Quantum dissipative systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore [u.a.]
World Scientific
2008
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Series in modern condensed matter physics
13 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 507 S. graph. Darst. |
ISBN: | 9789812791627 9812791620 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023219806 | ||
003 | DE-604 | ||
005 | 20140806 | ||
007 | t | ||
008 | 080318s2008 d||| |||| 00||| eng d | ||
020 | |a 9789812791627 |9 978-981-279-162-7 | ||
020 | |a 9812791620 |9 981-279-162-0 | ||
035 | |a (OCoLC)263708802 | ||
035 | |a (DE-599)BVBBV023219806 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 |a DE-20 |a DE-355 |a DE-91G |a DE-29T |a DE-83 |a DE-11 |a DE-188 | ||
084 | |a UG 4000 |0 (DE-625)145630: |2 rvk | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a PHY 057f |2 stub | ||
100 | 1 | |a Weiss, Ulrich |d ca. 20. Jh. |e Verfasser |0 (DE-588)1049309855 |4 aut | |
245 | 1 | 0 | |a Quantum dissipative systems |c Ulrich Weiss |
250 | |a 3. ed. | ||
264 | 1 | |a Singapore [u.a.] |b World Scientific |c 2008 | |
300 | |a XVIII, 507 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Series in modern condensed matter physics |v 13 | |
650 | 0 | 7 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenstatistik |0 (DE-588)4047991-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentheorie |0 (DE-588)4047992-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dissipatives System |0 (DE-588)4209641-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dissipatives System |0 (DE-588)4209641-8 |D s |
689 | 0 | 1 | |a Quantentheorie |0 (DE-588)4047992-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Dissipatives System |0 (DE-588)4209641-8 |D s |
689 | 1 | 1 | |a Quantenstatistik |0 (DE-588)4047991-2 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Quantenmechanisches System |0 (DE-588)4300046-0 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
830 | 0 | |a Series in modern condensed matter physics |v 13 |w (DE-604)BV006633804 |9 13 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016405732 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137506506014720 |
---|---|
adam_text | Contents
1
Introduction
1
1 GENERAL THEORY OF OPEN QUANTUM SYSTEMS
5
2
Diverse limited approaches: a brief survey
5
2.1
Langevin
equation for a damped classical system
............ 5
2.2
New schemes of quantization
....................... 7
2.3
Traditional system-plus-reservoir methods
............... 8
2.3.1
Quantum-mechanical master equations for weak coupling
... 8
2.3.2
Operator
Langevin
equations for weak coupling
........ 12
2.3.3
Quantum and quasiclassical
Langevin
equation
......... 13
2.3.4
Phenomenological methods
.................... 14
2.4
Stochastic dynamics in Hubert space
.................. 15
3
System—plus—reservoir models
18
3.1
Harmonic oscillator bath with linear coupling
............. 19
3.1.1
The Hamiltonian of the global system
.............. 19
3.1.2
The road to the classical generalized
Langevin
equation
.... 21
3.1.3
Phenomenological modeling
................... 24
3.1.4
Quasiclassical
Langevin
equation
................ 25
3.1.5
Ohmic and frequency-dependent damping
........... 27
3.1.6
Rubin model
........................... 30
3.2
The Spin-Boson model
.......................... 31
3.2.1
The model Hamiltonian
..................... 31
3.2.2
Josephson
two-state systems: flux and charge qubit
...... 35
3.3
Microscopic models
............................ 38
3.3.1
Acoustic polaron: one-phonon and two-phonon coupling
.... 40
3.3.2
Optical polaron
.......................... 41
3.3.3
Interaction with
fermions
(normal and superconducting)
... 43
3.3.4
Superconducting tunnel junction
................ 46
3.4
Charging and environmental effects in tunnel junctions
........ 47
3.4.1
The global system for single electron tunneling
......... 49
3.4.2
Resistor, inductor and transmission lines
............ 53
3.4.3
Charging effects in
Josephson
junctions
............. 54
3.5
Nonlinear quantum environments
.................... 55
Imaginary—time path integrals
57
4.1
The density matrix: general concepts
.................. 58
4.2
Effective action and equilibrium density matrix
............ 62
4.2.1
Open system with bilinear coupling to a harmonic reservoir
. . 63
4.2.2
State-dependent memory-friction
................ 67
4.2.3
Spin-boson model
......................... 68
4.2.4
Acoustic polaron and defect tunneling: one-phonon coupling
. 69
4.2.5
Acoustic polaron: two-phonon coupling
............. 75
4.2.6
Tunneling between surfaces: one-phonon coupling
....... 77
4.2.7
Optical polaron
.......................... 79
4.2.8
Heavy particle in a metal
..................... 80
4.2.9
Heavy particle in a superconductor
............... 86
4.2.10
Effective action for
a Josephson
junction
............ 88
4.2.11
Electromagnetic environment
.................. 95
4.3
Partition function of the open system
.................. 96
4.3.1
General path integral expression
................. 96
4.3.2
Semiclassical approximation
................... 97
4.3.3
Partition function of the damped harmonic oscillator
..... 98
4.3.4
Functional measure in Fourier space
............... 99
4.3.5
Partition function of the damped harmonic oscillator revisited
100
4.4
Quantum statistical expectation values in phase space
......... 102
4.4.1
Generalized Weyl correspondence
................ 103
4.4.2
Generalized Wigner function and expectation values
...... 105
Real—time path integrals and dynamics
106
5.1
Feynman-Vernon method for a product initial state
.......... 108
5.2
Decoherence and friction
......................... 112
5.3
General initial states and preparation function
............. 115
5.4
Complex-time path integral for the propagating function
....... 116
5.5
Real-time path integral for the propagating function
......... 120
5.5.1
Extremal paths
.......................... 123
5.5.2
Classical limit
...........................
I24
5.5.3
Semiclassical limit: quasiclassical Langevin equation
...... 125
5.6
Stochastic unraveling of influence functionals
.............. 127
5.7
Brief summary and outlook
....................... 130
II FEW SIMPLE APPLICATIONS 131
Damped harmonic oscillator
6.1
Fluctuation-dissipation theorem
..................... 132
6.2
Stochastic modeling
............................ 135
6.3
Susceptibility for Ohmic friction and
Drude
damping
......... 138
6.3.1
Strict
Ohmie
friction
....................... 138
6.3.2
Drude
damping
.......................... 138
6.4
The position autocorrelation function
.................. 139
6.4.1
Ohmic damping
.......................... 140
6.4.2
Algebraic spectral density
.................... 142
6.5
Partition function, internal energy and density of states
........ 143
6.5.1
Partition function and internal energy
............. 143
6.5.2
Spectral density of states
..................... 146
6.6
Mean square of position and momentum
................ 147
6.6.1
General expressions for coloured noise
.............. 147
6.6.2
Strict Ohmic case
......................... 149
6.6.3
Ohmic friction with
Drude regularization
............ 150
6.7
Equilibrium density matrix
........................ 152
6.7.1
Purity
............................... 154
Quantum Brownian free motion
156
7.1
Spectral density, damping function and mass renormalization
..... 157
7.2
Displacement correlation and response function
............ 159
7.3
Ohmic damping
.............................. 160
7.4
Frequency-dependent damping
..................... 163
7.4.1
Response function and mobility
................. 163
7.4.2
Mean square displacement
.................... 165
The thermodynamic variational approach
167
8.1
Centroid and the effective classical potential
.............. 167
8.1.1
Centroid
.............................. 167
8.1.2
The effective classical potential
................. 169
8.2
Variational method
............................ 170
8.2.1
Variational method for the free energy
............. 170
8.2.2
Variational method for the effective classical potential
..... 171
8.2.3
Variational perturbation theory
................. 174
8.2.4
Expectation values in coordinate and phase space
....... 176
Suppression of quantum coherence
178
9.1
Nondynamical versus dynamical environment
.............. 179
9.2
Suppression of transversal and longitudinal interferences
....... 180
9.3
Localized bath modes and universal decoherence
............ 182
9.3.1
A model with localized bath modes
............... 182
9.3.2
Statistical average of paths
.................... 184
9.3.3
Ballistic motion
.......................... 185
9.3.4
Diffusive motion
.......................... 186
Ill
QUANTUM
STATISTICAL DECAY
189
10
Introduction
189
11
Classical rate theory: a brief overview
192
11.1
Classical transition state theory
..................... 192
11.2
Moderate-to-strong-damping regime
................... 193
11.3
Strong damping regime
.......................... 195
11.4
Weak-damping regime
.......................... 197
12
Quantum rate theory: basic methods
199
12.1
Formal rate expressions in terms of flux operators
........... 200
12.2
Quantum transition state theory
..................... 202
12.3
Semiclassical limit
............................. 203
12.4
Quantum tunneling regime
........................ 205
12.5
Free energy method
............................ 207
12.6
Centroid method
............................. 211
13
Multidimensional quantum rate theory
212
14
Crossover from thermal to quantum decay
216
14.1
Normal mode analysis at the barrier top
................ 216
14.2
Turnover theory for activated rate processes
.............. 218
14.3
The crossover temperature
........................ 222
15
Thermally activated decay
223
15.1
Rate formula above the crossover regime
................ 224
15.2
Quantum corrections in the preexponential factor
........... 227
15.3
The quantum Smoluchowski equation approach
............ 228
15.4
Multidimensional quantum transition state theory
........... 230
16
The crossover region
233
16.1
Beyond steepest descent above TQ
....................235
16.2
Beyond steepest descent below To
....................236
16.3
The scaling region
.............................239
17
Dissipative quantum tunneling
242
17.1
The quantum rate formula
........................ 242
17.2
Thermal enhancement of macroscopic quantum tunneling
....... 245
17.3
Quantum decay in a cubic potential for Ohmic friction
........ 246
17.3.1
Bounce action and quantum prefactor
.............. 247
17.3.2
Analytic results for strong Ohmic dissipation
.......... 248
17.4
Quantum decay in a tilted cosine washboard potential
......... 250
17.5
Concluding remarks
............................ 257
IV THE DISSIPATIVE TWO-STATE SYSTEM
259
18
Introduction
259
18.1
Truncation of the double-well to the two-state system
......... 261
18.1.1
Shifted oscillators and orthogonality catastrophe
........ 261
18.1.2
Adiabatic renormalization
.................... 263
18.1.3
Rcnormalized tunnel matrix element
.............. 264
18.1.4
Polaron transformation
...................... 269
18.2
Pair interaction in the charge picture
.................. 269
18.2.1
Analytic expression for any
s
and arbitrary cutoff
шс
..... 269
18.2.2
Ohmie
dissipation and universality limit
............ 271
19
Thermodynamics
272
19.1
Partition function and specific heat
................... 272
19.1.1
Exact formal expression for the partition function
....... 272
19.1.2
Static susceptibility and specific heat
.............. 274
19.1.3
The self-energy method
...................... 275
19.1.4
The limit of high temperatures
................. 277
19.1.5
Noninteracting-kink-pair approximation
............ 277
19.1.6
Weak-damping limit
....................... 279
19.1.7
The self-energy method revisited: partial resummation
.... 280
19.2
Ohmic dissipation
............................. 281
19.2.1
General results
.......................... 282
19.2.2
The special case
К
=
f
...................... 283
19.3
Non-Ohmic spectral densities
...................... 288
19.3.1
The sub-Ohmic case
....................... 288
19.3.2
The super-Ohmic case
...................... 289
19.4
Relation between the Ohmic TSS and the Kondo model
........ 290
19.4.1 Anisotropie
Kondo model
.................... 290
19.4.2
Resonance level model
...................... 292
19.5
Equivalence of the Ohmic TSS with the 1/r2 Ising model
....... 293
20
Electron transfer and incoherent tunneling
294
20.1
Electron transfer
............................. 295
20.1.1
Adiabatic bath
.......................... 296
20.1.2
Marcus theory for electron transfer
............... 298
20.2
Incoherent tunneling in the nonadiabatic regime
............ 302
20.2.1
General expressions for the nonadiabatic rate
......... 302
20.2.2
Probability for energy exchange: general results
........ 304
20.2.3
The spectral probability density for absorption at
Τ
= 0 ... 307
20.2.4
Grossover
from quantum-mechanical to classical behaviour
. . 308
20.2.5
The Ohmic case
.......................... 312
20.2.6
Exact nonadiabatic rates for
К
= 1/2
and
К
= 1....... 314
20.2.7
The sub-Ohmic case
(0 <
s
< 1)................. 315
20.2.8
The super-Ohmic case (s
> 1).................. 317
20.2.9
Incoherent defect tunneling in metals
.............. 319
20.3
Single charge tunneling
.......................... 322
20.3.1
Weak-tunneling regime
...................... 322
20.3.2
The current-voltage characteristics
............... 326
20.3.3
Weak tunneling of ID interacting electrons
........... 328
20.3.4
Tunneling of Cooper pairs
.................... 330
20.3.5
Tunneling of quasiparticles
.................... 331
21
Two-state dynamics
333
21.1
Initial preparation, expectation values, and correlations
........ 333
21.1.1
Product initial state
....................... 333
21.1.2
Thermal initial state
....................... 336
21.2
Exact formal expressions for the system dynamics
........... 340
21.2.1
Sojourns and blips
........................ 340
21.2.2
Conditional propagating functions
................ 343
21.2.3
The expectation values {Oj)t (j
=
x, y, z)
........... 344
21.2.4
Correlation and response function of the populations
..... 346
21.2.5
Correlation and response function of the coherences
...... 348
21.2.6
Generalized exact master equation and integral relations
. . . 349
21.3
The noninteracting-blip approximation (NIBA)
............ 352
21.3.1
Symmetric Ohmic system in the scaling limit
.......... 355
21.3.2
Weak Ohmic damping and moderate-to-high temperature
. . . 359
21.3.3
The super-Ohmic case
...................... 365
21.4
Weak-coupling theory beyond the NIBA for a biased system
..... 368
21.4.1
The one-boson self-energy
.................... 369
21.4.2
Populations and coherences (super-Ohmic and Ohmic)
.... 371
21.5
The interacting-blip chain approximation
................ 373
21.6
Ohmic dissipation with
К
at and near |: exact results
........ 376
21.6.1
Grand-canonical sums of collapsed blips and sojourns
..... 376
21.6.2
The expectation value (az)t for
К
=
............. 377
21.6.3
The case
К
=
|
- «;
coherent-incoherent crossover
...... 379
21.6.4
Equilibrium
σζ
autocorrelation function
............. 380
21.6.5
Equilibrium
σχ
autocorrelation function
............ 385
21.6.6
Correlation functions in the Toulouse model
.......... 38
ŕ
21.7
Long-time behaviour at
Τ
= 0
for
К
< 1:
general discussion
..... 388
21.7.1
The populations
..........................
389
21.7.2
The population correlations and generalized Shiba relation
. . 389
21.7.3
The coherence correlation function
............... **
21.8
Erom
weak to strong tunneling: relaxation and decoherence
...... 39/
21.8.1
Incoherent tunneling beyond the nonadiabatic limit
...... 39/
21.8.2
Decoherence at zero temperature: analytic results
....... 395
21.9
Thermodynamics from dynamics
.................... 396
22
The driven two-state system
399
22.1
Time-dependent external fields
...................... 399
22.1.1
Diagonal and off-diagonal driving
................ 399
22.1.2
Exact formal solution
....................... 400
22.1.3
Linear response
.......................... 402
22.1.4
The Ohmic case with Kondo parameter K=
......... 403
22.2
Markovian regime
............................. 403
22.3
High-frequency regime
.......................... 404
22.4
Quantum stochastic resonance
...................... 407
22.5
Driving-induced symmetry breaking
................... 409
V THE DISSIPATIVE MULTI-STATE SYSTEM
411
23
Quantum Brownian particle in a washboard potential
411
23.1
Introduction
................................ 411
23.2
Weak- and tight-binding representation
................. 412
24
Multi-state dynamics
413
24.1
Quantum transport and quantum-statistical fluctuations
....... 413
24.1.1
Product initial state
....................... 414
24.1.2
Characteristic function of moments and
cumulants
....... 414
24.1.3
Thermal initial state and correlation functions
......... 415
24.2
Poissonian quantum transport
...................... 416
24.2.1
Dynamics by incoherent nearest-neighbour tunneling moves
. . 416
24.2.2
The general case
......................... 418
24.3
Exact formal expressions for the system dynamics
........... 419
24.3.1
Product initial state
....................... 421
24.3.2
Thermal initial state
....................... 423
24.4
Mobility and Diffusion
.......................... 426
24.4.1
Exact formal series expressions for transport coefficients
. . . 426
24.4.2
Einstein relation
......................... 427
24.5
The Ohmic case
.............................. 428
24.5.1
Weak-tunneling regime
...................... 429
24.5.2
Weak-damping limit
....................... 429
24.6
Exact- solution in the Ohmic scaling limit- at
К
=
.......... 431
24.6.1
Current and mobility
....................... 431
24.6.2 Diffusion
and skewness
...................... 434
24.7
The effects of a thermal initial state
................... 435
24.7.1
Mean position and variance
................... 435
24.7.2
Linear response
.......................... 436
24.7.3
The exactly solvable
case
К =
................. 439
25
Duality symmetry
439
25.1
Duality for general spectral density
................... 440
25.1.1
The map between the
ТВ
and WB Hamiltonian
........ 440
25.1.2
Frequency-dependent linear mobility
.............. 443
25.1.3
Nonlinear static mobility
.................... 444
25.2
Self-duality in the exactly solvable cases
К
=
and
К
= 2...... 446
25.2.1
Full counting statistics at
К
=
f
................ 446
25.2.2
Full counting statistics at
К
= 2................. 448
25.3
Duality and supercurrent in
Josephson
junctions
............ 450
25.3.1
Charge-phase duality
....................... 450
25.3.2
Supercurrent-voltage characteristics for
p
<C
1......... 453
25.3.3
Supercurrent-voltage characteristics at
ρ
=
|
.......... 454
25.3.4
Supercurrent-voltage characteristics at
ρ
= 2.......... 454
25.4
Self-duality in the Ohmic scaling limit
................. 455
25.4.1
Linear mobility at finite
Τ
.................... 456
25.4.2
Nonlinear mobility at
Τ
= 0................... 457
25.5
Exact scaling function at
Τ
= 0
for arbitrary
К
............ 459
25.5.1
Construction of the self-dual scaling solution
.......... 459
25.5.2
Supercurrent-voltage characteristics at
Τ
= 0
for arbitrary
ρ
. 462
25.5.3
Connection with Seiberg-
Witten
theory
............. 462
25.5.4
Special limits
........................... 463
25.6
Full counting statistics at zero temperature
............... 464
25.7
Low temperature behaviour of the characteristic function
....... 467
25.8
The sub- and super-Ohmic case
..................... 468
26
Charge transport in quantum impurity systems
470
26.1
Generic models for transmission of charge through barriers
...... 471
26.1.1
The Tomonaga-Luttinger liquid
................. 471
26.1.2
Transport through a single weak barrier
............ 472
26.1.3
Transport through a single strong barrier
............ 474
26.1.4
Coherent conductor in an Ohmic environment
......... 476
26.1.5
Equivalence with quantum transport in a washboard potential
478
26.2
Self-duality between weak and strong tunneling
............ 478
26.3
Full counting statistics
.......................... 479
26.3.1
Charge transport at low
Τ
for arbitrary
g
........... 479
26.3.2
Full counting statistics at
g
=
and general temperature
. . . 482
Bibliography
483
Index
503
|
adam_txt |
Contents
1
Introduction
1
1 GENERAL THEORY OF OPEN QUANTUM SYSTEMS
5
2
Diverse limited approaches: a brief survey
5
2.1
Langevin
equation for a damped classical system
. 5
2.2
New schemes of quantization
. 7
2.3
Traditional system-plus-reservoir methods
. 8
2.3.1
Quantum-mechanical master equations for weak coupling
. 8
2.3.2
Operator
Langevin
equations for weak coupling
. 12
2.3.3
Quantum and quasiclassical
Langevin
equation
. 13
2.3.4
Phenomenological methods
. 14
2.4
Stochastic dynamics in Hubert space
. 15
3
System—plus—reservoir models
18
3.1
Harmonic oscillator bath with linear coupling
. 19
3.1.1
The Hamiltonian of the global system
. 19
3.1.2
The road to the classical generalized
Langevin
equation
. 21
3.1.3
Phenomenological modeling
. 24
3.1.4
Quasiclassical
Langevin
equation
. 25
3.1.5
Ohmic and frequency-dependent damping
. 27
3.1.6
Rubin model
. 30
3.2
The Spin-Boson model
. 31
3.2.1
The model Hamiltonian
. 31
3.2.2
Josephson
two-state systems: flux and charge qubit
. 35
3.3
Microscopic models
. 38
3.3.1
Acoustic polaron: one-phonon and two-phonon coupling
. 40
3.3.2
Optical polaron
. 41
3.3.3
Interaction with
fermions
(normal and superconducting)
. 43
3.3.4
Superconducting tunnel junction
. 46
3.4
Charging and environmental effects in tunnel junctions
. 47
3.4.1
The global system for single electron tunneling
. 49
3.4.2
Resistor, inductor and transmission lines
. 53
3.4.3
Charging effects in
Josephson
junctions
. 54
3.5
Nonlinear quantum environments
. 55
Imaginary—time path integrals
57
4.1
The density matrix: general concepts
. 58
4.2
Effective action and equilibrium density matrix
. 62
4.2.1
Open system with bilinear coupling to a harmonic reservoir
. . 63
4.2.2
State-dependent memory-friction
. 67
4.2.3
Spin-boson model
. 68
4.2.4
Acoustic polaron and defect tunneling: one-phonon coupling
. 69
4.2.5
Acoustic polaron: two-phonon coupling
. 75
4.2.6
Tunneling between surfaces: one-phonon coupling
. 77
4.2.7
Optical polaron
. 79
4.2.8
Heavy particle in a metal
. 80
4.2.9
Heavy particle in a superconductor
. 86
4.2.10
Effective action for
a Josephson
junction
. 88
4.2.11
Electromagnetic environment
. 95
4.3
Partition function of the open system
. 96
4.3.1
General path integral expression
. 96
4.3.2
Semiclassical approximation
. 97
4.3.3
Partition function of the damped harmonic oscillator
. 98
4.3.4
Functional measure in Fourier space
. 99
4.3.5
Partition function of the damped harmonic oscillator revisited
100
4.4
Quantum statistical expectation values in phase space
. 102
4.4.1
Generalized Weyl correspondence
. 103
4.4.2
Generalized Wigner function and expectation values
. 105
Real—time path integrals and dynamics
106
5.1
Feynman-Vernon method for a product initial state
. 108
5.2
Decoherence and friction
. 112
5.3
General initial states and preparation function
. 115
5.4
Complex-time path integral for the propagating function
. 116
5.5
Real-time path integral for the propagating function
. 120
5.5.1
Extremal paths
. 123
5.5.2
Classical limit
.
I24
5.5.3
Semiclassical limit: quasiclassical Langevin equation
. 125
5.6
Stochastic unraveling of influence functionals
. 127
5.7
Brief summary and outlook
. 130
II FEW SIMPLE APPLICATIONS 131
Damped harmonic oscillator
6.1
Fluctuation-dissipation theorem
. 132
6.2
Stochastic modeling
. 135
6.3
Susceptibility for Ohmic friction and
Drude
damping
. 138
6.3.1
Strict
Ohmie
friction
. 138
6.3.2
Drude
damping
. 138
6.4
The position autocorrelation function
. 139
6.4.1
Ohmic damping
. 140
6.4.2
Algebraic spectral density
. 142
6.5
Partition function, internal energy and density of states
. 143
6.5.1
Partition function and internal energy
. 143
6.5.2
Spectral density of states
. 146
6.6
Mean square of position and momentum
. 147
6.6.1
General expressions for coloured noise
. 147
6.6.2
Strict Ohmic case
. 149
6.6.3
Ohmic friction with
Drude regularization
. 150
6.7
Equilibrium density matrix
. 152
6.7.1
Purity
. 154
Quantum Brownian free motion
156
7.1
Spectral density, damping function and mass renormalization
. 157
7.2
Displacement correlation and response function
. 159
7.3
Ohmic damping
. 160
7.4
Frequency-dependent damping
. 163
7.4.1
Response function and mobility
. 163
7.4.2
Mean square displacement
. 165
The thermodynamic variational approach
167
8.1
Centroid and the effective classical potential
. 167
8.1.1
Centroid
. 167
8.1.2
The effective classical potential
. 169
8.2
Variational method
. 170
8.2.1
Variational method for the free energy
. 170
8.2.2
Variational method for the effective classical potential
. 171
8.2.3
Variational perturbation theory
. 174
8.2.4
Expectation values in coordinate and phase space
. 176
Suppression of quantum coherence
178
9.1
Nondynamical versus dynamical environment
. 179
9.2
Suppression of transversal and longitudinal interferences
. 180
9.3
Localized bath modes and universal decoherence
. 182
9.3.1
A model with localized bath modes
. 182
9.3.2
Statistical average of paths
. 184
9.3.3
Ballistic motion
. 185
9.3.4
Diffusive motion
. 186
Ill
QUANTUM
STATISTICAL DECAY
189
10
Introduction
189
11
Classical rate theory: a brief overview
192
11.1
Classical transition state theory
. 192
11.2
Moderate-to-strong-damping regime
. 193
11.3
Strong damping regime
. 195
11.4
Weak-damping regime
. 197
12
Quantum rate theory: basic methods
199
12.1
Formal rate expressions in terms of flux operators
. 200
12.2
Quantum transition state theory
. 202
12.3
Semiclassical limit
. 203
12.4
Quantum tunneling regime
. 205
12.5
Free energy method
. 207
12.6
Centroid method
. 211
13
Multidimensional quantum rate theory
212
14
Crossover from thermal to quantum decay
216
14.1
Normal mode analysis at the barrier top
. 216
14.2
Turnover theory for activated rate processes
. 218
14.3
The crossover temperature
. 222
15
Thermally activated decay
223
15.1
Rate formula above the crossover regime
. 224
15.2
Quantum corrections in the preexponential factor
. 227
15.3
The quantum Smoluchowski equation approach
. 228
15.4
Multidimensional quantum transition state theory
. 230
16
The crossover region
233
16.1
Beyond steepest descent above TQ
.235
16.2
Beyond steepest descent below To
.236
16.3
The scaling region
.239
17
Dissipative quantum tunneling
242
17.1
The quantum rate formula
. 242
17.2
Thermal enhancement of macroscopic quantum tunneling
. 245
17.3
Quantum decay in a cubic potential for Ohmic friction
. 246
17.3.1
Bounce action and quantum prefactor
. 247
17.3.2
Analytic results for strong Ohmic dissipation
. 248
17.4
Quantum decay in a tilted cosine washboard potential
. 250
17.5
Concluding remarks
. 257
IV THE DISSIPATIVE TWO-STATE SYSTEM
259
18
Introduction
259
18.1
Truncation of the double-well to the two-state system
. 261
18.1.1
Shifted oscillators and orthogonality catastrophe
. 261
18.1.2
Adiabatic renormalization
. 263
18.1.3
Rcnormalized tunnel matrix element
. 264
18.1.4
Polaron transformation
. 269
18.2
Pair interaction in the charge picture
. 269
18.2.1
Analytic expression for any
s
and arbitrary cutoff
шс
. 269
18.2.2
Ohmie
dissipation and universality limit
. 271
19
Thermodynamics
272
19.1
Partition function and specific heat
. 272
19.1.1
Exact formal expression for the partition function
. 272
19.1.2
Static susceptibility and specific heat
. 274
19.1.3
The self-energy method
. 275
19.1.4
The limit of high temperatures
. 277
19.1.5
Noninteracting-kink-pair approximation
. 277
19.1.6
Weak-damping limit
. 279
19.1.7
The self-energy method revisited: partial resummation
. 280
19.2
Ohmic dissipation
. 281
19.2.1
General results
. 282
19.2.2
The special case
К
=
f
. 283
19.3
Non-Ohmic spectral densities
. 288
19.3.1
The sub-Ohmic case
. 288
19.3.2
The super-Ohmic case
. 289
19.4
Relation between the Ohmic TSS and the Kondo model
. 290
19.4.1 Anisotropie
Kondo model
. 290
19.4.2
Resonance level model
. 292
19.5
Equivalence of the Ohmic TSS with the 1/r2 Ising model
. 293
20
Electron transfer and incoherent tunneling
294
20.1
Electron transfer
. 295
20.1.1
Adiabatic bath
. 296
20.1.2
Marcus theory for electron transfer
. 298
20.2
Incoherent tunneling in the nonadiabatic regime
. 302
20.2.1
General expressions for the nonadiabatic rate
. 302
20.2.2
Probability for energy exchange: general results
. 304
20.2.3
The spectral probability density for absorption at
Τ
= 0 . 307
20.2.4
Grossover
from quantum-mechanical to classical behaviour
. . 308
20.2.5
The Ohmic case
. 312
20.2.6
Exact nonadiabatic rates for
К
= 1/2
and
К
= 1. 314
20.2.7
The sub-Ohmic case
(0 <
s
< 1). 315
20.2.8
The super-Ohmic case (s
> 1). 317
20.2.9
Incoherent defect tunneling in metals
. 319
20.3
Single charge tunneling
. 322
20.3.1
Weak-tunneling regime
. 322
20.3.2
The current-voltage characteristics
. 326
20.3.3
Weak tunneling of ID interacting electrons
. 328
20.3.4
Tunneling of Cooper pairs
. 330
20.3.5
Tunneling of quasiparticles
. 331
21
Two-state dynamics
333
21.1
Initial preparation, expectation values, and correlations
. 333
21.1.1
Product initial state
. 333
21.1.2
Thermal initial state
. 336
21.2
Exact formal expressions for the system dynamics
. 340
21.2.1
Sojourns and blips
. 340
21.2.2
Conditional propagating functions
. 343
21.2.3
The expectation values {Oj)t (j
=
x, y, z)
. 344
21.2.4
Correlation and response function of the populations
. 346
21.2.5
Correlation and response function of the coherences
. 348
21.2.6
Generalized exact master equation and integral relations
. . . 349
21.3
The noninteracting-blip approximation (NIBA)
. 352
21.3.1
Symmetric Ohmic system in the scaling limit
. 355
21.3.2
Weak Ohmic damping and moderate-to-high temperature
. . . 359
21.3.3
The super-Ohmic case
. 365
21.4
Weak-coupling theory beyond the NIBA for a biased system
. 368
21.4.1
The one-boson self-energy
. 369
21.4.2
Populations and coherences (super-Ohmic and Ohmic)
. 371
21.5
The interacting-blip chain approximation
. 373
21.6
Ohmic dissipation with
К
at and near |: exact results
. 376
21.6.1
Grand-canonical sums of collapsed blips and sojourns
. 376
21.6.2
The expectation value (az)t for
К
=
\
. 377
21.6.3
The case
К
=
|
- «;
coherent-incoherent crossover
. 379
21.6.4
Equilibrium
σζ
autocorrelation function
. 380
21.6.5
Equilibrium
σχ
autocorrelation function
. 385
21.6.6
Correlation functions in the Toulouse model
. 38
ŕ
21.7
Long-time behaviour at
Τ
= 0
for
К
< 1:
general discussion
. 388
21.7.1
The populations
.
389
21.7.2
The population correlations and generalized Shiba relation
. . 389
21.7.3
The coherence correlation function
. **"
21.8
Erom
weak to strong tunneling: relaxation and decoherence
. 39/
21.8.1
Incoherent tunneling beyond the nonadiabatic limit
. 39/
21.8.2
Decoherence at zero temperature: analytic results
. 395
21.9
Thermodynamics from dynamics
. 396
22
The driven two-state system
399
22.1
Time-dependent external fields
. 399
22.1.1
Diagonal and off-diagonal driving
. 399
22.1.2
Exact formal solution
. 400
22.1.3
Linear response
. 402
22.1.4
The Ohmic case with Kondo parameter K=\
. 403
22.2
Markovian regime
. 403
22.3
High-frequency regime
. 404
22.4
Quantum stochastic resonance
. 407
22.5
Driving-induced symmetry breaking
. 409
V THE DISSIPATIVE MULTI-STATE SYSTEM
411
23
Quantum Brownian particle in a washboard potential
411
23.1
Introduction
. 411
23.2
Weak- and tight-binding representation
. 412
24
Multi-state dynamics
413
24.1
Quantum transport and quantum-statistical fluctuations
. 413
24.1.1
Product initial state
. 414
24.1.2
Characteristic function of moments and
cumulants
. 414
24.1.3
Thermal initial state and correlation functions
. 415
24.2
Poissonian quantum transport
. 416
24.2.1
Dynamics by incoherent nearest-neighbour tunneling moves
. . 416
24.2.2
The general case
. 418
24.3
Exact formal expressions for the system dynamics
. 419
24.3.1
Product initial state
. 421
24.3.2
Thermal initial state
. 423
24.4
Mobility and Diffusion
. 426
24.4.1
Exact formal series expressions for transport coefficients
. . . 426
24.4.2
Einstein relation
. 427
24.5
The Ohmic case
. 428
24.5.1
Weak-tunneling regime
. 429
24.5.2
Weak-damping limit
. 429
24.6
Exact- solution in the Ohmic scaling limit- at
К
=
\
. 431
24.6.1
Current and mobility
. 431
24.6.2 Diffusion
and skewness
. 434
24.7
The effects of a thermal initial state
. 435
24.7.1
Mean position and variance
. 435
24.7.2
Linear response
. 436
24.7.3
The exactly solvable
case
К = \
. 439
25
Duality symmetry
439
25.1
Duality for general spectral density
. 440
25.1.1
The map between the
ТВ
and WB Hamiltonian
. 440
25.1.2
Frequency-dependent linear mobility
. 443
25.1.3
Nonlinear static mobility
. 444
25.2
Self-duality in the exactly solvable cases
К
=
\ and
К
= 2. 446
25.2.1
Full counting statistics at
К
=
f
. 446
25.2.2
Full counting statistics at
К
= 2. 448
25.3
Duality and supercurrent in
Josephson
junctions
. 450
25.3.1
Charge-phase duality
. 450
25.3.2
Supercurrent-voltage characteristics for
p
<C
1. 453
25.3.3
Supercurrent-voltage characteristics at
ρ
=
|
. 454
25.3.4
Supercurrent-voltage characteristics at
ρ
= 2. 454
25.4
Self-duality in the Ohmic scaling limit
. 455
25.4.1
Linear mobility at finite
Τ
. 456
25.4.2
Nonlinear mobility at
Τ
= 0. 457
25.5
Exact scaling function at
Τ
= 0
for arbitrary
К
. 459
25.5.1
Construction of the self-dual scaling solution
. 459
25.5.2
Supercurrent-voltage characteristics at
Τ
= 0
for arbitrary
ρ
. 462
25.5.3
Connection with Seiberg-
Witten
theory
. 462
25.5.4
Special limits
. 463
25.6
Full counting statistics at zero temperature
. 464
25.7
Low temperature behaviour of the characteristic function
. 467
25.8
The sub- and super-Ohmic case
. 468
26
Charge transport in quantum impurity systems
470
26.1
Generic models for transmission of charge through barriers
. 471
26.1.1
The Tomonaga-Luttinger liquid
. 471
26.1.2
Transport through a single weak barrier
. 472
26.1.3
Transport through a single strong barrier
. 474
26.1.4
Coherent conductor in an Ohmic environment
. 476
26.1.5
Equivalence with quantum transport in a washboard potential
478
26.2
Self-duality between weak and strong tunneling
. 478
26.3
Full counting statistics
. 479
26.3.1
Charge transport at low
Τ
for arbitrary
g
. 479
26.3.2
Full counting statistics at
g
=
\ and general temperature
. . . 482
Bibliography
483
Index
503 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Weiss, Ulrich ca. 20. Jh |
author_GND | (DE-588)1049309855 |
author_facet | Weiss, Ulrich ca. 20. Jh |
author_role | aut |
author_sort | Weiss, Ulrich ca. 20. Jh |
author_variant | u w uw |
building | Verbundindex |
bvnumber | BV023219806 |
classification_rvk | UG 4000 UK 1000 |
classification_tum | PHY 057f |
ctrlnum | (OCoLC)263708802 (DE-599)BVBBV023219806 |
discipline | Physik |
discipline_str_mv | Physik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02128nam a2200505 cb4500</leader><controlfield tag="001">BV023219806</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140806 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080318s2008 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812791627</subfield><subfield code="9">978-981-279-162-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812791620</subfield><subfield code="9">981-279-162-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263708802</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023219806</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UG 4000</subfield><subfield code="0">(DE-625)145630:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 057f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weiss, Ulrich</subfield><subfield code="d">ca. 20. Jh.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1049309855</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum dissipative systems</subfield><subfield code="c">Ulrich Weiss</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 507 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series in modern condensed matter physics</subfield><subfield code="v">13</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenstatistik</subfield><subfield code="0">(DE-588)4047991-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dissipatives System</subfield><subfield code="0">(DE-588)4209641-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dissipatives System</subfield><subfield code="0">(DE-588)4209641-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantentheorie</subfield><subfield code="0">(DE-588)4047992-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Dissipatives System</subfield><subfield code="0">(DE-588)4209641-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quantenstatistik</subfield><subfield code="0">(DE-588)4047991-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Quantenmechanisches System</subfield><subfield code="0">(DE-588)4300046-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series in modern condensed matter physics</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV006633804</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016405732</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023219806 |
illustrated | Illustrated |
index_date | 2024-07-02T20:15:31Z |
indexdate | 2024-07-09T21:13:23Z |
institution | BVB |
isbn | 9789812791627 9812791620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016405732 |
oclc_num | 263708802 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-29T DE-83 DE-11 DE-188 |
owner_facet | DE-703 DE-19 DE-BY-UBM DE-20 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-29T DE-83 DE-11 DE-188 |
physical | XVIII, 507 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | World Scientific |
record_format | marc |
series | Series in modern condensed matter physics |
series2 | Series in modern condensed matter physics |
spelling | Weiss, Ulrich ca. 20. Jh. Verfasser (DE-588)1049309855 aut Quantum dissipative systems Ulrich Weiss 3. ed. Singapore [u.a.] World Scientific 2008 XVIII, 507 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Series in modern condensed matter physics 13 Quantenmechanisches System (DE-588)4300046-0 gnd rswk-swf Quantenstatistik (DE-588)4047991-2 gnd rswk-swf Quantentheorie (DE-588)4047992-4 gnd rswk-swf Dissipatives System (DE-588)4209641-8 gnd rswk-swf Dissipatives System (DE-588)4209641-8 s Quantentheorie (DE-588)4047992-4 s DE-604 Quantenstatistik (DE-588)4047991-2 s Quantenmechanisches System (DE-588)4300046-0 s 1\p DE-604 Series in modern condensed matter physics 13 (DE-604)BV006633804 13 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Weiss, Ulrich ca. 20. Jh Quantum dissipative systems Series in modern condensed matter physics Quantenmechanisches System (DE-588)4300046-0 gnd Quantenstatistik (DE-588)4047991-2 gnd Quantentheorie (DE-588)4047992-4 gnd Dissipatives System (DE-588)4209641-8 gnd |
subject_GND | (DE-588)4300046-0 (DE-588)4047991-2 (DE-588)4047992-4 (DE-588)4209641-8 |
title | Quantum dissipative systems |
title_auth | Quantum dissipative systems |
title_exact_search | Quantum dissipative systems |
title_exact_search_txtP | Quantum dissipative systems |
title_full | Quantum dissipative systems Ulrich Weiss |
title_fullStr | Quantum dissipative systems Ulrich Weiss |
title_full_unstemmed | Quantum dissipative systems Ulrich Weiss |
title_short | Quantum dissipative systems |
title_sort | quantum dissipative systems |
topic | Quantenmechanisches System (DE-588)4300046-0 gnd Quantenstatistik (DE-588)4047991-2 gnd Quantentheorie (DE-588)4047992-4 gnd Dissipatives System (DE-588)4209641-8 gnd |
topic_facet | Quantenmechanisches System Quantenstatistik Quantentheorie Dissipatives System |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405732&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV006633804 |
work_keys_str_mv | AT weissulrich quantumdissipativesystems |