Quantum optics: including noise reduction, trapped ions, quantum trajectories, and decoherence
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XX, 414 S. Ill., graph. Darst. |
ISBN: | 9783540727064 9783540650089 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023219238 | ||
003 | DE-604 | ||
005 | 20120420 | ||
007 | t | ||
008 | 080318s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N22,0902 |2 dnb | ||
015 | |a 08,A07,0943 |2 dnb | ||
016 | 7 | |a 984079807 |2 DE-101 | |
020 | |a 9783540727064 |c Pp. : EUR 74.85 (freier Pr.) |9 978-3-540-72706-4 | ||
020 | |a 9783540650089 |c Pp. : EUR 74.85 (freier Pr.) |9 978-3-540-65008-9 | ||
024 | 3 | |a 9783540727064 | |
028 | 5 | 2 | |a 12059447 |
035 | |a (OCoLC)191258373 | ||
035 | |a (DE-599)DNB984079807 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-703 |a DE-355 |a DE-20 |a DE-19 |a DE-29T | ||
050 | 0 | |a QC446.2 | |
082 | 0 | |a 535.15 |2 22/ger | |
082 | 0 | |a 535/.15 |2 22 | |
084 | |a UH 5600 |0 (DE-625)145666: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a PHY 370f |2 stub | ||
100 | 1 | |a Orszag, Miguel |d 1944- |e Verfasser |0 (DE-588)121053679 |4 aut | |
245 | 1 | 0 | |a Quantum optics |b including noise reduction, trapped ions, quantum trajectories, and decoherence |c Miguel Orszag |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XX, 414 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturangaben | ||
650 | 4 | |a Quantum optics | |
650 | 0 | 7 | |a Quantenoptik |0 (DE-588)4047990-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Laser |0 (DE-588)4034610-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenoptik |0 (DE-588)4047990-0 |D s |
689 | 0 | 1 | |a Laser |0 (DE-588)4034610-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Laser |0 (DE-588)4034610-9 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405170&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016405170 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804137505641988096 |
---|---|
adam_text | Contents
Einstein s Theory of Atom—Radiation Interaction
......... 1
1.1
The A and
В
Coefficients
................................ 1
1.2
Thermal Equilibrium
................................... 3
1.3
Photon Distribution and Fluctuations
..................... 4
1.4
Light Beam Incident on Atoms
........................... 5
1.5
An Elementary Laser Theory
............................ 5
1.5.1
Threshold and Population Inversion
................ 6
1.5.2
Steady State
..................................... 7
1.5.3
Linear Stability Analysis
.......................... 8
References
................................................. 9
Further Reading
............................................ 9
Atom—Field Interaction: Semiclassical Approach
.......... 11
2.1
Broad-Band Radiation Spectrum
......................... 14
2.2
Rabi
Oscillations
....................................... 15
2.3
Bloch s Equations
...................................... 16
2.4
Decay to an Unobserved Level
........................... 17
2.5
Decay Between Levels
................................... 18
2.6
Optical Nutation
....................................... 18
References
................................................. 19
Further Reading
............................................ 19
Quantization of the Electromagnetic Field
................ 21
3.1
Fock States
............................................ 24
3.2
Density of Modes
....................................... 25
3.3
Commutation Relations
................................. 26
Reference
.................................................. 28
Further Reading
............................................ 28
States of the Electromagnetic Field I
..................... 31
4.1
Further Properties
...................................... 32
4.1.1
Coherent States are Minimum Uncertainty States
.... 32
4.1.2
Coherent States are not Orthogonal
................ 32
4.1.3
Coherent States are Overcomplete
.................. 33
4.1.4
The Displacement Operator
....................... 33
XIV Contents
4.1.5 Photon
Statistics
................................. 34
4.1.6
Coordinate Representation
........................ 35
4.2
Mixed State: Thermal Radiation
......................... 35
References
................................................. 39
Further Reading
............................................ 39
5
States of the Electromagnetic Field II
.................... 41
5.1
Squeezed States: General Properties and Detection
......... 41
5.1.1
The Squeeze Operator and the Squeezed State
....... 43
5.1.2
The Squeezed State is an
Eigenstate
of A
............ 44
5.1.3
Calculation of Moments with Squeezed States
........ 44
5.1.4
Quadrature Fluctuations
.......................... 45
5.1.5
Photon Statistics
................................. 46
5.2
Multimode Squeezed States
.............................. 47
5.3
Detection of Squeezed States
............................. 47
5.3.1
Ordinary
Homodyne
Detection
..................... 48
5.3.2
Balanced
Homodyne
Detection
..................... 50
5.3.3
Heterodyne Detection
............................. 50
References
................................................. 51
6
Quantum Theory of Coherence
........................... 53
6.1
One-Atom Detector
..................................... 54
6.2
The
η
-Atom
Detector
................................... 57
6.3
General Properties of the Correlation Functions
............ 59
6.4
Young s Interference and First-Order Correlation
........... 60
6.5
Second-Order Correlations: Photon Bunching
and Antibunching
...................................... 62
6.5.1
Classical Second-Order Coherence
.................. 63
6.5.2
Quantum Theory of Second-Order Coherence
........ 65
6.6
Photon Counting
....................................... 67
6.6.1
Some Simple Examples
............................ 70
6.6.2
Quantum Mechanical Photon Count Distribution
..... 71
6.6.3
Particular Examples
.............................. 72
References
................................................. 72
Further Reading
............................................ 72
7
Phase Space Description
.................................. 73
7.1 Q-Representation: Antinormal
Ordering
.................. 73
7.1.1
Normalization
.................................... 73
7.1.2
Average of Antinormally Ordered Products
.......... 74
7.1.3
Some Examples
.................................. 74
7.1.4
The Density Operator in Terms of the Function
Q
.... 75
7.2
Characteristic Function
................................. 76
7.3
P
Representation: Normal Ordering
...................... 76
7.3.1
Normalization
.................................... 76
Contents
XV
7.3.2
Averages of Normally Ordered Products
............. 77
7.3.3
Some Interesting Properties
........................ 77
7.3.4
Some Examples
.................................. 77
7.4
The Wigner Distribution: Symmetric Ordering
............. 79
7.4.1
Moments
........................................ 80
References
................................................. 82
Further Reading
............................................ 82
8
Atom—Field Interaction
................................... 83
8.1
Atom-Field Hamiltonian and the
Dipole
Approximation
..... 83
8.2
A Two-Level Atom Interacting with a Single Field Mode
.... 85
8.3
The Dressed State Picture: Quantum
Rabi
Oscillations
...... 88
8.4
Collapse and Revivals
................................... 91
References
................................................. 94
Further Reading
............................................ 94
9
System—Reservoir Interactions
............................ 97
9.1
Quantum Theory of Damping
............................ 97
9.2
General Properties
......................................100
9.3
Expectation Values of Relevant Physical Quantities
.........101
9.4
Time Evolution of the Density Matrix Elements
............102
9.5
The Glauber- Sudarshan Representation, and the Fokker-
Planck Equation
.......................................105
9.6
Time-Dependent Solution: The Method of the Eigenfunctions
106
9.6.1
General Solution
.................................107
9.7
Langevin s Equations
...................................108
9.7.1
Calculation of the Correlation Function (F(t )F(t )i)B
109
9.7.2
Differential Equation for the Photon Number
........109
9.8
Other Master Equations
.................................110
9.8.1
Two-Level Atom in a Thermal Bath
................110
9.8.2
Damped Harmonic Oscillator in a Squeezed Bath
.....
Ill
9.8.3
Application: Spontaneous Decay in a Squeezed Vaccum
114
References
.................................................116
Further Reading
............................................117
10
Resonance Fluorescence
..................................119
10.1
Background
............................................119
10.2 Heisenberg^
Equations
..................................120
10.3
Spectral Density, and the Wiener-Khinchine Theorem
.......124
10.4
Emission Spectra from Strongly Driven Two-Level Atoms
... 126
10.5
Intensity Correlations
...................................129
References
.................................................133
Further Reading
............................................134
XVI Contents
11
Quantum Laser
Theory: Master Equation Approach
......135
11.1
Heuristic Discussion of Injection Statistics
.................136
11.2
Master Equation for Generalized Pump Satistics
...........137
11.3
The Quantum Theory of the Laser: Random Injection (p
= 0) 139
11.3.1
Photon Statistics
.................................140
11.3.2
The Fokker-Planck Equation: Laser Linewidth
.......143
11.3.3
Alternative Derivation of the Laser Linewidth
........144
11.4
Quantum Theory of the
Micromaser:
Random injection (p
= 0)146
11.4.1
Generalities
......................................146
11.4.2
The
Micromaser..................................147
11.4.3
Trapping States
..................................149
11.5
Quantum Theory of the Laser and the
Micromaser
with
Pump Statistics (p/0)
.................................153
References
.................................................157
Further Reading
............................................157
12
Quantum Laser Theory:
Langevin
Approach
..............159
12.1
Quantum
Langevin
Equations
............................159
12.1.1
The Generalized Einstein s Relations
................160
12.1.2
The Atomic Noise Moments
.......................161
12.2
С
-Number
Langevin
Equations
...........................165
12.2.1
Adiabatic Approximation
..........................166
12.3
Phase and Intensity Fluctuations
.........................167
12.4
Discussion
.............................................168
References
.................................................170
Further Reading
............................................171
13
Quantum Noise Reduction
1..............................173
13.1
Correlated Emission Laser Systems
.......................175
13.1.1
The Quantum Beat Laser
......................... 175
13.1.2
Other
CEL
Systems
.............................. 181
References
................................................. 182
Further Reading
............................................ 182
14
Quantum Noise Reduction
2..............................185
14.1
Introduction to Non-Linear Optics
........................ 185
14.1.1
Multiple-Photon Transitions
....................... 185
14.2
Parametric Processes Without Losses
..................... 189
14.3
The Input-Output Theory
............................... 191
14.4
The Degenerate Parametric Oscillator
..................... 195
14.5
Experimental Results
...................................198
References
.................................................201
Contents XVII
15 Quantum Phase ..........................................203
15.1 The Dirac Phase.......................................203
15.2 The Louiseil Phase.....................................204
15.3 The Susskind-Glogower Phase...........................204
15.4 The Pegg-Barnett Phase................................208
15.4.1 Applications.....................................211
15.5 Phase
Fluctuations
in
a Laser
............................213
References
.................................................217
Further Reading
............................................217
16 Quantum
Trajectories
....................................219
16.1
Montecarlo
Wavefimction
Method........................
220
16.1.1 The
Montecarlo
Method is Equivalent, on the
Average, to the Master Equation
...................221
16.2
The Stochastic
Schrödinger
Equation
.....................223
16.3
Stochastic
Schrödinger
Equations and
Dissipati ve
Systems
. .. 225
16.4
Simulation of a Monte Carlo SSE
.........................227
16.5
Simulation of the
Homodyne SSDE
.......................232
16.6
Numerical Results and
Localizat
.¡on
......................236
16.6.1
Quantum Jumps Evolution
........................236
16.6.2
Diffusion-like Evolution
...........................237
16.6.3
Analytical Proof of Localization
....................239
16.7
Conclusions
............................................242
References
.................................................244
Further Reading
............................................245
17
Atom Optics
..............................................247
17.1
Optical Elements
.......................................247
17.2
Atomic Diffraction from an Optical
Standing Wave
.........................................248
17.2.1
Theory
..........................................249
17.2.2
Particular Cases
..................................252
17.3
Atomic Focusing
.......................................255
17.3.1
The Model
......................................255
17.3.2
Initial Conditions and Solution
.....................257
17.3.3
Quantum and Classical Foci
.......................258
17.3.4
Thin Versus Thick Lenses
.........................258
17.3.5
The Quantum Focal Curve
........................259
17.3.6
Aberrations
......................................261
References
.................................................262
18
Measurements, Quantum Limits and All That
............263
18.1
Quantum Standard Limit
................................263
18.1.1
Quantum Standard Limit for a Free
Partido
.........263
18.1.2
Standard Quantum Limit for an Oscillator
...........264
XVIII
Contents
18.1.3
Thermal
Effects
..................................265
18.2
Quantum
Non-Demolition (QND) Measurements
...........266
18.2.1
The Pree
System
.................................266
18.2.2
Monitoring a Classical Force
.......................268
18.2.3
Effect of the Measuring Apparatus or Probe
.........269
18.3
QND Measurement of the Number of Photons in a Cavity
. .. 270
18.3.1
The Model
......................................270
18.3.2
The System-Probe Interaction
.....................271
18.3.3
Measuring the Atomic Phase with Ramsey Fields
.....272
18.3.4
QND Measurement of the Photon Number
..........275
18.4
Quantum Theory of Continuous Photodetection Process
.....278
18.4.1
Introduction
.....................................278
18.4.2
Continuous Measurement in a Two-Mode System:
Phase Narrowing
.................................280
References
.................................................284
Further R,eading
............................................285
19
Trapped Ions
.............................................287
19.1
Paul Trap
.............................................287
19.1.1
General Properties
...............................287
19.1.2
Stability Analysis
................................290
19.2
Trapped Ions
..........................................294
19.2.1
Introduction
.....................................294
19.2.2
The Model and Effective Hamiltonian
...............294
19.2.3
The Lamb-Dicke Expansion and Raman Cooling
.....299
19.2.4
The Dynamical Evolution
.........................300
19.2.5
QND Measurements of Vibrational States
...........303
19.2.6
Generation of Non-Classical Vibrational States
.......305
References
.................................................309
Further Reading
............................................309
20
Decoherence
..............................................311
20.1
Dynamics of the Correlations
............................314
20.2
How Long Does It Take to Decohere?
.....................315
20.3
Decoherence Free Subspaces
.............................320
20.3.1
Simple Example: Collective dephasing
...............320
20.3.2
General Treatment
...............................322
20.3.3
Condition for DFS: Hamiltonian Approach
..........323
20.3.4
Condition for DFS:
Lindblad
Approach
.............323
20.3.5
Example: A7 Spins in Boson Bath
...................326
References
.................................................327
Further Reading
............................................328
Contents XIX
21 Quantum Bits,
Entanglement
and Applications...........329
21.1 Qubits and Quantum Gates..............................329
21.2
Entanglement
..........................................333
21.2.1 Pure States......................................333
21.2.2
Mixed states.....................................
339
21.2.3 Bell
Inequalities .................................
341
21.3 Quantum
Teleportation.................................
344
References
.................................................347
22 Quantum
Cloning and Processing
.........................349
22.1
The No-Cloning Theorem
...............................349
22.2
The Universal Quantum Copying Machine (UQCM)
........350
22.3
Quantum Copying Machine Implemented by a Circuit
.......351
22.3.1
Preparation Stage
................................352
22.3.2
Copying Stage and Output
........................353
22.3.3
Output States
...................................355
22.3.4
Summary and Discussion
..........................356
22.4
Quantum Processors
...................................357
22.4.1
Introduction
.....................................357
22.4.2
One Qubit Stochastic Processor
...................359
References
.................................................361
A Operator Relations
.......................................363
A.I Theorem
1.............................................363
A.2 Theorem
2:
The Baker-Campbell-
Haussdorf
Relation
.......364
A.3 Theorem
3:
Similarity Transformation
.....................365
Reference
..................................................366
В
The Method of Characteristics
...........................367
Reference
..................................................369
С
Proof
.....................................................371
References
.................................................372
D
Stochastic Processes in a Nutshell
........................373
D.I Introduction
...........................................373
D.2 Probability Concepts
....................................374
D.3 Stochastic Processes
....................................375
D.3.1 The Chapman-Kolmogorov Equation
...............375
D.4 The Fokker-Planck Equation
............................378
D.4.1 The Wiener Process
..............................379
D.4.
2
General Properties of the Fokker-Planck Equation
.... 381
D.4.3 Steady-State Solution
.............................381
D.5 Stochastic Differential
Equations
.........................382
D.5.1 Introduction
.....................................382
XX
Contents
D.
5.2
Ito
Versus Stratonovich...........................384
D.5.3
Ito s Formula
....................................386
D.6
Approximate Methods
..................................388
References
.................................................391
E
Derivation of the
Homodyne
Stochastic
Schrödinger
Differential Equation
.....................................393
F
Fluctuations
..............................................397
G
The No-Cloning Theorem
.................................399
Reference
..................................................399
H
The Universal Quantum Cloning Machine
................401
Reference
..................................................402
I Hints to Solve the Problems
..............................403
Index
.........................................................409
|
adam_txt |
Contents
Einstein's Theory of Atom—Radiation Interaction
. 1
1.1
The A and
В
Coefficients
. 1
1.2
Thermal Equilibrium
. 3
1.3
Photon Distribution and Fluctuations
. 4
1.4
Light Beam Incident on Atoms
. 5
1.5
An Elementary Laser Theory
. 5
1.5.1
Threshold and Population Inversion
. 6
1.5.2
Steady State
. 7
1.5.3
Linear Stability Analysis
. 8
References
. 9
Further Reading
. 9
Atom—Field Interaction: Semiclassical Approach
. 11
2.1
Broad-Band Radiation Spectrum
. 14
2.2
Rabi
Oscillations
. 15
2.3
Bloch's Equations
. 16
2.4
Decay to an Unobserved Level
. 17
2.5
Decay Between Levels
. 18
2.6
Optical Nutation
. 18
References
. 19
Further Reading
. 19
Quantization of the Electromagnetic Field
. 21
3.1
Fock States
. 24
3.2
Density of Modes
. 25
3.3
Commutation Relations
. 26
Reference
. 28
Further Reading
. 28
States of the Electromagnetic Field I
. 31
4.1
Further Properties
. 32
4.1.1
Coherent States are Minimum Uncertainty States
. 32
4.1.2
Coherent States are not Orthogonal
. 32
4.1.3
Coherent States are Overcomplete
. 33
4.1.4
The Displacement Operator
. 33
XIV Contents
4.1.5 Photon
Statistics
. 34
4.1.6
Coordinate Representation
. 35
4.2
Mixed State: Thermal Radiation
. 35
References
. 39
Further Reading
. 39
5
States of the Electromagnetic Field II
. 41
5.1
Squeezed States: General Properties and Detection
. 41
5.1.1
The Squeeze Operator and the Squeezed State
. 43
5.1.2
The Squeezed State is an
Eigenstate
of A
. 44
5.1.3
Calculation of Moments with Squeezed States
. 44
5.1.4
Quadrature Fluctuations
. 45
5.1.5
Photon Statistics
. 46
5.2
Multimode Squeezed States
. 47
5.3
Detection of Squeezed States
. 47
5.3.1
Ordinary
Homodyne
Detection
. 48
5.3.2
Balanced
Homodyne
Detection
. 50
5.3.3
Heterodyne Detection
. 50
References
. 51
6
Quantum Theory of Coherence
. 53
6.1
One-Atom Detector
. 54
6.2
The
η
-Atom
Detector
. 57
6.3
General Properties of the Correlation Functions
. 59
6.4
Young's Interference and First-Order Correlation
. 60
6.5
Second-Order Correlations: Photon Bunching
and Antibunching
. 62
6.5.1
Classical Second-Order Coherence
. 63
6.5.2
Quantum Theory of Second-Order Coherence
. 65
6.6
Photon Counting
. 67
6.6.1
Some Simple Examples
. 70
6.6.2
Quantum Mechanical Photon Count Distribution
. 71
6.6.3
Particular Examples
. 72
References
. 72
Further Reading
. 72
7
Phase Space Description
. 73
7.1 Q-Representation: Antinormal
Ordering
. 73
7.1.1
Normalization
. 73
7.1.2
Average of Antinormally Ordered Products
. 74
7.1.3
Some Examples
. 74
7.1.4
The Density Operator in Terms of the Function
Q
. 75
7.2
Characteristic Function
. 76
7.3
P
Representation: Normal Ordering
. 76
7.3.1
Normalization
. 76
Contents
XV
7.3.2
Averages of Normally Ordered Products
. 77
7.3.3
Some Interesting Properties
. 77
7.3.4
Some Examples
. 77
7.4
The Wigner Distribution: Symmetric Ordering
. 79
7.4.1
Moments
. 80
References
. 82
Further Reading
. 82
8
Atom—Field Interaction
. 83
8.1
Atom-Field Hamiltonian and the
Dipole
Approximation
. 83
8.2
A Two-Level Atom Interacting with a Single Field Mode
. 85
8.3
The Dressed State Picture: Quantum
Rabi
Oscillations
. 88
8.4
Collapse and Revivals
. 91
References
. 94
Further Reading
. 94
9
System—Reservoir Interactions
. 97
9.1
Quantum Theory of Damping
. 97
9.2
General Properties
.100
9.3
Expectation Values of Relevant Physical Quantities
.101
9.4
Time Evolution of the Density Matrix Elements
.102
9.5
The Glauber- Sudarshan Representation, and the Fokker-
Planck Equation
.105
9.6
Time-Dependent Solution: The Method of the Eigenfunctions
106
9.6.1
General Solution
.107
9.7
Langevin's Equations
.108
9.7.1
Calculation of the Correlation Function (F(t')F(t")i)B
109
9.7.2
Differential Equation for the Photon Number
.109
9.8
Other Master Equations
.110
9.8.1
Two-Level Atom in a Thermal Bath
.110
9.8.2
Damped Harmonic Oscillator in a Squeezed Bath
.
Ill
9.8.3
Application: Spontaneous Decay in a Squeezed Vaccum
114
References
.116
Further Reading
.117
10
Resonance Fluorescence
.119
10.1
Background
.119
10.2 Heisenberg^
Equations
.120
10.3
Spectral Density, and the Wiener-Khinchine Theorem
.124
10.4
Emission Spectra from Strongly Driven Two-Level Atoms
. 126
10.5
Intensity Correlations
.129
References
.133
Further Reading
.134
XVI Contents
11
Quantum Laser
Theory: Master Equation Approach
.135
11.1
Heuristic Discussion of Injection Statistics
.136
11.2
Master Equation for Generalized Pump Satistics
.137
11.3
The Quantum Theory of the Laser: Random Injection (p
= 0) 139
11.3.1
Photon Statistics
.140
11.3.2
The Fokker-Planck Equation: Laser Linewidth
.143
11.3.3
Alternative Derivation of the Laser Linewidth
.144
11.4
Quantum Theory of the
Micromaser:
Random injection (p
= 0)146
11.4.1
Generalities
.146
11.4.2
The
Micromaser.147
11.4.3
Trapping States
.149
11.5
Quantum Theory of the Laser and the
Micromaser
with
Pump Statistics (p/0)
.153
References
.157
Further Reading
.157
12
Quantum Laser Theory:
Langevin
Approach
.159
12.1
Quantum
Langevin
Equations
.159
12.1.1
The Generalized Einstein's Relations
.160
12.1.2
The Atomic Noise Moments
.161
12.2
С
-Number
Langevin
Equations
.165
12.2.1
Adiabatic Approximation
.166
12.3
Phase and Intensity Fluctuations
.167
12.4
Discussion
.168
References
.170
Further Reading
.171
13
Quantum Noise Reduction
1.173
13.1
Correlated Emission Laser Systems
.175
13.1.1
The Quantum Beat Laser
. 175
13.1.2
Other
CEL
Systems
. 181
References
. 182
Further Reading
. 182
14
Quantum Noise Reduction
2.185
14.1
Introduction to Non-Linear Optics
. 185
14.1.1
Multiple-Photon Transitions
. 185
14.2
Parametric Processes Without Losses
. 189
14.3
The Input-Output Theory
. 191
14.4
The Degenerate Parametric Oscillator
. 195
14.5
Experimental Results
.198
References
.201
Contents XVII
15 Quantum Phase .203
15.1 The Dirac Phase.203
15.2 The Louiseil Phase.204
15.3 The Susskind-Glogower Phase.204
15.4 The Pegg-Barnett Phase.208
15.4.1 Applications.211
15.5 Phase
Fluctuations
in
a Laser
.213
References
.217
Further Reading
.217
16 Quantum
Trajectories
.219
16.1
Montecarlo
Wavefimction
Method.
220
16.1.1 The
Montecarlo
Method is Equivalent, on the
Average, to the Master Equation
.221
16.2
The Stochastic
Schrödinger
Equation
.223
16.3
Stochastic
Schrödinger
Equations and
Dissipati ve
Systems
. . 225
16.4
Simulation of a Monte Carlo SSE
.227
16.5
Simulation of the
Homodyne SSDE
.232
16.6
Numerical Results and
Localizat
.¡on
.236
16.6.1
Quantum Jumps Evolution
.236
16.6.2
Diffusion-like Evolution
.237
16.6.3
Analytical Proof of Localization
.239
16.7
Conclusions
.242
References
.244
Further Reading
.245
17
Atom Optics
.247
17.1
Optical Elements
.247
17.2
Atomic Diffraction from an Optical
Standing Wave
.248
17.2.1
Theory
.249
17.2.2
Particular Cases
.252
17.3
Atomic Focusing
.255
17.3.1
The Model
.255
17.3.2
Initial Conditions and Solution
.257
17.3.3
Quantum and Classical Foci
.258
17.3.4
Thin Versus Thick Lenses
.258
17.3.5
The Quantum Focal Curve
.259
17.3.6
Aberrations
.261
References
.262
18
Measurements, Quantum Limits and All That
.263
18.1
Quantum Standard Limit
.263
18.1.1
Quantum Standard Limit for a Free
Partido
.263
18.1.2
Standard Quantum Limit for an Oscillator
.264
XVIII
Contents
18.1.3
Thermal
Effects
.265
18.2
Quantum
Non-Demolition (QND) Measurements
.266
18.2.1
The Pree
System
.266
18.2.2
Monitoring a Classical Force
.268
18.2.3
Effect of the Measuring Apparatus or Probe
.269
18.3
QND Measurement of the Number of Photons in a Cavity
. . 270
18.3.1
The Model
.270
18.3.2
The System-Probe Interaction
.271
18.3.3
Measuring the Atomic Phase with Ramsey Fields
.272
18.3.4
QND Measurement of the Photon Number
.275
18.4
Quantum Theory of Continuous Photodetection Process
.278
18.4.1
Introduction
.278
18.4.2
Continuous Measurement in a Two-Mode System:
Phase Narrowing
.280
References
.284
Further R,eading
.285
19
Trapped Ions
.287
19.1
Paul Trap
.287
19.1.1
General Properties
.287
19.1.2
Stability Analysis
.290
19.2
Trapped Ions
.294
19.2.1
Introduction
.294
19.2.2
The Model and Effective Hamiltonian
.294
19.2.3
The Lamb-Dicke Expansion and Raman Cooling
.299
19.2.4
The Dynamical Evolution
.300
19.2.5
QND Measurements of Vibrational States
.303
19.2.6
Generation of Non-Classical Vibrational States
.305
References
.309
Further Reading
.309
20
Decoherence
.311
20.1
Dynamics of the Correlations
.314
20.2
How Long Does It Take to Decohere?
.315
20.3
Decoherence Free Subspaces
.320
20.3.1
Simple Example: Collective dephasing
.320
20.3.2
General Treatment
.322
20.3.3
Condition for DFS: Hamiltonian Approach
.323
20.3.4
Condition for DFS:
Lindblad
Approach
.323
20.3.5
Example: A7 Spins in Boson Bath
.326
References
.327
Further Reading
.328
Contents XIX
21 Quantum Bits,
Entanglement
and Applications.329
21.1 Qubits and Quantum Gates.329
21.2
Entanglement
.333
21.2.1 Pure States.333
21.2.2
Mixed states.
339
21.2.3 Bell
Inequalities .
341
21.3 Quantum
Teleportation.
344
References
.347
22 Quantum
Cloning and Processing
.349
22.1
The No-Cloning Theorem
.349
22.2
The Universal Quantum Copying Machine (UQCM)
.350
22.3
Quantum Copying Machine Implemented by a Circuit
.351
22.3.1
Preparation Stage
.352
22.3.2
Copying Stage and Output
.353
22.3.3
Output States
.355
22.3.4
Summary and Discussion
.356
22.4
Quantum Processors
.357
22.4.1
Introduction
.357
22.4.2
One Qubit Stochastic Processor
.359
References
.361
A Operator Relations
.363
A.I Theorem
1.363
A.2 Theorem
2:
The Baker-Campbell-
Haussdorf
Relation
.364
A.3 Theorem
3:
Similarity Transformation
.365
Reference
.366
В
The Method of Characteristics
.367
Reference
.369
С
Proof
.371
References
.372
D
Stochastic Processes in a Nutshell
.373
D.I Introduction
.373
D.2 Probability Concepts
.374
D.3 Stochastic Processes
.375
D.3.1 The Chapman-Kolmogorov Equation
.375
D.4 The Fokker-Planck Equation
.378
D.4.1 The Wiener Process
.379
D.4.
2
General Properties of the Fokker-Planck Equation
. 381
D.4.3 Steady-State Solution
.381
D.5 Stochastic Differential
Equations
.382
D.5.1 Introduction
.382
XX
Contents
D.
5.2
Ito
Versus Stratonovich.384
D.5.3
Ito's Formula
.386
D.6
Approximate Methods
.388
References
.391
E
Derivation of the
Homodyne
Stochastic
Schrödinger
Differential Equation
.393
F
Fluctuations
.397
G
The No-Cloning Theorem
.399
Reference
.399
H
The Universal Quantum Cloning Machine
.401
Reference
.402
I Hints to Solve the Problems
.403
Index
.409 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Orszag, Miguel 1944- |
author_GND | (DE-588)121053679 |
author_facet | Orszag, Miguel 1944- |
author_role | aut |
author_sort | Orszag, Miguel 1944- |
author_variant | m o mo |
building | Verbundindex |
bvnumber | BV023219238 |
callnumber-first | Q - Science |
callnumber-label | QC446 |
callnumber-raw | QC446.2 |
callnumber-search | QC446.2 |
callnumber-sort | QC 3446.2 |
callnumber-subject | QC - Physics |
classification_rvk | UH 5600 |
classification_tum | PHY 370f |
ctrlnum | (OCoLC)191258373 (DE-599)DNB984079807 |
dewey-full | 535.15 535/.15 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation |
dewey-raw | 535.15 535/.15 |
dewey-search | 535.15 535/.15 |
dewey-sort | 3535.15 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02044nam a2200553 c 4500</leader><controlfield tag="001">BV023219238</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120420 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080318s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N22,0902</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">08,A07,0943</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984079807</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540727064</subfield><subfield code="c">Pp. : EUR 74.85 (freier Pr.)</subfield><subfield code="9">978-3-540-72706-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540650089</subfield><subfield code="c">Pp. : EUR 74.85 (freier Pr.)</subfield><subfield code="9">978-3-540-65008-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540727064</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12059447</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191258373</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984079807</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC446.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535.15</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535/.15</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5600</subfield><subfield code="0">(DE-625)145666:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 370f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Orszag, Miguel</subfield><subfield code="d">1944-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121053679</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum optics</subfield><subfield code="b">including noise reduction, trapped ions, quantum trajectories, and decoherence</subfield><subfield code="c">Miguel Orszag</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 414 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum optics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenoptik</subfield><subfield code="0">(DE-588)4047990-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405170&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016405170</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV023219238 |
illustrated | Illustrated |
index_date | 2024-07-02T20:15:18Z |
indexdate | 2024-07-09T21:13:22Z |
institution | BVB |
isbn | 9783540727064 9783540650089 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016405170 |
oclc_num | 191258373 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-20 DE-19 DE-BY-UBM DE-29T |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-20 DE-19 DE-BY-UBM DE-29T |
physical | XX, 414 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Orszag, Miguel 1944- Verfasser (DE-588)121053679 aut Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence Miguel Orszag 2. ed. Berlin [u.a.] Springer 2008 XX, 414 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturangaben Quantum optics Quantenoptik (DE-588)4047990-0 gnd rswk-swf Laser (DE-588)4034610-9 gnd rswk-swf Quantenoptik (DE-588)4047990-0 s Laser (DE-588)4034610-9 s 1\p DE-604 DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405170&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Orszag, Miguel 1944- Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence Quantum optics Quantenoptik (DE-588)4047990-0 gnd Laser (DE-588)4034610-9 gnd |
subject_GND | (DE-588)4047990-0 (DE-588)4034610-9 |
title | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence |
title_auth | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence |
title_exact_search | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence |
title_exact_search_txtP | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence |
title_full | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence Miguel Orszag |
title_fullStr | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence Miguel Orszag |
title_full_unstemmed | Quantum optics including noise reduction, trapped ions, quantum trajectories, and decoherence Miguel Orszag |
title_short | Quantum optics |
title_sort | quantum optics including noise reduction trapped ions quantum trajectories and decoherence |
title_sub | including noise reduction, trapped ions, quantum trajectories, and decoherence |
topic | Quantum optics Quantenoptik (DE-588)4047990-0 gnd Laser (DE-588)4034610-9 gnd |
topic_facet | Quantum optics Quantenoptik Laser |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016405170&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT orszagmiguel quantumopticsincludingnoisereductiontrappedionsquantumtrajectoriesanddecoherence |