Riemannian geometry and geometric analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Ausgabe: | 5. ed. |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Verlagsinformation Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 545 - 560 |
Beschreibung: | XIII, 581 S. graph. Darst. |
ISBN: | 9783540773405 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023193078 | ||
003 | DE-604 | ||
005 | 20090925 | ||
007 | t | ||
008 | 080303s2008 gw d||| |||| 00||| eng d | ||
015 | |a 05,A37,0610 |2 dnb | ||
020 | |a 9783540773405 |9 978-3-540-77340-5 | ||
028 | 5 | 2 | |a 11422549 |
035 | |a (OCoLC)231746420 | ||
035 | |a (DE-599)BVBBV023193078 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-355 |a DE-19 |a DE-91G |a DE-11 |a DE-29T |a DE-898 | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 516.3/73 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 537f |2 stub | ||
100 | 1 | |a Jost, Jürgen |d 1956- |e Verfasser |0 (DE-588)115774564 |4 aut | |
245 | 1 | 0 | |a Riemannian geometry and geometric analysis |c Jürgen Jost |
250 | |a 5. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XIII, 581 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Universitext | |
500 | |a Literaturverz. S. 545 - 560 | ||
650 | 4 | |a Geometry, Riemannian | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrische Analysis |0 (DE-588)4156708-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | 1 | |a Geometrische Analysis |0 (DE-588)4156708-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geometrische Analysis |0 (DE-588)4156708-0 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | |u http://deposit.dnb.de/cgi-bin/dokserv?id=2669086&prov=M&dok_var=1&dok_ext=htm |3 Verlagsinformation | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3030831&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |u http://d-nb.info/986536113/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016379433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016379433 |
Datensatz im Suchindex
_version_ | 1805090076276817920 |
---|---|
adam_text |
Contents
1 Foundational Material 1
1.1
Manifolds and Differentiable Manifolds
. 1
1.2
Tangent
Spaces. 6
1.3 Submanifolds. 10
1.4 Riemannian
Metrics
. 13
1.5
Existence of Geodesies on Compact Manifolds
. 28
1.6
The Heat Flow and the Existence of Geodesies
. 31
1.7
Existence of Geodesies on Complete Manifolds
. 34
1.8
Vector Bundles
. 37
1.9
Integral Curves of Vector Fields. Lie Algebras
. 47
1.10
Lie Groups
. 56
1.11
Spin Structures
. 62
Exercises for Chapter
1 . 83
2 De Rham
Cohomology and Harmonic Differential Forms
87
2.1
The Laplace Operator
. 87
2.2
Representing Cohomology Classes by Harmonic Forms
. 96
2.3
Generalizations
. 104
2.4
The Heat Flow and Harmonic Forms
. 105
Exercises for Chapter
2 . 110
3
Parallel Transport, Connections, and Covariant Derivatives
113
3.1
Connections in Vector Bundles
. 113
3.2
Metric Connections. The Yang-Mills Functional
. 124
3.3
The Levi-Civita Connection
. 140
3.4
Connections for Spin Structures and the Dirac Operator
. 155
3.5
The Bochner Method
. 162
3.6
The Geometry of Submanifolds. Minimal Submanifolds
. 164
Exercises for Chapter
3 . 176
4
Geodesies and Jacobi Fields
179
4.1 1st
and
2nd
Variation of Arc Length and Energy
. 179
4.2
Jacobi Fields
. 185
4.3
Conjugate
Points
and Distance Minimizing Geodesies
. 193
4.4
RAemannian Manifolds of Constant Curvature
. 201
4.5
The
Rauch
Comparison Theorems and Other Jacobi Field Estimates
. 203
4.6
Geometric Applications of Jacobi Field Estimates
. 208
4.7
Approximate Fundamental Solutions and Representation Formulae
. . 213
4.8
The Geometry of Manifolds of
Nonpositive
Sectional Curvature
. 215
Exercises for Chapter
4 . 232
A Short Survey on Curvature and Topology
235
5
Symmetric Spaces and
Kahler
Manifolds
243
5.1
Complex
Projective
Space
. 243
5.2 Kahler
Manifolds
. 249
5.3
The Geometry of Symmetric Spaces
. 259
5.4
Some Results about the Structure of Symmetric Spaces
. 270
5.5
The Space Sl(n,»)/SO(n,
Щ
. 277
5.6
Symmetric Spaces of Noncompact Type
. 294
Exercises for Chapter
5 . 299
6
Morse Theory and Ploer Homology
301
6.1
Preliminaries: Aims of Morse Theory
. 301
6.2
The Palais-Smale Condition, Existence of Saddle Points
. 306
6.3
Local Analysis
. 308
6.4
Limits of Trajectories of the Gradient Flow
. 324
6.5
Floer
Condition, Transversality and Z2-Cohomology
. 332
6.6
Orientations and Z-homology
. 338
6.7
Homotopies
. 342
6.8
Graph flows
. 346
6.9
Orientations
. 350
6.10
The Morse Inequalities
. 366
6.11
The Palais-Smale Condition and the Existence of Closed Geodesies
. . 377
Exercises for Chapter
6 . 390
7
Harmonic Maps between Riemannian Manifolds
393
7.1
Definitions
. 393
7.2
Formulae for Harmonic Maps. The Bochner Technique
. 400
7.3
The Energy Integral and Weakly Harmonic Maps
. 412
7.4
Higher Regularity
. 422
7.5
Existence of Harmonic Maps for
Nonpositive
Curvature
. 433
7.6
Regularity of Harmonic Maps for
Nonpositive
Curvature
. 440
7.7
Harmonic Map Uniqueness and Applications
. 459
Exercises for Chapter
7. 466
8
Harmonic maps from Riemann surfaces
469
8.1
Twodimensional Harmonic Mappings
.469
8.2
The Existence of Harmonic Maps in Two Dimensions
.483
8.3
Regularity Results
.504
Exercises for Chapter
8 .517
9
Variational Problems from Quantum Field Theory
521
9.1
The Ginzburg-Landau Functional
.521
9.2
The Seiberg-Witten Functional
.529
9.3
Dirac-harmonic Maps
.536
Exercises for Chapter
9 .543
A Linear Elliptic Partial Differential Equations
545
A.I Sobolev Spaces
.545
A.
2
Linear Elliptic Equations
.549
A.3 Linear Parabolic Equations
.553
В
Fundamental Groups and Covering Spaces
557
Bibliography
560
Index
576 |
adam_txt |
Contents
1 Foundational Material 1
1.1
Manifolds and Differentiable Manifolds
. 1
1.2
Tangent
Spaces. 6
1.3 Submanifolds. 10
1.4 Riemannian
Metrics
. 13
1.5
Existence of Geodesies on Compact Manifolds
. 28
1.6
The Heat Flow and the Existence of Geodesies
. 31
1.7
Existence of Geodesies on Complete Manifolds
. 34
1.8
Vector Bundles
. 37
1.9
Integral Curves of Vector Fields. Lie Algebras
. 47
1.10
Lie Groups
. 56
1.11
Spin Structures
. 62
Exercises for Chapter
1 . 83
2 De Rham
Cohomology and Harmonic Differential Forms
87
2.1
The Laplace Operator
. 87
2.2
Representing Cohomology Classes by Harmonic Forms
. 96
2.3
Generalizations
. 104
2.4
The Heat Flow and Harmonic Forms
. 105
Exercises for Chapter
2 . 110
3
Parallel Transport, Connections, and Covariant Derivatives
113
3.1
Connections in Vector Bundles
. 113
3.2
Metric Connections. The Yang-Mills Functional
. 124
3.3
The Levi-Civita Connection
. 140
3.4
Connections for Spin Structures and the Dirac Operator
. 155
3.5
The Bochner Method
. 162
3.6
The Geometry of Submanifolds. Minimal Submanifolds
. 164
Exercises for Chapter
3 . 176
4
Geodesies and Jacobi Fields
179
4.1 1st
and
2nd
Variation of Arc Length and Energy
. 179
4.2
Jacobi Fields
. 185
4.3
Conjugate
Points
and Distance Minimizing Geodesies
. 193
4.4
RAemannian Manifolds of Constant Curvature
. 201
4.5
The
Rauch
Comparison Theorems and Other Jacobi Field Estimates
. 203
4.6
Geometric Applications of Jacobi Field Estimates
. 208
4.7
Approximate Fundamental Solutions and Representation Formulae
. . 213
4.8
The Geometry of Manifolds of
Nonpositive
Sectional Curvature
. 215
Exercises for Chapter
4 . 232
A Short Survey on Curvature and Topology
235
5
Symmetric Spaces and
Kahler
Manifolds
243
5.1
Complex
Projective
Space
. 243
5.2 Kahler
Manifolds
. 249
5.3
The Geometry of Symmetric Spaces
. 259
5.4
Some Results about the Structure of Symmetric Spaces
. 270
5.5
The Space Sl(n,»)/SO(n,
Щ
. 277
5.6
Symmetric Spaces of Noncompact Type
. 294
Exercises for Chapter
5 . 299
6
Morse Theory and Ploer Homology
301
6.1
Preliminaries: Aims of Morse Theory
. 301
6.2
The Palais-Smale Condition, Existence of Saddle Points
. 306
6.3
Local Analysis
. 308
6.4
Limits of Trajectories of the Gradient Flow
. 324
6.5
Floer
Condition, Transversality and Z2-Cohomology
. 332
6.6
Orientations and Z-homology
. 338
6.7
Homotopies
. 342
6.8
Graph flows
. 346
6.9
Orientations
. 350
6.10
The Morse Inequalities
. 366
6.11
The Palais-Smale Condition and the Existence of Closed Geodesies
. . 377
Exercises for Chapter
6 . 390
7
Harmonic Maps between Riemannian Manifolds
393
7.1
Definitions
. 393
7.2
Formulae for Harmonic Maps. The Bochner Technique
. 400
7.3
The Energy Integral and Weakly Harmonic Maps
. 412
7.4
Higher Regularity
. 422
7.5
Existence of Harmonic Maps for
Nonpositive
Curvature
. 433
7.6
Regularity of Harmonic Maps for
Nonpositive
Curvature
. 440
7.7
Harmonic Map Uniqueness and Applications
. 459
Exercises for Chapter
7. 466
8
Harmonic maps from Riemann surfaces
469
8.1
Twodimensional Harmonic Mappings
.469
8.2
The Existence of Harmonic Maps in Two Dimensions
.483
8.3
Regularity Results
.504
Exercises for Chapter
8 .517
9
Variational Problems from Quantum Field Theory
521
9.1
The Ginzburg-Landau Functional
.521
9.2
The Seiberg-Witten Functional
.529
9.3
Dirac-harmonic Maps
.536
Exercises for Chapter
9 .543
A Linear Elliptic Partial Differential Equations
545
A.I Sobolev Spaces
.545
A.
2
Linear Elliptic Equations
.549
A.3 Linear Parabolic Equations
.553
В
Fundamental Groups and Covering Spaces
557
Bibliography
560
Index
576 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Jost, Jürgen 1956- |
author_GND | (DE-588)115774564 |
author_facet | Jost, Jürgen 1956- |
author_role | aut |
author_sort | Jost, Jürgen 1956- |
author_variant | j j jj |
building | Verbundindex |
bvnumber | BV023193078 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 |
classification_tum | MAT 537f |
ctrlnum | (OCoLC)231746420 (DE-599)BVBBV023193078 |
dewey-full | 516.3/73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.3/73 |
dewey-search | 516.3/73 |
dewey-sort | 3516.3 273 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 5. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023193078</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090925</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080303s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,A37,0610</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540773405</subfield><subfield code="9">978-3-540-77340-5</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11422549</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)231746420</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023193078</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/73</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jost, Jürgen</subfield><subfield code="d">1956-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)115774564</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian geometry and geometric analysis</subfield><subfield code="c">Jürgen Jost</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">5. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 581 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 545 - 560</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Riemannian</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geometrische Analysis</subfield><subfield code="0">(DE-588)4156708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2669086&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Verlagsinformation</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3030831&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">http://d-nb.info/986536113/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016379433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016379433</subfield></datafield></record></collection> |
id | DE-604.BV023193078 |
illustrated | Illustrated |
index_date | 2024-07-02T20:05:27Z |
indexdate | 2024-07-20T09:34:04Z |
institution | BVB |
isbn | 9783540773405 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016379433 |
oclc_num | 231746420 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-11 DE-29T DE-898 DE-BY-UBR |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-91G DE-BY-TUM DE-11 DE-29T DE-898 DE-BY-UBR |
physical | XIII, 581 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Universitext |
spelling | Jost, Jürgen 1956- Verfasser (DE-588)115774564 aut Riemannian geometry and geometric analysis Jürgen Jost 5. ed. Berlin [u.a.] Springer 2008 XIII, 581 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Universitext Literaturverz. S. 545 - 560 Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Geometrische Analysis (DE-588)4156708-0 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s Geometrische Analysis (DE-588)4156708-0 s 1\p DE-604 DE-604 http://deposit.dnb.de/cgi-bin/dokserv?id=2669086&prov=M&dok_var=1&dok_ext=htm Verlagsinformation text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3030831&prov=M&dok_var=1&dok_ext=htm Inhaltstext http://d-nb.info/986536113/04 Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016379433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jost, Jürgen 1956- Riemannian geometry and geometric analysis Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd Geometrische Analysis (DE-588)4156708-0 gnd |
subject_GND | (DE-588)4128462-8 (DE-588)4156708-0 |
title | Riemannian geometry and geometric analysis |
title_auth | Riemannian geometry and geometric analysis |
title_exact_search | Riemannian geometry and geometric analysis |
title_exact_search_txtP | Riemannian geometry and geometric analysis |
title_full | Riemannian geometry and geometric analysis Jürgen Jost |
title_fullStr | Riemannian geometry and geometric analysis Jürgen Jost |
title_full_unstemmed | Riemannian geometry and geometric analysis Jürgen Jost |
title_short | Riemannian geometry and geometric analysis |
title_sort | riemannian geometry and geometric analysis |
topic | Geometry, Riemannian Riemannsche Geometrie (DE-588)4128462-8 gnd Geometrische Analysis (DE-588)4156708-0 gnd |
topic_facet | Geometry, Riemannian Riemannsche Geometrie Geometrische Analysis |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2669086&prov=M&dok_var=1&dok_ext=htm http://deposit.dnb.de/cgi-bin/dokserv?id=3030831&prov=M&dok_var=1&dok_ext=htm http://d-nb.info/986536113/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016379433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT jostjurgen riemanniangeometryandgeometricanalysis |