-sort | QR 282 R45 |
callnumber-subject | QR - Microbiology |
classification_rvk | WF 9735 WG 4100 |
ctrlnum | (OCoLC)183917590 (DE-599)BVBBV023227637 |
dewey-full | 579.334 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 579 - Microorganisms, fungi & algae |
dewey-raw | 579.334 |
dewey-search | 579.334 |
dewey-sort | 3579.334 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02114nam a2200397 c 4500</leader><controlfield tag="001">BV023227637</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20101119 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080328s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387722894</subfield><subfield code="9">978-0-387-72289-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387722890</subfield><subfield code="9">0-387-72289-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)183917590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023227637</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QR82.R45</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">579.334</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9735</subfield><subfield code="0">(DE-625)148464:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 4100</subfield><subfield code="0">(DE-625)148561:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tzfira, Tzvi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Agrobacterium</subfield><subfield code="b">from biology to biotechnology</subfield><subfield code="c">ed. by Tzvi Tzfira ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 750 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="1" ind2=" "><subfield code="a">"Agrobacterium is a comprehensive book on Agrobacterium research, including its history, application, and basic biology discoveries. Although the book largely focuses on providing a detailed review of virtually all molecular events of the genetic transformation process, it also provides coverage of ethical and legal issues relevant to the use of Agrobacterium as a "genetic transformation machine." The result is an all-inclusive text which readers - including scientists and students involved in plant genetic engineering - will find useful as a reference source for all major aspects of the Agrobacterium-mediated genetic transformation of plant and non-plant organisms."--BOOK JACKET.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agrobacterium</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Agrobacterium</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Agrobacterium tumefaciens</subfield><subfield code="0">(DE-588)4141656-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Agrobacterium tumefaciens</subfield><subfield code="0">(DE-588)4141656-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016413410&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016413410</subfield></datafield></record></collection> |
id | DE-604.BV023227637 |
illustrated | Illustrated |
index_date | 2024-07-02T20:18:40Z |
indexdate | 2024-07-09T21:13:34Z |
institution | BVB |
isbn | 9780387722894 0387722890 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016413410 |
oclc_num | 183917590 |
open_access_boolean | |
owner | DE-20 DE-703 DE-11 |
owner_facet | DE-20 DE-703 DE-11 |
physical | XXX, 750 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Tzfira, Tzvi Verfasser aut Agrobacterium from biology to biotechnology ed. by Tzvi Tzfira ... New York, NY [u.a.] Springer 2008 XXX, 750 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier "Agrobacterium is a comprehensive book on Agrobacterium research, including its history, application, and basic biology discoveries. Although the book largely focuses on providing a detailed review of virtually all molecular events of the genetic transformation process, it also provides coverage of ethical and legal issues relevant to the use of Agrobacterium as a "genetic transformation machine." The result is an all-inclusive text which readers - including scientists and students involved in plant genetic engineering - will find useful as a reference source for all major aspects of the Agrobacterium-mediated genetic transformation of plant and non-plant organisms."--BOOK JACKET. Agrobacterium Agrobacterium tumefaciens (DE-588)4141656-9 gnd rswk-swf Agrobacterium tumefaciens (DE-588)4141656-9 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016413410&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Tzfira, Tzvi Agrobacterium from biology to biotechnology Agrobacterium Agrobacterium tumefaciens (DE-588)4141656-9 gnd |
subject_GND | (DE-588)4141656-9 |
title | Agrobacterium from biology to biotechnology |
title_auth | Agrobacterium from biology to biotechnology |
title_exact_search | Agrobacterium from biology to biotechnology |
title_exact_search_txtP | Agrobacterium from biology to biotechnology |
title_full | Agrobacterium from biology to biotechnology ed. by Tzvi Tzfira ... |
title_fullStr | Agrobacterium from biology to biotechnology ed. by Tzvi Tzfira ... |
title_full_unstemmed | Agrobacterium from biology to biotechnology ed. by Tzvi Tzfira ... |
title_short | Agrobacterium |
title_sort | agrobacterium from biology to biotechnology |
title_sub | from biology to biotechnology |
topic | Agrobacterium Agrobacterium tumefaciens (DE-588)4141656-9 gnd |
topic_facet | Agrobacterium Agrobacterium tumefaciens |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016413410&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tzfiratzvi agrobacteriumfrombiologytobiotechnology |