Theory of conjectural variations:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
River Edge, NJ ; London [u.a.]
World Scientific
2004
|
Schriftenreihe: | Series on mathematical economics and game theory
2 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz.: S. 163 - 166 |
Beschreibung: | XVI, 168 S. graph. Darst. 24 cm |
ISBN: | 9812387366 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023121802 | ||
003 | DE-604 | ||
005 | 20080417 | ||
007 | t | ||
008 | 080211s2004 xxud||| |||| 00||| eng d | ||
010 | |a 2004274892 | ||
020 | |a 9812387366 |9 981-238-736-6 | ||
035 | |a (OCoLC)55628631 | ||
035 | |a (DE-599)BVBBV023121802 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-N2 | ||
050 | 0 | |a QA269 | |
082 | 0 | |a 519.3 |2 22 | |
084 | |a QH 430 |0 (DE-625)141581: |2 rvk | ||
245 | 1 | 0 | |a Theory of conjectural variations |c Charles Figuíeres ... [et al.] |
264 | 1 | |a River Edge, NJ ; London [u.a.] |b World Scientific |c 2004 | |
300 | |a XVI, 168 S. |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Series on mathematical economics and game theory |v 2 | |
500 | |a Literaturverz.: S. 163 - 166 | ||
650 | 7 | |a Evenwichtsmodellen (Economie) |2 gtt | |
650 | 7 | |a Speltheorie |2 gtt | |
650 | 4 | |a aGame theory | |
650 | 4 | |a aEconomics, Mathematical | |
650 | 0 | 7 | |a Spieltheorie |0 (DE-588)4056243-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spieltheorie |0 (DE-588)4056243-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Figuières, Charles |e Sonstige |4 oth | |
830 | 0 | |a Series on mathematical economics and game theory |v 2 |w (DE-604)BV021836771 |9 2 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016324267&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016324267 |
Datensatz im Suchindex
_version_ | 1804137391030534144 |
---|---|
adam_text | SERIES ON MATHEMATICAL ECONOMICS AND GAME THEORY VOL.2 THEORY OF
CONJECTURAL VARIATIONS CHARLES FIGUIERES UNIVERSITY OF BRISTOL, UK
FLLAIN JEAN-MARIE LIRMM, CNRS & UNIVERSITY OF MONTPELLIER II, FRANCE
NICOLAS QUEROU INRA-LAMETA & UNIVERSITY OF MONTPELLIER II, FRANCE MABEL
TICLBALL INRA-LAMETA, FRANCE WORLD SCIENTIFIC NEW JERSEY * LONDON *
SINGAPORE * SHANGHAI * HONGKONG * TAIPEI * BANGALORE 2008
AGI-INFORMATION MANAGEMENT CONSULTANTS MAY BE USED FOR PERSONAL
PURPORSES ONLY OR BY LIBRARIES ASSOCIATED TO DANDELON.COM NETWORK.
CONTENTS PREFACE VII 1. STATIC CONJECTURAL VARIATIONS EQUILIBRIA:
INITIAL CONCEPTS 1 1.1 INTRODUCTION 1 1.2 ORIGIN OF THE CONJECTURAL
VARIATIONS CONCEPT 2 1.3 DEFINITIONS AND CHARACTERISATION OF CONJECTURAL
VARIATIONS EQUILIBRIA 7 1.3.1 NOTATION AND ASSUMPTIONS 7 1.3.2 NASH
EQUILIBRIUM, PARETO OPTIMALITY 8 1.3.3 CONJECTURES, REACTIONS AND
CONSISTENCY 8 1.3.4 CONJECTURAL VARIATIONS EQUILIBRIA WITH GENERAL
CONJEC- TURES (GCVE) 10 1.3.4.1 DEFINITIONS 10 1.3.4.2 CHARACTERISATION
OF GCVE 12 1.3.4.3 EXISTENCE RESULTS 13 1.3.5 CONJECTURAL VARIATIONS
EQUILIBRIA (CVE) 14 1.3.6 CONSISTENT GENERAL CONJECTURAL VARIATIONS
EQUILIBRIA (CGCVE) 15 1.3.6.1 DEFINITION 15 1.3.6.2 CHARACTERISATION OF
CGCVE 15 1.3.6.3 EXISTENCE RESULTS 16 1.3.7 CONSISTENT CONJECTURAL
VARIATIONS EQUILIBRIA (CCVE) 16 1.3.7.1 DEFINITION 17 1.3.7.2
CHARACTERISATION OF CCVE 17 1.3.7.3 EXISTENCE RESULTS 18 1.3.8
EQUILIBRIA WITH PUNCTUAL CONSISTENCY 19 XIV THEORY OF CONJECTURAL
VARIATIONS 1.3.8.1 DEFINITION 19 1.3.8.2 EXISTENCE RESULTS 21 1.3.9
CONJECTURES IN MANY-PLAYER GAMES 21 1.4 EXAMPLES AND ILLUSTRATIONS 22
1.4.1 COURNOT S DUOPOLY 23 1.4.2 BERTRAND S DUOPOLY 25 1.4.3 VOLUNTARY
CONTRIBUTIONS TO A PUBLIC GOOD 26 1.5 AN ATTEMPT AT GENERALISATION 28
1.6 CONCLUSION 31 2. CONJECTURES AS REDUCED FORMS FOR DYNAMIC
INTERACTIONS 33 2.1 INTRODUCTION 33 2.2 PRIVATE PROVISION OF A PUBLIC
GOOD 34 2.2.1 ONE-SHOT SIMULTANEOUS CONTRIBUTIONS 34 2.2.2 REPEATED
CONTRIBUTIONS 36 2.2.3 PRIVATE INVESTMENT IN A STOCK OF PUBLIC GOOD 40
2.3 OLIGOPOLY 44 2.3.1 STATIC COURNOT OLIGOPOLY WITH CONSTANT
CONJECTURES . 44 2.3.2 A REPEATED LINEAR OLIGOPOLY 45 2.3.3 DYNAMIC
DUOPOLY WITH ADJUSTMENT COSTS 47 2.4 PUBLIC INFRASTRUCTURE COMPETITION
49 2.4.1 STATIC INFRASTRUCTURE COMPETITION 49 2.4.2 DYNAMIC
INFRASTRUCTURE COMPETITION 50 2.5 A CLASS OF STATE-SPACE GAMES AND THE
ASSOCIATED STATIC GAMES WITH CONJECTURAL VARIATIONS 53 2.5.1 A
LINEAR-QUADRATIC FRAMEWORK WITH TWO STATE VARIABLES 53 2.5.2 PAYOFF
STRUCTURE AND CONJECTURES 57 2.6 CONCLUSION 59 2.7 TECHNICAL COMPLEMENTS
60 2.7.1 THE FEEDBACK NASH EQUILIBRIUM IN THE VOLUNTARY CON- TRIBUTION
GAME 60 2.7.2 PROOF OF THEOREM 2.1 61 2.7.3 PROOF OF THEOREM 2.2 63 3.
CONSISTENT CONJECTURES IN DYNAMIC SETTINGS 65 3.1 INTRODUCTION 65 3.2
CONJECTURES FOR DYNAMIC GAMES, EQUILIBRIA AND CONSISTENCY . 66 3.2.1
PRINCIPLE 67 CONTENTS XV 3.2.2 FERSHTMAN AND KAMIEN: CONJECTURES IN
DIFFERENTIAL GAMES 70 3.2.3 LAITNER S DISCRETE-TIME MODEL WITH COMPLETE
CONJECTURES 71 3.2.4 FRIEDMAN S DYNAMICALLY CONSISTENT CONJECTURES . . .
. 73 3.2.5 FEEDBACK-CONSISTENCY FOR LINEAR-QUADRATIC GAMES ... 74
3.2.5.1 SETTING OF THE PROBLEM 75 3.2.5.2 OPTIMAL REACTION 76 3.2.5.3
STATIONARY AND PROPORTIONAL CONJECTURES . . 78 3.2.5.4
FEEDBACK-CONSISTENT CONJECTURES 82 3.2.5.5 COURNOT S DUOPOLY 83 3.2.5.6
A DISTANCE GAME 85 3.3 THE MODEL OF BA§AR, TURNOVSKY AND D OREY 86 3.4
CONCLUSION 87 4. DYNAMIC CONJECTURES, INCOMPLETE INFORMATION AND
LEARNING 91 4.1 INTRODUCTION 91 4.2 CONJECTURE ADJUSTMENT PROCESS 92
4.2.1 ITAYA AND DASGUPTA S CONJECTURE ADJUSTMENT PROCESS 93 4.2.2
PRINCIPLES 95 4.2.3 QUADRATIC MODELS 97 4.3 THE MODEL OF FRIEDMAN AND
MEZZETTI 100 4.4 A LEARNING MODEL FOR CONJECTURES 103 4.4.1 PRINCIPLE
104 4.4.2 GENERAL PROPERTIES 106 4.4.3 RESULTS 109 4.4.3.1 COURNOT S
OLIGOPOLY 109 4.4.3.2 BERTRAND S DUOPOLY 110 4.4.4 COMMENTS AND
LIMITATIONS ILL 4.5 EVOLUTIONARY GAMES AND CONSISTENT CONJECTURES 112
4.6 CONCLUSION 113 5. CONCLUSION 115 APPENDIX A PROPERTIES OF
CONJECTURAL EQUILIBRIA 119 A.I ISO-PAYOFFS CURVES AND CONJECTURED
REACTION FUNCTIONS . . . . 119 A.2 FAMILIES OF PAYOFF FUNCTIONS WITH
CONSISTENT CVE 123 A.3 POLYNOMIAL CONSISTENT CONJECTURES 130 A.4 NASH
EQUILIBRIA, PARETO OPTIMA AND CONSISTENCY 132 XVI THEORY OF CONJECTURAL
VARIATIONS APPENDIX B COMPARISON BETWEEN CONJECTURAL EQUILIBRIA, NASH
EQUILIBRIA AND PARETO-EFFICIENT OUTCOMES 135 B.I TWO-PLAYER GAMES 136
B.I.I MAIN RESULTS 138 B.I.2 DISCUSSION 144 B.2 MANY PLAYERS GAMES 148
B.3 CONSISTENT CONJECTURES 150 APPENDIX C EXAMPLES AND ILLUSTRATIONS 151
C.I COURNOT S DUOPOLY 151 C.2 VOLUNTARY CONTRIBUTIONS TO A PUBLIC GOOD
153 C.3 A MODEL OF COMPETITION BETWEEN REGIONS 157 C.4 A MODEL OF
AGGREGATE-DEMAND EXTERNALITIES 159 BIBLIOGRAPHY 163 INDEX 167
|
adam_txt |
SERIES ON MATHEMATICAL ECONOMICS AND GAME THEORY VOL.2 THEORY OF
CONJECTURAL VARIATIONS CHARLES FIGUIERES UNIVERSITY OF BRISTOL, UK
FLLAIN JEAN-MARIE LIRMM, CNRS & UNIVERSITY OF MONTPELLIER II, FRANCE
NICOLAS QUEROU INRA-LAMETA & UNIVERSITY OF MONTPELLIER II, FRANCE MABEL
TICLBALL INRA-LAMETA, FRANCE WORLD SCIENTIFIC NEW JERSEY * LONDON *
SINGAPORE * SHANGHAI * HONGKONG * TAIPEI * BANGALORE 2008
AGI-INFORMATION MANAGEMENT CONSULTANTS MAY BE USED FOR PERSONAL
PURPORSES ONLY OR BY LIBRARIES ASSOCIATED TO DANDELON.COM NETWORK.
CONTENTS PREFACE VII 1. STATIC CONJECTURAL VARIATIONS EQUILIBRIA:
INITIAL CONCEPTS 1 1.1 INTRODUCTION 1 1.2 ORIGIN OF THE CONJECTURAL
VARIATIONS CONCEPT 2 1.3 DEFINITIONS AND CHARACTERISATION OF CONJECTURAL
VARIATIONS EQUILIBRIA 7 1.3.1 NOTATION AND ASSUMPTIONS 7 1.3.2 NASH
EQUILIBRIUM, PARETO OPTIMALITY 8 1.3.3 CONJECTURES, REACTIONS AND
CONSISTENCY 8 1.3.4 CONJECTURAL VARIATIONS EQUILIBRIA WITH GENERAL
CONJEC- TURES (GCVE) 10 1.3.4.1 DEFINITIONS 10 1.3.4.2 CHARACTERISATION
OF GCVE 12 1.3.4.3 EXISTENCE RESULTS 13 1.3.5 CONJECTURAL VARIATIONS
EQUILIBRIA (CVE) 14 1.3.6 CONSISTENT GENERAL CONJECTURAL VARIATIONS
EQUILIBRIA (CGCVE) 15 1.3.6.1 DEFINITION 15 1.3.6.2 CHARACTERISATION OF
CGCVE 15 1.3.6.3 EXISTENCE RESULTS 16 1.3.7 CONSISTENT CONJECTURAL
VARIATIONS EQUILIBRIA (CCVE) 16 1.3.7.1 DEFINITION 17 1.3.7.2
CHARACTERISATION OF CCVE 17 1.3.7.3 EXISTENCE RESULTS 18 1.3.8
EQUILIBRIA WITH PUNCTUAL CONSISTENCY 19 XIV THEORY OF CONJECTURAL
VARIATIONS 1.3.8.1 DEFINITION 19 1.3.8.2 EXISTENCE RESULTS 21 1.3.9
CONJECTURES IN MANY-PLAYER GAMES 21 1.4 EXAMPLES AND ILLUSTRATIONS 22
1.4.1 COURNOT'S DUOPOLY 23 1.4.2 BERTRAND'S DUOPOLY 25 1.4.3 VOLUNTARY
CONTRIBUTIONS TO A PUBLIC GOOD 26 1.5 AN ATTEMPT AT GENERALISATION 28
1.6 CONCLUSION 31 2. CONJECTURES AS REDUCED FORMS FOR DYNAMIC
INTERACTIONS 33 2.1 INTRODUCTION 33 2.2 PRIVATE PROVISION OF A PUBLIC
GOOD 34 2.2.1 ONE-SHOT SIMULTANEOUS CONTRIBUTIONS 34 2.2.2 REPEATED
CONTRIBUTIONS 36 2.2.3 PRIVATE INVESTMENT IN A STOCK OF PUBLIC GOOD 40
2.3 OLIGOPOLY 44 2.3.1 STATIC COURNOT OLIGOPOLY WITH CONSTANT
CONJECTURES . 44 2.3.2 A REPEATED LINEAR OLIGOPOLY 45 2.3.3 DYNAMIC
DUOPOLY WITH ADJUSTMENT COSTS 47 2.4 PUBLIC INFRASTRUCTURE COMPETITION
49 2.4.1 STATIC INFRASTRUCTURE COMPETITION 49 2.4.2 DYNAMIC
INFRASTRUCTURE COMPETITION 50 2.5 A CLASS OF STATE-SPACE GAMES AND THE
ASSOCIATED STATIC GAMES WITH CONJECTURAL VARIATIONS 53 2.5.1 A
LINEAR-QUADRATIC FRAMEWORK WITH TWO STATE VARIABLES 53 2.5.2 PAYOFF
STRUCTURE AND CONJECTURES 57 2.6 CONCLUSION 59 2.7 TECHNICAL COMPLEMENTS
60 2.7.1 THE FEEDBACK NASH EQUILIBRIUM IN THE VOLUNTARY CON- TRIBUTION
GAME 60 2.7.2 PROOF OF THEOREM 2.1 61 2.7.3 PROOF OF THEOREM 2.2 63 3.
CONSISTENT CONJECTURES IN DYNAMIC SETTINGS 65 3.1 INTRODUCTION 65 3.2
CONJECTURES FOR DYNAMIC GAMES, EQUILIBRIA AND CONSISTENCY . 66 3.2.1
PRINCIPLE 67 CONTENTS XV 3.2.2 FERSHTMAN AND KAMIEN: CONJECTURES IN
DIFFERENTIAL GAMES 70 3.2.3 LAITNER'S DISCRETE-TIME MODEL WITH COMPLETE
CONJECTURES 71 3.2.4 FRIEDMAN'S DYNAMICALLY CONSISTENT CONJECTURES . . .
. 73 3.2.5 FEEDBACK-CONSISTENCY FOR LINEAR-QUADRATIC GAMES . 74
3.2.5.1 SETTING OF THE PROBLEM 75 3.2.5.2 OPTIMAL REACTION 76 3.2.5.3
STATIONARY AND PROPORTIONAL CONJECTURES . . 78 3.2.5.4
FEEDBACK-CONSISTENT CONJECTURES 82 3.2.5.5 COURNOT'S DUOPOLY 83 3.2.5.6
A DISTANCE GAME 85 3.3 THE MODEL OF BA§AR, TURNOVSKY AND D'OREY 86 3.4
CONCLUSION 87 4. DYNAMIC CONJECTURES, INCOMPLETE INFORMATION AND
LEARNING 91 4.1 INTRODUCTION 91 4.2 CONJECTURE ADJUSTMENT PROCESS 92
4.2.1 ITAYA AND DASGUPTA'S CONJECTURE ADJUSTMENT PROCESS 93 4.2.2
PRINCIPLES 95 4.2.3 QUADRATIC MODELS 97 4.3 THE MODEL OF FRIEDMAN AND
MEZZETTI 100 4.4 A LEARNING MODEL FOR CONJECTURES 103 4.4.1 PRINCIPLE
104 4.4.2 GENERAL PROPERTIES 106 4.4.3 RESULTS 109 4.4.3.1 COURNOT'S
OLIGOPOLY 109 4.4.3.2 BERTRAND'S DUOPOLY 110 4.4.4 COMMENTS AND
LIMITATIONS ILL 4.5 EVOLUTIONARY GAMES AND CONSISTENT CONJECTURES 112
4.6 CONCLUSION 113 5. CONCLUSION 115 APPENDIX A PROPERTIES OF
CONJECTURAL EQUILIBRIA 119 A.I ISO-PAYOFFS CURVES AND CONJECTURED
REACTION FUNCTIONS . . . . 119 A.2 FAMILIES OF PAYOFF FUNCTIONS WITH
CONSISTENT CVE 123 A.3 POLYNOMIAL CONSISTENT CONJECTURES 130 A.4 NASH
EQUILIBRIA, PARETO OPTIMA AND CONSISTENCY 132 XVI THEORY OF CONJECTURAL
VARIATIONS APPENDIX B COMPARISON BETWEEN CONJECTURAL EQUILIBRIA, NASH
EQUILIBRIA AND PARETO-EFFICIENT OUTCOMES 135 B.I TWO-PLAYER GAMES 136
B.I.I MAIN RESULTS 138 B.I.2 DISCUSSION 144 B.2 MANY PLAYERS GAMES 148
B.3 CONSISTENT CONJECTURES 150 APPENDIX C EXAMPLES AND ILLUSTRATIONS 151
C.I COURNOT'S DUOPOLY 151 C.2 VOLUNTARY CONTRIBUTIONS TO A PUBLIC GOOD
153 C.3 A MODEL OF COMPETITION BETWEEN REGIONS 157 C.4 A MODEL OF
AGGREGATE-DEMAND EXTERNALITIES 159 BIBLIOGRAPHY 163 INDEX 167 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023121802 |
callnumber-first | Q - Science |
callnumber-label | QA269 |
callnumber-raw | QA269 |
callnumber-search | QA269 |
callnumber-sort | QA 3269 |
callnumber-subject | QA - Mathematics |
classification_rvk | QH 430 |
ctrlnum | (OCoLC)55628631 (DE-599)BVBBV023121802 |
dewey-full | 519.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.3 |
dewey-search | 519.3 |
dewey-sort | 3519.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01637nam a2200445zcb4500</leader><controlfield tag="001">BV023121802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080417 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080211s2004 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2004274892</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812387366</subfield><subfield code="9">981-238-736-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)55628631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023121802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-N2</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA269</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 430</subfield><subfield code="0">(DE-625)141581:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of conjectural variations</subfield><subfield code="c">Charles Figuíeres ... [et al.]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, NJ ; London [u.a.]</subfield><subfield code="b">World Scientific</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 168 S.</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Series on mathematical economics and game theory</subfield><subfield code="v">2</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz.: S. 163 - 166</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Evenwichtsmodellen (Economie)</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Speltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aGame theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aEconomics, Mathematical</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spieltheorie</subfield><subfield code="0">(DE-588)4056243-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Figuières, Charles</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Series on mathematical economics and game theory</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV021836771</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016324267&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016324267</subfield></datafield></record></collection> |
id | DE-604.BV023121802 |
illustrated | Illustrated |
index_date | 2024-07-02T19:51:50Z |
indexdate | 2024-07-09T21:11:33Z |
institution | BVB |
isbn | 9812387366 |
language | English |
lccn | 2004274892 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016324267 |
oclc_num | 55628631 |
open_access_boolean | |
owner | DE-N2 |
owner_facet | DE-N2 |
physical | XVI, 168 S. graph. Darst. 24 cm |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | World Scientific |
record_format | marc |
series | Series on mathematical economics and game theory |
series2 | Series on mathematical economics and game theory |
spelling | Theory of conjectural variations Charles Figuíeres ... [et al.] River Edge, NJ ; London [u.a.] World Scientific 2004 XVI, 168 S. graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier Series on mathematical economics and game theory 2 Literaturverz.: S. 163 - 166 Evenwichtsmodellen (Economie) gtt Speltheorie gtt aGame theory aEconomics, Mathematical Spieltheorie (DE-588)4056243-8 gnd rswk-swf Spieltheorie (DE-588)4056243-8 s DE-604 Figuières, Charles Sonstige oth Series on mathematical economics and game theory 2 (DE-604)BV021836771 2 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016324267&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Theory of conjectural variations Series on mathematical economics and game theory Evenwichtsmodellen (Economie) gtt Speltheorie gtt aGame theory aEconomics, Mathematical Spieltheorie (DE-588)4056243-8 gnd |
subject_GND | (DE-588)4056243-8 |
title | Theory of conjectural variations |
title_auth | Theory of conjectural variations |
title_exact_search | Theory of conjectural variations |
title_exact_search_txtP | Theory of conjectural variations |
title_full | Theory of conjectural variations Charles Figuíeres ... [et al.] |
title_fullStr | Theory of conjectural variations Charles Figuíeres ... [et al.] |
title_full_unstemmed | Theory of conjectural variations Charles Figuíeres ... [et al.] |
title_short | Theory of conjectural variations |
title_sort | theory of conjectural variations |
topic | Evenwichtsmodellen (Economie) gtt Speltheorie gtt aGame theory aEconomics, Mathematical Spieltheorie (DE-588)4056243-8 gnd |
topic_facet | Evenwichtsmodellen (Economie) Speltheorie aGame theory aEconomics, Mathematical Spieltheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016324267&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021836771 |
work_keys_str_mv | AT figuierescharles theoryofconjecturalvariations |