Development of pedotransfer functions in soil hydrology:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2004
|
Ausgabe: | 1st ed. |
Schriftenreihe: | Developments in soil science
30 |
Schlagworte: | |
Online-Zugang: | Publisher description Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxix, 512 p. ill. (some col.) 25 cm |
ISBN: | 0444517057 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV023119292 | ||
003 | DE-604 | ||
005 | 20091029 | ||
007 | t | ||
008 | 080208s2004 ne a||| |||| 00||| eng d | ||
010 | |a 2006274469 | ||
015 | |a GBA500142 |2 dnb | ||
020 | |a 0444517057 |9 0-444-51705-7 | ||
035 | |a (OCoLC)57101674 | ||
035 | |a (DE-599)BVBBV023119292 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a ne |c NL | ||
049 | |a DE-703 |a DE-83 |a DE-91 | ||
050 | 0 | |a S594 | |
082 | 0 | |a 631.4320151 | |
084 | |a RB 10160 |0 (DE-625)142220:12640 |2 rvk | ||
084 | |a ZC 13510 |0 (DE-625)154671: |2 rvk | ||
084 | |a BAU 672f |2 stub | ||
245 | 1 | 0 | |a Development of pedotransfer functions in soil hydrology |c edited by Ya. Pachepsky, W.J. Rawls |
250 | |a 1st ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2004 | |
300 | |a xxix, 512 p. |b ill. (some col.) |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Developments in soil science |v 30 | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Pédologie - Mathématiques | |
650 | 4 | |a Sols - Humidité - Modèles mathématiques | |
650 | 4 | |a Sols - Perméabilité - Modèles mathématiques | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Soil moisture |x Mathematical models | |
650 | 4 | |a Soil permeability |x Mathematical models | |
650 | 4 | |a Soil science |x Mathematics | |
650 | 0 | 7 | |a Bodenwasserhaushalt |0 (DE-588)4007421-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bodenwasserhaushalt |0 (DE-588)4007421-3 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Pachepsky, Yakov |e Sonstige |4 oth | |
830 | 0 | |a Developments in soil science |v 30 |w (DE-604)BV004079923 |9 30 | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0661/2006274469-d.html |3 Publisher description | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016321781&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016321781 |
Datensatz im Suchindex
_version_ | 1804137388519194624 |
---|---|
adam_text | DEVELOPMENTS IN SOIL SCIENCE - VOLUME 30 DEVELOPMENT OF PEDOTRANSFER
FUNCTIONS IN SOIL HYDROLOGY EDITED BY YA. PACHEPSKY USDA-ARS
ENVIRONMENTAL MICROBIAL SAFETY LABORATORY BELTSVILLE, MD, USA W.J. RAWLS
USDA-ARS HYDROLOGY AND REMOTE SENSING LABORATORY BELTSVILLE, MD, USA
2004 ELSEVIER AMSTERDAM * BOSTON * HEIDELBERG * LONDON * NEW YORK *
OXFORD * PARIS SAN DIEGO * SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO
XXI CONTENTS FOREWORD V PREFACE VII CONTRIBUTORS . XVII PART I. METHODS
TO DEVELOP PEDOTRANSFER FUNCTIONS CHAPTER 1. STATISTICAL REGRESSION H.
VEREECKEN AND M. HERBST 3 1. OBJECTIVES OF STATISTICAL REGRESSIONS 3 2.
PRELIMINARY ANALYSIS OF SOIL DATA 4 2.1. SIMPLE DATA ANALYSIS 4 2.2.
MULTIVARIATE METHODS 7 3. MODEL BUILDING 9 3.1. MODEL FIT 12 3.2. POOR
MODEL SPECIFICATION 14 3.3. CONFIDENCE INTERVALS ON ESTIMATED SOIL
PROPERTIES VALUES 15 3.4. OUTLIER DETECTION 15 4. VALIDATION OF
REGRESSION MODELS 16 5. SUMMARY 17 REFERENCES 18 CHAPTER 2. DATA MINING
AND EXPLORATION TECHNIQUES YA. PACHEPSKY AND M.G. SCHAAP 21 1.
ARTIFICIAL NEURAL NETWORKS 21 2. GROUP METHOD OF DATA HANDLING 24 3.
REGRESSION TREES 26 4. CROSS-VALIDATION PROCEDURES 29 5. CONCLUDING
REMARKS 29 REFERENCES 30 CHAPTER 3. ACCURACY AND UNCERTAINTY IN PTF
PREDICTIONS M.G. SCHAAP 33 1. OPTIMIZATION CRITERIA , 33 2. CRITERIA FOR
EVALUATING THE ACCURACY OF PTFS 36 3. EVALUATING THE UNCERTAINITY OF PTF
PREDICTIONS 39 REFERENCES 41 XXN PART II. SOIL HYDRAULIC PROPERTIES:
WATER RETENTION AND HYDRAULIC CONDUCTIVITY CHAPTER 4. SOIL TEXTURE AND
PARTICLE-SIZE DISTRIBUTION AS INPUT TO ESTIMATE SOIL HYDRAULIC
PROPERTIES A. NEMES AND W.J. RAWLS 47 1. INTRODUCTION 47 2.
PARTICLE-SIZE AND SOIL TEXTURE CLASS SYSTEMS 47 3. SOIL TEXTURE DATA IN
PEDOTRANSFER FUNCTIONS 49 3.1. THE USE OF TEXTURE CLASS INFORMATION IN
PEDOTRANSFER FUNCTIONS 49 3.2. THE USE OF PARTICLE-SIZE DISTRIBUTION
DATA IN PEDOTRANSFER FUNCTIONS 50 3.3. PEDOTRANSFER FUNCTIONS BASED
SOLELY ON TEXTURE OR PARTICLE-SIZE DISTRIBUTION INFORMATION 52 4.
INTERPOLATIONS TO FILL IN MISSING PARTICLE-SIZE DATA 53 5. EVALUATION OF
DIFFERENT REPRESENTATIONS OF PARTICLE-SIZE DISTRIBUTION 55 5.1. SOIL
DATA 55 5.2. METHODS 57 5.3. RESULTS 57 6. SUMMARY 63 REFERENCES 64
CHAPTER 5. SIMPLE PARAMETRIC METHODS TO ESTIMATE SOIL WATER RETENTION
AND HYDRAULIC CONDUCTIVITY D.J. TIMLIN, R.D. WILLIAMS, L.R. AHUJA AND
G.C. HEATHMAN 71 1. INTRODUCTION 71 2. ESTIMATING SOIL WATER CONTENTS
AND SOIL WATER RETENTION 72 2.1. A SCALING METHOD TO ESTIMATE SOIL WATER
RETENTION CURVES 72 2.2. THE ONE-PARAMETER GREGSON-HECTOR-MCGOVAN (GHM)
MODEL 73 2.3. AIR-ENTRY POTENTIAL AND SATURATED WATER CONTENT AND THE
GHM MODEL 78 2.4. THE GHM ONE-PARAMETER MODEL WITH GENERALIZED
PARAMETERS 79 2.4.1. IMPLEMENTATION OF THE GHM ONE-PARAMETER MODEL WITH
GENERALIZED PARAMETERS 81 2.5. USE OF AVAILABLE WATER CAPACITY WITH THE
GHM ONE-PARAMETER MODEL 83 3. HYDRAULIC CONDUCTIVITY 83 3.1. DETERMINING
SATURATED HYDRAULIC CONDUCTIVITY, K SAT 83 3.1.1. PREDICTING SATURATED
CONDUCTIVITY FROM EFFECTIVE POROSITY 84 3.2. RELATIONSHIPS FOR
UNSATURATED HYDRAULIC CONDUCTIVITY 86 3.2.1. EXTENDING THE ONE-PARAMETER
MODEL TO UNSATURATED HYDRAULIC CONDUCTIVITY-MATRIC POTENTIAL
RELATIONSHIPS 86 4. APPLICATIONS OF PEDOTRANSFER FUNCTIONS FOR
SIMULATION MODELS 88 5. SUMMARY 90 REFERENCES 91 CHAPTER 6. EFFECT OF
SOIL ORGANIC CARBON ON SOIL HYDRAULIC PROPERTIES W.J. RAWLS, A. NEMES
AND YA. PACHEPSKY , 95 1. INTRODUCTION 95 2. BULK DENSITY/POROSITY 95
XX111 3. SOIL WATER RETENTION 97 3.1. DATA 98 3.2. METHODS TO QUANTIFY
THE EFFECT OF ORGANIC CARBON CONTENT ON WATER RETENTION 99 3.3.
REGRESSION TREES 100 3.3.1. PREDICTORS: SOIL TEXTURE CLASS AND ORGANIC
CARBON CONTENT 100 3.3.2. PREDICTORS: SOIL TEXTURE CLASS, SOIL TAXONOMIC
ORDER AND ORGANIC CARBON CONTENT 101 3.3.3. PREDICTORS: SOIL TAXONOMIC
ORDER AND ORGANIC CARBON CONTENT 102 3.3.4. PREDICTORS: SAND, SILT, CLAY
AND ORGANIC CARBON CONTENT 103 3.3.5. SUMMARY 103 3.4. GROUP METHOD OF
DATA HANDLING 104 3.4.1. NO SPLIT OF THE DATA 106 3.4.2. SPLIT BY
TAXONOMIC ORDER 106 3.4.3. SPLIT BY TEXTURE CLASSES 106 3.5.
PEDOTRANSFER MODELS 107 3.6. SUMMARY 109 4. SATURATED HYDRAULIC
CONDUCTIVITY 110 5. CONCLUSIONS 111 REFERENCES 111 CHAPTER 7. USING SOIL
MORPHOLOGICAL ATTRIBUTES AND SOIL STRUCTURE IN PEDOTRANSFER FUNCTIONS A.
LILLY AND H. LIN _ 115 1. INTRODUCTION 115 2. USING SOIL MORPHOLOGY AND
STRUCTURE IN ESTIMATING SOIL HYDRAULIC PROPERTIES 117 2.1. QUALITATIVE
OR SEMI-QUANTITATIVE APPROACHES 117 2.1.1. PREDICTIONS OF HYDRAULIC
CONDUCTIVITY 117 2.1.2. PREDICTIONS OF MOISTURE RETENTION 120 2.1.3.
GROUPING AND CLASSIFICATION OF SOIL HYDROLOGICAL FUNCTIONS AND
PEDOTRANSFER RULES (PTRS) 122 2.2. QUANTITATIVE APPROACHES 126 2.2.1.
QUANTITATIVE CALCULATIONS OF HYDRAULIC CONDUCTIVITY AND MOISTURE
RETENTION USING MICROMORPHOMETRIC DATA 126 2.2.2. QUANTIFICATION OF
MACROMORPHOLOGICAL ATTRIBUTES IN DEVELOPING PTFS 127 2.2.3. OTHER
QUANTITATIVE USES OF QUALITATIVE MORPHOLOGICAL ATTRIBUTES IN PTFS 130 3.
FUTURE IMPROVEMENTS 133 3.1. STANDARDIZATION OF SOIL MORPHOLOGY
DESCRIPTIONS AND HYDRAULIC MEASUREMENTS 133 3.2. QUANTIFICATION OF SOIL
MORPHOLOGY INCLUDING SOIL STRUCTURE 134 3.3. DERIVATION OF PTFS FOR
SOILS WITH UNUSUAL CHARACTERISTICS 135 3.4. GROUPING SOILS BASED ON
TERRAIN AND GEOMORPHOLOGY 135 4. SUMMARY 135 REFERENCES 136 CHAPTER 8.
SOIL AGGREGATES AND WATER RETENTION A. GUBER, YA. PACHEPSKY, E. SHEIN
AND W.J. RAWLS 143 1. INTRODUCTION 143 2. SOIL DATABASE 144 3.
REGRESSION TREE MODELING 145 4. DISCUSSION AND CONCLUSION 148 REFERENCES
. .--- 150 CHAPTER 9. UTILIZING MINERALOGICAL AND CHEMICAL INFORMATION
IN PTFS A. BRUAND 153 1. MINERALOGICAL COMPOSITION OF THE CLAY FRACTION
153 2. CATION EXCHANGE CAPACITY 154 3. SOIL CHEMICAL PROPERTIES 155 4.
CONCLUDING REMARKS 156 REFERENCES 157 CHAPTER 10. PRELIMINARY GROUPING
OF SOILS A. BRUAND 159 1. ORIGIN OF THE VARIABILITY AND GROUPING
STRATEGY 159 2. GROUPING CRITERIA 160 2.1. GENETIC GROUPING 160 2.2.
HORIZON-BASED GROUPING 161 2.3. TEXTURE GROUPING 163 2.4. GROUPING BASED
ON STRUCTURE AND BULK DENSITY 165 2.5. PARENT MATERIAL GROUPING 167 2.6.
CONSECUTIVE GROUPING 167 3. GROUPING DECREASES THE NUMBER OF PREDICTORS
167 4. COMPARISON OF GROUPINGS AND IMPROVEMENT OF PREDICTION AFTER
GROUPING 168 5. CONCLUSION 171 REFERENCES 172 PART III. HYDROLOGICAL AND
PHYSICAL PARAMETERS CHAPTER 11. PEDOTRANSFER FUNCTIONS FOR SOIL
EROSION MODELS D. FLANAGAN 177 1. INTRODUCTION 177 2. HISTORY OF EARLY
U.S. EROSION RESEARCH 177 3. THE UNIVERSAL SOIL LOSS EQUATION 179 4.
PARAMETERIZATION OF EROSION PREDICTION MODELS 180 4.1. EROSION
PREDICTION MODELS 180 4.2. SEDIMENT PARTICLE FRACTIONS AND PARTICLE
COMPOSITION . 181 4.3. WEPP INFILTRATION PARAMETERIZATION 183 4.4. WEPP
ERODIBILITY PARAMETERIZATION 185 5. PROCEDURES TO DEVELOP EROSION MODEL
PEDOTRANSFER FUNCTIONS 186 5.1. EXPERIMENTAL TECHNIQUES 187 5.2. MERRILL
ERODIBILITY 188 5.3. RILL ERODIBILITY AND CRITICAL SHEAR STRESS 188 5.4.
EFFECTIVE HYDRAULIC CONDUCTIVITY 189 6. SUMMARY 190 REFERENCES 191 XXV
CHAPTER 12. SOLUTE ADSORPTION AND TRANSPORT PARAMETERS B. MINASNY AND E.
PERFECT 195 1. INTRODUCTION 195 2. SOLUTE ADSORPTION 196 3. DIFFUSIVE
SOLUTE TRANSPORT 201 4. CONVECTIVE-DISPERSIVE SOLUTE TRANSPORT 204 4.1.
CONVECTION DISPERSION EQUATION (CDE) 204 4.2. MOBILE-IMMOBILE MODEL
(MIM) 207 4.3. OTHER PHYSICO-EMPIRICAL MODELS 213 5. UPSCALING
PEDOTRANSFER FUNCTION PREDICTIONS 213 6. CONCLUSIONS AND FUTURE
DIRECTIONS 216 REFERENCES 217 CHAPTER 13. ESTIMATING SOIL SHRINKAGE
PARAMETERS E. BRAUDEAU, R.H. MOHTAR AND N. CHAHINIAN 225 1. IMPORTANCE
OF SHRINK-SWELL PROPERTIES 225 2. SOIL-WATER MEDIUM FUNCTIONAL MODEL 225
2.1. SOIL-WATER MEDIUM HIERARCHY AND FUNCTIONALITY 225 2.2.
CHARACTERIZATION OF THE PEDOSTRUCTURE USING SHRINKAGE CURVE 227 3.
SEEKING PEDOTRANSFER FUNCTIONS FOR THE SC USING THE PEDOSTRUCTURE
CHARACTERIZATION 229 3.1. THE REQUIRED PARAMETERS FOR CROSSING SCALES
FROM LABORATORY TO THE FIELD 230 3.2. SIGNIFICANCE OF THE SC PARAMETERS
AND ITS CORRESPONDING APPROXIMATION 231 3.3. CONSTRUCTION OF THE SC
FROM PRIMARY DATA OF SOIL 235 4. APPLICATION EXAMPLE 235 4.1.
PEDOTRANSFER FUNCTIONS FOR CALCULATING FC AND PWP (W D AND W B ) 235
4.2. VALUES OF LS MO D FOR THE FOUR TYPES OF SOIL 236 4.3. VALUE OF K BS
AS A FUNCTION OF TEXTURE 237 4.4. EQUATIONS USED TO BUILD THE SHRINKAGE
CURVE 237 5. CONCLUSION 238 APPENDIX A. LIST OF PARAMETERS AND
ABBREVIATIONS USED 238 REFERENCES 239 CHAPTER 14. KEY SOIL WATER
CONTENTS E. SHEIN, A. GUBER AND A. DEMBOVETSKY , 241 1. INTRODUCTION 241
2. MATERIALS AND METHODS 243 3. ESTIMATING SOIL WATER CONTENTS AT FIELD
CAPACITY 243 4. SELECTION OF KEY WATER CONTENTS TO ESTIMATE VAN
GENUCHTEN S PARAMETERS 245 5. CONCLUDING REMARKS 248 REFERENCES 248 XXVI
PART IV. SPATIAL COMPONENT IN PTF DEVELOPMENT CHAPTER 15. DATA
AVAILABILITY AND SCALE IN HYDROLOGIC APPLICATIONS K. SMETTEM, G.
PRACILIO, Y. OLIVER AND R. HARPER 253 1. INTRODUCTION 253 2. DESCRIBING
ONE-DIMENSIONAL FLOW 254 3. SOME ISSUES IN EXTRAPOLATING FROM
POINT-BASED SOIL WATER BALANCE 255 3.1. BACKGROUND OF A SIMPLE
PHYSICO-EMPIRICAL PEDOTRANSFER FUNCTION 257 3.2. DIFFICULTIES WITH
ESTIMATION OF THE AIR ENTRY POINT 260 3.3. AN INTERCOMPARISON OF THREE
SIMPLE PTFS 260 3.4. ESTIMATING THE HYDRAULIC CONDUCTIVITY MATCHING
POINT IN THE BROOKS-COREY K{H) OR K(6) RELATION 263 4. SPATIAL MAPPING
OF CLAY CONTENT USING ANCILLARY DATA 264 4.1. GAMMA RADIOMETRIC
TECHNIQUES 264 4.2. HIGH RESOLUTION AIRBORNE RADIOMETRIC SYSTEMS 265 5.
REDUNDANCY OF SOIL TEXTURAL CLASSES AND THE INTERRELATION WITH CLIMATE
267 6. CONCLUDING REMARKS 267 REFERENCES 268 CHAPTER 16. THE ROLE OF
TERRAIN ANALYSIS IN USING AND DEVELOPING PEDOTRANSFER FUNCTIONS AT.
ROMANO AND G.B. CHIRICO 273 1. INTRODUCTION 273 2. TERRAIN ANALYSIS FOR
LANDSCAPE DESCRIPTION 275 2.1. PRIMARY TERRAIN ATTRIBUTES 279 2.2.
SECONDARY TERRAIN ATTRIBUTES , 280 3. TERRAIN ATTRIBUTES AS AUXILIARY
DATA FOR INTERPOLATING SOIL PROPERTIES 280 4. TERRAIN ATTRIBUTES AS
INPUT PARAMETERS IN PTFS 283 5. CONCLUDING REMARKS AND FUTURE
DEVELOPMENTS 288 REFERENCES 290 CHAPTER 17. SPATIAL STRUCTURE OF PTF
ESTIMATES N. ROMANO 295 1. BACKGROUND AND JUSTIFICATION 295 2. SOIL
HYDRAULIC PROPERTY VARIATIONS AND THE ROLE OF SIMPLIFIED PREDICTIVE
METHODS 298 3. CASE STUDY AND DISCUSSION 303 3.1. POTENTIAL AND
LIMITATIONS OF USING PTF ESTIMATES TO CAPTURE THE SPATIAL STRUCTURE OF
SOIL HYDRAULIC PARAMETERS 304 3.2. ASSESSMENT OF SOIL HYDRAULIC SPATIAL
VARIABILITY USING ANNS AND TERRAIN ATTRIBUTES 313 4. CONCLUDING REMARKS
WITH AN EYE ON SCALE ISSUES 315 REFERENCES 317 XXV11 PART V.
USER-ORIENTED TECHNIQUES AND SOFTWARE CHAPTER 18. SOIL INFERENCE SYSTEMS
A.B. MCBRATNEY AND B. MINASNY 323 1. SOFTWARE FOR PEDOTRANSFER FUNCTIONS
323 2. SOIL INFERENCE SYSTEMS 324 3. A SCHEME FOR DEFINING UNCERTAINTIES
OF DATA INSIDE/OUTSIDE THE TRAINING SET 327 4. EXAMPLE OF SINFERS 328 5.
GENERAL DISCUSSION AND CONCLUSIONS 344 REFERENCES 345 CHAPTER 19.
GRAPHIC USER INTERFACES FOR PEDOTRANSFER FUNCTIONS M.G. SCHAAP 349 1.
SOIL WATER CHARACTERISTICS FROM TEXTURE 349 2. SOILPAR 350 3. ROSETTA
351 4. NEUROPACK 353 REFERENCES 355 CHAPTER 20. METHODS TO EVALUATE
PEDOTRANSFER FUNCTIONS 357 1. EVALUATION OF PEDOTRANSFER FUNCTIONS M.
DONATELLI, H. WOSTEN AND G. BELOCCHI 357 1.1. EVALUATING UNCERTAINTY IN
EQUATIONS AND DATA SETS 358 1.2. COMPARING ESTIMATES AND MEASUREMENTS
358 1.3. PEDOTRANSFER AS INPUTS FOR SIMULATION MODELS: SENSITIVITY
ANALYSIS 362 2. INTEGRATED INDICES FOR PEDOTRANSFER FUNCTION EVALUATION
M. DONATELLI, M. ACUTIS, A. NEMES AND WOSTEN 363 2.1. INTEGRATED INDICES
TO EVALUATE PTFS FOR SOIL WATER RETENTION 363 2.1.1. THE ACCURACY
MODULE 364 2.1.2. THE CORRELATION MODULE 366 2.1.3. THE PATTERN
MODULE 366 2.1.4. AGGREGATION OF MODULES 368 2.1.5. THE SOIL DATA SET
369 2.1.6. THE PEDOTRANSFER FUNCTIONS EVALUATED 370 2.2. EVALUATING
PEDOTRANSFER FUNCTIONS USING THE INTEGRATED INDICES 377 2.2.1. THE INDEX
IPTFSW 377 2.2.2. THE INDEX IPTFRC 388 2.2.3. FINAL REMARKS ABOUT
INTEGRATED INDICES FOR PEDOTRANSFER FUNCTION EVALUATION 388 3.
FUNCTIONAL EVALUATION OF PEDOTRANSFER FUNCTIONS H. WOSTEN, A. NEMES AND
M. ACUTIS 39 0 3.1. EXAMPLE OF FUNCTIONAL EVALUATION OF PTF UNCERTAINTY
390 3.2. APPLICATION OF PTFS IN A FUNCTIONAL CONTEXT 391 XXV111 APPENDIX
A: NUMERICAL INDICES AND TEST STATISTICS FOR MODEL EVALUATION G.
BELOCCHI A. 1 . LIST OF ABBREVIATIONS A.2. DIFFERENCE-BASED STATISTICS
A.3. CORRELATION-BASED STATISTICS APPENDIX B: FUZZY EXPERT SYSTEMS G.
FILA AND G. BELOCCHI REFERENCES PART VI. PEDOTRANSFER FUNCTIONS
DEVELOPED FOR DIFFERENT REGIONS OF THE WORLD CHAPTER 21. PEDOTRANSFER
FUNCTIONS FOR TROPICAL SOILS J. TOMASELLA AND M. HODNETT 1. INTRODUCTION
2. MATERIALS AND METHODS 3. RESULTS 4. DISCUSSION 5. CONCLUSIONS
APPENDIX: PTFS USED TO ESTIMATE VOLUMETRIC WATER CONTENT AT SELECTED
POTENTIALS AND AVAILABLE WATER CAPACITY 425 REFERENCES 428 CHAPTER 22.
PEDOTRANSFER FUNCTIONS FOR EUROPE J.H.M. WOSTEN AND A. NEMES 431
REFERENCES .. 435 CHAPTER 23. PEDOTRANSFER FUNCTIONS FOR THE UNITED
STATES W.J. RAWLS 437 1. INTRODUCTION 437 2. SOIL WATER RETENTION 437
2.1. PEDOTRANSFER FUNCTIONS FOR SPECIFIC WATER POTENTIALS ON THE SOIL
WATER RETENTION CURVE 2.2. ESTIMATION OF SOIL WATER RETENTION MODEL
PARAMETERS 3. SATURATED HYDRAULIC CONDUCTIVITY REFERENCES CHAPTER 24.
PEDOTRANSFER STUDIES IN POLAND R. WALCZAK, B. WITKOWSKA-WALCZAK AND C.
SLAWIRISKI 1. WATER RETENTION 1.1. IMPORTANCE OF VARIOUS SOIL SOLID
PHASE PARAMETERS 1.2. PEDOTRANSFER FUNCTIONS FOR MINERAL SOILS 1.3.
COMPARISON OF SELECTED PEDOTRANSFER FUNCTION MODELS 1.4. APPROACH TO
PEDOTRANSFER FUNCTIONS FOR ORGANIC SOILS XXIX 2. HYDRAULIC CONDUCTIVITY
455 2.1. SATURATED HYDRAULIC CONDUCTIVITY 455 2.2. UNSATURATED HYDRAULIC
CONDUCTIVITY 456 REFERENCES 462 CHAPTER 25. PEDOTRANSFER FUNCTIONS OF
THE RYE ISLAND - SOUTHWEST SLOVAKIA V. STEKAUEROVD AND J. SUTOR 465 1.
AREA DESCRIPTION 466 2. METHODS 468 3. RESULTS AND DISCUSSION 468 4.
CONCLUSION 471 REFERENCES 472 ADDITIONAL BIBLIOGRAPHY 475 INDEX 497
|
adam_txt |
DEVELOPMENTS IN SOIL SCIENCE - VOLUME 30 DEVELOPMENT OF PEDOTRANSFER
FUNCTIONS IN SOIL HYDROLOGY EDITED BY YA. PACHEPSKY USDA-ARS
ENVIRONMENTAL MICROBIAL SAFETY LABORATORY BELTSVILLE, MD, USA W.J. RAWLS
USDA-ARS HYDROLOGY AND REMOTE SENSING LABORATORY BELTSVILLE, MD, USA
2004 ELSEVIER AMSTERDAM * BOSTON * HEIDELBERG * LONDON * NEW YORK *
OXFORD * PARIS SAN DIEGO * SAN FRANCISCO * SINGAPORE * SYDNEY * TOKYO
XXI CONTENTS FOREWORD V PREFACE VII CONTRIBUTORS . XVII PART I. METHODS
TO DEVELOP PEDOTRANSFER FUNCTIONS CHAPTER 1. STATISTICAL REGRESSION H.
VEREECKEN AND M. HERBST 3 1. OBJECTIVES OF STATISTICAL REGRESSIONS 3 2.
PRELIMINARY ANALYSIS OF SOIL DATA 4 2.1. SIMPLE DATA ANALYSIS 4 2.2.
MULTIVARIATE METHODS 7 3. MODEL BUILDING 9 3.1. MODEL FIT 12 3.2. POOR
MODEL SPECIFICATION 14 3.3. CONFIDENCE INTERVALS ON ESTIMATED SOIL
PROPERTIES VALUES 15 3.4. OUTLIER DETECTION 15 4. VALIDATION OF
REGRESSION MODELS 16 5. SUMMARY 17 REFERENCES 18 CHAPTER 2. DATA MINING
AND EXPLORATION TECHNIQUES YA. PACHEPSKY AND M.G. SCHAAP 21 1.
ARTIFICIAL NEURAL NETWORKS 21 2. GROUP METHOD OF DATA HANDLING 24 3.
REGRESSION TREES 26 4. CROSS-VALIDATION PROCEDURES 29 5. CONCLUDING
REMARKS 29 REFERENCES 30 CHAPTER 3. ACCURACY AND UNCERTAINTY IN PTF
PREDICTIONS M.G. SCHAAP 33 1. OPTIMIZATION CRITERIA , 33 2. CRITERIA FOR
EVALUATING THE ACCURACY OF PTFS 36 3. EVALUATING THE UNCERTAINITY OF PTF
PREDICTIONS 39 REFERENCES 41 XXN PART II. SOIL HYDRAULIC PROPERTIES:
WATER RETENTION AND HYDRAULIC CONDUCTIVITY CHAPTER 4. SOIL TEXTURE AND
PARTICLE-SIZE DISTRIBUTION AS INPUT TO ESTIMATE SOIL HYDRAULIC
PROPERTIES A. NEMES AND W.J. RAWLS 47 1. INTRODUCTION 47 2.
PARTICLE-SIZE AND SOIL TEXTURE CLASS SYSTEMS 47 3. SOIL TEXTURE DATA IN
PEDOTRANSFER FUNCTIONS 49 3.1. THE USE OF TEXTURE CLASS INFORMATION IN
PEDOTRANSFER FUNCTIONS 49 3.2. THE USE OF PARTICLE-SIZE DISTRIBUTION
DATA IN PEDOTRANSFER FUNCTIONS 50 3.3. PEDOTRANSFER FUNCTIONS BASED
SOLELY ON TEXTURE OR PARTICLE-SIZE DISTRIBUTION INFORMATION 52 4.
INTERPOLATIONS TO FILL IN MISSING PARTICLE-SIZE DATA 53 5. EVALUATION OF
DIFFERENT REPRESENTATIONS OF PARTICLE-SIZE DISTRIBUTION 55 5.1. SOIL
DATA 55 5.2. METHODS 57 5.3. RESULTS 57 6. SUMMARY 63 REFERENCES 64
CHAPTER 5. SIMPLE PARAMETRIC METHODS TO ESTIMATE SOIL WATER RETENTION
AND HYDRAULIC CONDUCTIVITY D.J. TIMLIN, R.D. WILLIAMS, L.R. AHUJA AND
G.C. HEATHMAN 71 1. INTRODUCTION 71 2. ESTIMATING SOIL WATER CONTENTS
AND SOIL WATER RETENTION 72 2.1. A SCALING METHOD TO ESTIMATE SOIL WATER
RETENTION CURVES 72 2.2. THE ONE-PARAMETER GREGSON-HECTOR-MCGOVAN (GHM)
MODEL 73 2.3. AIR-ENTRY POTENTIAL AND SATURATED WATER CONTENT AND THE
GHM MODEL 78 2.4. THE GHM ONE-PARAMETER MODEL WITH GENERALIZED
PARAMETERS 79 2.4.1. IMPLEMENTATION OF THE GHM ONE-PARAMETER MODEL WITH
GENERALIZED PARAMETERS 81 2.5. USE OF AVAILABLE WATER CAPACITY WITH THE
GHM ONE-PARAMETER MODEL 83 3. HYDRAULIC CONDUCTIVITY 83 3.1. DETERMINING
SATURATED HYDRAULIC CONDUCTIVITY, K SAT 83 3.1.1. PREDICTING SATURATED
CONDUCTIVITY FROM EFFECTIVE POROSITY 84 3.2. RELATIONSHIPS FOR
UNSATURATED HYDRAULIC CONDUCTIVITY 86 3.2.1. EXTENDING THE ONE-PARAMETER
MODEL TO UNSATURATED HYDRAULIC CONDUCTIVITY-MATRIC POTENTIAL
RELATIONSHIPS 86 4. APPLICATIONS OF PEDOTRANSFER FUNCTIONS FOR
SIMULATION MODELS 88 5. SUMMARY 90 REFERENCES 91 CHAPTER 6. EFFECT OF
SOIL ORGANIC CARBON ON SOIL HYDRAULIC PROPERTIES W.J. RAWLS, A. NEMES
AND YA. PACHEPSKY , 95 1. INTRODUCTION 95 2. BULK DENSITY/POROSITY 95
XX111 3. SOIL WATER RETENTION 97 3.1. DATA 98 3.2. METHODS TO QUANTIFY
THE EFFECT OF ORGANIC CARBON CONTENT ON WATER RETENTION 99 3.3.
REGRESSION TREES 100 3.3.1. PREDICTORS: SOIL TEXTURE CLASS AND ORGANIC
CARBON CONTENT 100 3.3.2. PREDICTORS: SOIL TEXTURE CLASS, SOIL TAXONOMIC
ORDER AND ORGANIC CARBON CONTENT 101 3.3.3. PREDICTORS: SOIL TAXONOMIC
ORDER AND ORGANIC CARBON CONTENT 102 3.3.4. PREDICTORS: SAND, SILT, CLAY
AND ORGANIC CARBON CONTENT 103 3.3.5. SUMMARY 103 3.4. GROUP METHOD OF
DATA HANDLING 104 3.4.1. NO SPLIT OF THE DATA 106 3.4.2. SPLIT BY
TAXONOMIC ORDER 106 3.4.3. SPLIT BY TEXTURE CLASSES 106 3.5.
PEDOTRANSFER MODELS 107 3.6. SUMMARY 109 4. SATURATED HYDRAULIC
CONDUCTIVITY 110 5. CONCLUSIONS 111 REFERENCES 111 CHAPTER 7. USING SOIL
MORPHOLOGICAL ATTRIBUTES AND SOIL STRUCTURE IN PEDOTRANSFER FUNCTIONS A.
LILLY AND H. LIN _ 115 1. INTRODUCTION 115 2. USING SOIL MORPHOLOGY AND
STRUCTURE IN ESTIMATING SOIL HYDRAULIC PROPERTIES 117 2.1. QUALITATIVE
OR SEMI-QUANTITATIVE APPROACHES 117 2.1.1. PREDICTIONS OF HYDRAULIC
CONDUCTIVITY 117 2.1.2. PREDICTIONS OF MOISTURE RETENTION 120 2.1.3.
GROUPING AND CLASSIFICATION OF SOIL HYDROLOGICAL FUNCTIONS AND
PEDOTRANSFER RULES (PTRS) 122 2.2. QUANTITATIVE APPROACHES 126 2.2.1.
QUANTITATIVE CALCULATIONS OF HYDRAULIC CONDUCTIVITY AND MOISTURE
RETENTION USING MICROMORPHOMETRIC DATA 126 2.2.2. QUANTIFICATION OF
MACROMORPHOLOGICAL ATTRIBUTES IN DEVELOPING PTFS 127 2.2.3. OTHER
QUANTITATIVE USES OF QUALITATIVE MORPHOLOGICAL ATTRIBUTES IN PTFS 130 3.
FUTURE IMPROVEMENTS 133 3.1. STANDARDIZATION OF SOIL MORPHOLOGY
DESCRIPTIONS AND HYDRAULIC MEASUREMENTS 133 3.2. QUANTIFICATION OF SOIL
MORPHOLOGY INCLUDING SOIL STRUCTURE 134 3.3. DERIVATION OF PTFS FOR
SOILS WITH UNUSUAL CHARACTERISTICS 135 3.4. GROUPING SOILS BASED ON
TERRAIN AND GEOMORPHOLOGY 135 4. SUMMARY 135 REFERENCES 136 CHAPTER 8.
SOIL AGGREGATES AND WATER RETENTION A. GUBER, YA. PACHEPSKY, E. SHEIN
AND W.J. RAWLS 143 1. INTRODUCTION 143 2. SOIL DATABASE 144 3.
REGRESSION TREE MODELING 145 4. DISCUSSION AND CONCLUSION 148 REFERENCES
. .--- 150 CHAPTER 9. UTILIZING MINERALOGICAL AND CHEMICAL INFORMATION
IN PTFS A. BRUAND 153 1. MINERALOGICAL COMPOSITION OF THE CLAY FRACTION
" 153 2. CATION EXCHANGE CAPACITY 154 3. SOIL CHEMICAL PROPERTIES 155 4.
CONCLUDING REMARKS 156 REFERENCES 157 CHAPTER 10. PRELIMINARY GROUPING
OF SOILS A. BRUAND 159 1. ORIGIN OF THE VARIABILITY AND GROUPING
STRATEGY 159 2. GROUPING CRITERIA 160 2.1. GENETIC GROUPING 160 2.2.
HORIZON-BASED GROUPING 161 2.3. TEXTURE GROUPING 163 2.4. GROUPING BASED
ON STRUCTURE AND BULK DENSITY 165 2.5. PARENT MATERIAL GROUPING 167 2.6.
CONSECUTIVE GROUPING 167 3. GROUPING DECREASES THE NUMBER OF PREDICTORS
167 4. COMPARISON OF GROUPINGS AND IMPROVEMENT OF PREDICTION AFTER
GROUPING 168 5. CONCLUSION 171 REFERENCES 172 PART III. HYDROLOGICAL AND
PHYSICAL PARAMETERS \ CHAPTER 11. PEDOTRANSFER FUNCTIONS FOR SOIL
EROSION MODELS D. FLANAGAN 177 1. INTRODUCTION 177 2. HISTORY OF EARLY
U.S. EROSION RESEARCH 177 3. THE UNIVERSAL SOIL LOSS EQUATION 179 4.
PARAMETERIZATION OF EROSION PREDICTION MODELS 180 4.1. EROSION
PREDICTION MODELS 180 4.2. SEDIMENT PARTICLE FRACTIONS AND PARTICLE
COMPOSITION . 181 4.3. WEPP INFILTRATION PARAMETERIZATION 183 4.4. WEPP
ERODIBILITY PARAMETERIZATION 185 5. PROCEDURES TO DEVELOP EROSION MODEL
PEDOTRANSFER FUNCTIONS 186 5.1. EXPERIMENTAL TECHNIQUES 187 5.2. MERRILL
ERODIBILITY 188 5.3. RILL ERODIBILITY AND CRITICAL SHEAR STRESS 188 5.4.
EFFECTIVE HYDRAULIC CONDUCTIVITY 189 6. SUMMARY 190 REFERENCES 191 XXV
CHAPTER 12. SOLUTE ADSORPTION AND TRANSPORT PARAMETERS B. MINASNY AND E.
PERFECT 195 1. INTRODUCTION 195 2. SOLUTE ADSORPTION 196 3. DIFFUSIVE
SOLUTE TRANSPORT 201 4. CONVECTIVE-DISPERSIVE SOLUTE TRANSPORT 204 4.1.
CONVECTION DISPERSION EQUATION (CDE) 204 4.2. MOBILE-IMMOBILE MODEL
(MIM) 207 4.3. OTHER PHYSICO-EMPIRICAL MODELS 213 5. UPSCALING
PEDOTRANSFER FUNCTION PREDICTIONS 213 6. CONCLUSIONS AND FUTURE
DIRECTIONS 216 REFERENCES 217 CHAPTER 13. ESTIMATING SOIL SHRINKAGE
PARAMETERS E. BRAUDEAU, R.H. MOHTAR AND N. CHAHINIAN 225 1. IMPORTANCE
OF SHRINK-SWELL PROPERTIES 225 2. SOIL-WATER MEDIUM FUNCTIONAL MODEL 225
2.1. SOIL-WATER MEDIUM HIERARCHY AND FUNCTIONALITY 225 2.2.
CHARACTERIZATION OF THE PEDOSTRUCTURE USING SHRINKAGE CURVE 227 3.
SEEKING PEDOTRANSFER FUNCTIONS FOR THE SC USING THE PEDOSTRUCTURE
CHARACTERIZATION 229 3.1. THE REQUIRED PARAMETERS FOR CROSSING SCALES
FROM LABORATORY TO THE FIELD 230 3.2. SIGNIFICANCE OF THE SC PARAMETERS
AND ITS CORRESPONDING APPROXIMATION' 231 3.3. CONSTRUCTION OF THE SC
FROM PRIMARY DATA OF SOIL 235 4. APPLICATION EXAMPLE 235 4.1.
PEDOTRANSFER FUNCTIONS FOR CALCULATING FC AND PWP (W D AND W B ) 235
4.2. VALUES OF LS MO D FOR THE FOUR TYPES OF SOIL 236 4.3. VALUE OF K BS
AS A FUNCTION OF TEXTURE 237 4.4. EQUATIONS USED TO BUILD THE SHRINKAGE
CURVE 237 5. CONCLUSION 238 APPENDIX A. LIST OF PARAMETERS AND
ABBREVIATIONS USED 238 REFERENCES ' 239 CHAPTER 14. KEY SOIL WATER
CONTENTS E. SHEIN, A. GUBER AND A. DEMBOVETSKY , 241 1. INTRODUCTION 241
2. MATERIALS AND METHODS 243 3. ESTIMATING SOIL WATER CONTENTS AT FIELD
CAPACITY 243 4. SELECTION OF KEY WATER CONTENTS TO ESTIMATE VAN
GENUCHTEN'S PARAMETERS 245 5. CONCLUDING REMARKS 248 REFERENCES 248 XXVI
PART IV. SPATIAL COMPONENT IN PTF DEVELOPMENT CHAPTER 15. DATA
AVAILABILITY AND SCALE IN HYDROLOGIC APPLICATIONS K. SMETTEM, G.
PRACILIO, Y. OLIVER AND R. HARPER 253 1. INTRODUCTION 253 2. DESCRIBING
ONE-DIMENSIONAL FLOW 254 3. SOME ISSUES IN EXTRAPOLATING FROM
POINT-BASED SOIL WATER BALANCE 255 3.1. BACKGROUND OF A SIMPLE
PHYSICO-EMPIRICAL PEDOTRANSFER FUNCTION 257 3.2. DIFFICULTIES WITH
ESTIMATION OF THE "AIR ENTRY" POINT 260 3.3. AN INTERCOMPARISON OF THREE
SIMPLE PTFS 260 3.4. ESTIMATING THE HYDRAULIC CONDUCTIVITY "MATCHING
POINT" IN THE BROOKS-COREY K{H) OR K(6) RELATION 263 4. SPATIAL MAPPING
OF CLAY CONTENT USING ANCILLARY DATA 264 4.1. GAMMA RADIOMETRIC
TECHNIQUES 264 4.2. HIGH RESOLUTION AIRBORNE RADIOMETRIC SYSTEMS 265 5.
REDUNDANCY OF SOIL TEXTURAL CLASSES AND THE INTERRELATION WITH CLIMATE
267 6. CONCLUDING REMARKS 267 REFERENCES 268 CHAPTER 16. THE ROLE OF
TERRAIN ANALYSIS IN USING AND DEVELOPING PEDOTRANSFER FUNCTIONS AT.
ROMANO AND G.B. CHIRICO 273 1. INTRODUCTION 273 2. TERRAIN ANALYSIS FOR
LANDSCAPE DESCRIPTION 275 2.1. PRIMARY TERRAIN ATTRIBUTES 279 2.2.
SECONDARY TERRAIN ATTRIBUTES , 280 3. TERRAIN ATTRIBUTES AS AUXILIARY
DATA FOR INTERPOLATING SOIL PROPERTIES 280 4. TERRAIN ATTRIBUTES AS
INPUT PARAMETERS IN PTFS 283 5. CONCLUDING REMARKS AND FUTURE
DEVELOPMENTS 288 REFERENCES 290 CHAPTER 17. SPATIAL STRUCTURE OF PTF
ESTIMATES N. ROMANO 295 1. BACKGROUND AND JUSTIFICATION 295 2. SOIL
HYDRAULIC PROPERTY VARIATIONS AND THE ROLE OF SIMPLIFIED PREDICTIVE
METHODS 298 3. CASE STUDY AND DISCUSSION 303 3.1. POTENTIAL AND
LIMITATIONS OF USING PTF ESTIMATES TO CAPTURE THE SPATIAL STRUCTURE OF
SOIL HYDRAULIC PARAMETERS 304 3.2. ASSESSMENT OF SOIL HYDRAULIC SPATIAL
VARIABILITY USING ANNS AND TERRAIN ATTRIBUTES 313 4. CONCLUDING REMARKS
WITH AN EYE ON SCALE ISSUES 315 REFERENCES 317 XXV11 PART V.
USER-ORIENTED TECHNIQUES AND SOFTWARE CHAPTER 18. SOIL INFERENCE SYSTEMS
A.B. MCBRATNEY AND B. MINASNY 323 1. SOFTWARE FOR PEDOTRANSFER FUNCTIONS
323 2. SOIL INFERENCE SYSTEMS 324 3. A SCHEME FOR DEFINING UNCERTAINTIES
OF DATA INSIDE/OUTSIDE THE TRAINING SET 327 4. EXAMPLE OF SINFERS 328 5.
GENERAL DISCUSSION AND CONCLUSIONS 344 REFERENCES 345 CHAPTER 19.
GRAPHIC USER INTERFACES FOR PEDOTRANSFER FUNCTIONS M.G. SCHAAP 349 1.
SOIL WATER CHARACTERISTICS FROM TEXTURE 349 2. SOILPAR 350 3. ROSETTA
351 4. NEUROPACK 353 REFERENCES 355 CHAPTER 20. METHODS TO EVALUATE
PEDOTRANSFER FUNCTIONS 357 1. EVALUATION OF PEDOTRANSFER FUNCTIONS M.
DONATELLI, H. WOSTEN AND G. BELOCCHI 357 1.1. EVALUATING UNCERTAINTY IN
EQUATIONS AND DATA SETS 358 1.2. COMPARING ESTIMATES AND MEASUREMENTS
358 1.3. PEDOTRANSFER AS INPUTS FOR SIMULATION MODELS: SENSITIVITY
ANALYSIS 362 2. INTEGRATED INDICES FOR PEDOTRANSFER FUNCTION EVALUATION
M. DONATELLI, M. ACUTIS, A. NEMES AND WOSTEN 363 2.1. INTEGRATED INDICES
TO EVALUATE PTFS FOR SOIL WATER RETENTION 363 2.1.1. THE "ACCURACY"
MODULE 364 2.1.2. THE "CORRELATION" MODULE 366 2.1.3. THE "PATTERN"
MODULE 366 2.1.4. AGGREGATION OF MODULES 368 2.1.5. THE SOIL DATA SET
369 2.1.6. THE PEDOTRANSFER FUNCTIONS EVALUATED 370 2.2. EVALUATING
PEDOTRANSFER FUNCTIONS USING THE INTEGRATED INDICES 377 2.2.1. THE INDEX
IPTFSW 377 2.2.2. THE INDEX IPTFRC 388 2.2.3. FINAL REMARKS ABOUT
INTEGRATED INDICES FOR PEDOTRANSFER FUNCTION EVALUATION 388 3.
FUNCTIONAL EVALUATION OF PEDOTRANSFER FUNCTIONS H. WOSTEN, A. NEMES AND
M. ACUTIS 39 0 3.1. EXAMPLE OF FUNCTIONAL EVALUATION OF PTF UNCERTAINTY
390 3.2. APPLICATION OF PTFS IN A FUNCTIONAL CONTEXT 391 XXV111 APPENDIX
A: NUMERICAL INDICES AND TEST STATISTICS FOR MODEL EVALUATION G.
BELOCCHI A. 1 . LIST OF ABBREVIATIONS A.2. DIFFERENCE-BASED STATISTICS
A.3. CORRELATION-BASED STATISTICS APPENDIX B: FUZZY EXPERT SYSTEMS G.
FILA AND G. BELOCCHI REFERENCES PART VI. PEDOTRANSFER FUNCTIONS
DEVELOPED FOR DIFFERENT REGIONS OF THE WORLD CHAPTER 21. PEDOTRANSFER
FUNCTIONS FOR TROPICAL SOILS J. TOMASELLA AND M. HODNETT 1. INTRODUCTION
2. MATERIALS AND METHODS 3. RESULTS 4. DISCUSSION 5. CONCLUSIONS
APPENDIX: PTFS USED TO ESTIMATE VOLUMETRIC WATER CONTENT AT SELECTED
POTENTIALS AND AVAILABLE WATER CAPACITY 425 REFERENCES 428 CHAPTER 22.
PEDOTRANSFER FUNCTIONS FOR EUROPE J.H.M. WOSTEN AND A. NEMES 431
REFERENCES . 435 CHAPTER 23. PEDOTRANSFER FUNCTIONS FOR THE UNITED
STATES W.J. RAWLS \ 437 1. INTRODUCTION 437 2. SOIL WATER RETENTION 437
2.1. PEDOTRANSFER FUNCTIONS FOR SPECIFIC WATER POTENTIALS ON THE SOIL
WATER RETENTION CURVE 2.2. ESTIMATION OF SOIL WATER RETENTION MODEL
PARAMETERS 3. SATURATED HYDRAULIC CONDUCTIVITY REFERENCES CHAPTER 24.
PEDOTRANSFER STUDIES IN POLAND R. WALCZAK, B. WITKOWSKA-WALCZAK AND C.
SLAWIRISKI 1. WATER RETENTION 1.1. IMPORTANCE OF VARIOUS SOIL SOLID
PHASE PARAMETERS 1.2. PEDOTRANSFER FUNCTIONS FOR MINERAL SOILS 1.3.
COMPARISON OF SELECTED PEDOTRANSFER FUNCTION MODELS 1.4. APPROACH TO
PEDOTRANSFER FUNCTIONS FOR ORGANIC SOILS XXIX 2. HYDRAULIC CONDUCTIVITY
455 2.1. SATURATED HYDRAULIC CONDUCTIVITY 455 2.2. UNSATURATED HYDRAULIC
CONDUCTIVITY 456 REFERENCES 462 CHAPTER 25. PEDOTRANSFER FUNCTIONS OF
THE RYE ISLAND - SOUTHWEST SLOVAKIA V. STEKAUEROVD AND J. SUTOR 465 1.
AREA DESCRIPTION 466 2. METHODS 468 3. RESULTS AND DISCUSSION 468 4.
CONCLUSION 471 REFERENCES 472 ADDITIONAL BIBLIOGRAPHY 475 INDEX 497 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023119292 |
callnumber-first | S - Agriculture |
callnumber-label | S594 |
callnumber-raw | S594 |
callnumber-search | S594 |
callnumber-sort | S 3594 |
callnumber-subject | S - General Agriculture |
classification_rvk | RB 10160 ZC 13510 |
classification_tum | BAU 672f |
ctrlnum | (OCoLC)57101674 (DE-599)BVBBV023119292 |
dewey-full | 631.4320151 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 631 - Techniques, equipment & materials |
dewey-raw | 631.4320151 |
dewey-search | 631.4320151 |
dewey-sort | 3631.4320151 |
dewey-tens | 630 - Agriculture and related technologies |
discipline | Bauingenieurwesen Agrar-/Forst-/Ernährungs-/Haushaltswissenschaft / Gartenbau Geographie |
discipline_str_mv | Bauingenieurwesen Agrar-/Forst-/Ernährungs-/Haushaltswissenschaft / Gartenbau Geographie |
edition | 1st ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02253nam a2200577zcb4500</leader><controlfield tag="001">BV023119292</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091029 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080208s2004 ne a||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006274469</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA500142</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444517057</subfield><subfield code="9">0-444-51705-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)57101674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023119292</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">ne</subfield><subfield code="c">NL</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">S594</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">631.4320151</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10160</subfield><subfield code="0">(DE-625)142220:12640</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZC 13510</subfield><subfield code="0">(DE-625)154671:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 672f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Development of pedotransfer functions in soil hydrology</subfield><subfield code="c">edited by Ya. Pachepsky, W.J. Rawls</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxix, 512 p.</subfield><subfield code="b">ill. (some col.)</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Developments in soil science</subfield><subfield code="v">30</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pédologie - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sols - Humidité - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sols - Perméabilité - Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil moisture</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil permeability</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soil science</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bodenwasserhaushalt</subfield><subfield code="0">(DE-588)4007421-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bodenwasserhaushalt</subfield><subfield code="0">(DE-588)4007421-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pachepsky, Yakov</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Developments in soil science</subfield><subfield code="v">30</subfield><subfield code="w">(DE-604)BV004079923</subfield><subfield code="9">30</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0661/2006274469-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016321781&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016321781</subfield></datafield></record></collection> |
id | DE-604.BV023119292 |
illustrated | Illustrated |
index_date | 2024-07-02T19:50:58Z |
indexdate | 2024-07-09T21:11:28Z |
institution | BVB |
isbn | 0444517057 |
language | English |
lccn | 2006274469 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016321781 |
oclc_num | 57101674 |
open_access_boolean | |
owner | DE-703 DE-83 DE-91 DE-BY-TUM |
owner_facet | DE-703 DE-83 DE-91 DE-BY-TUM |
physical | xxix, 512 p. ill. (some col.) 25 cm |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Elsevier |
record_format | marc |
series | Developments in soil science |
series2 | Developments in soil science |
spelling | Development of pedotransfer functions in soil hydrology edited by Ya. Pachepsky, W.J. Rawls 1st ed. Amsterdam [u.a.] Elsevier 2004 xxix, 512 p. ill. (some col.) 25 cm txt rdacontent n rdamedia nc rdacarrier Developments in soil science 30 Includes bibliographical references and index Pédologie - Mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Mathematik Mathematisches Modell Soil moisture Mathematical models Soil permeability Mathematical models Soil science Mathematics Bodenwasserhaushalt (DE-588)4007421-3 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Bodenwasserhaushalt (DE-588)4007421-3 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Pachepsky, Yakov Sonstige oth Developments in soil science 30 (DE-604)BV004079923 30 http://www.loc.gov/catdir/enhancements/fy0661/2006274469-d.html Publisher description GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016321781&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Development of pedotransfer functions in soil hydrology Developments in soil science Pédologie - Mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Mathematik Mathematisches Modell Soil moisture Mathematical models Soil permeability Mathematical models Soil science Mathematics Bodenwasserhaushalt (DE-588)4007421-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4007421-3 (DE-588)4114528-8 |
title | Development of pedotransfer functions in soil hydrology |
title_auth | Development of pedotransfer functions in soil hydrology |
title_exact_search | Development of pedotransfer functions in soil hydrology |
title_exact_search_txtP | Development of pedotransfer functions in soil hydrology |
title_full | Development of pedotransfer functions in soil hydrology edited by Ya. Pachepsky, W.J. Rawls |
title_fullStr | Development of pedotransfer functions in soil hydrology edited by Ya. Pachepsky, W.J. Rawls |
title_full_unstemmed | Development of pedotransfer functions in soil hydrology edited by Ya. Pachepsky, W.J. Rawls |
title_short | Development of pedotransfer functions in soil hydrology |
title_sort | development of pedotransfer functions in soil hydrology |
topic | Pédologie - Mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Mathematik Mathematisches Modell Soil moisture Mathematical models Soil permeability Mathematical models Soil science Mathematics Bodenwasserhaushalt (DE-588)4007421-3 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Pédologie - Mathématiques Sols - Humidité - Modèles mathématiques Sols - Perméabilité - Modèles mathématiques Mathematik Mathematisches Modell Soil moisture Mathematical models Soil permeability Mathematical models Soil science Mathematics Bodenwasserhaushalt |
url | http://www.loc.gov/catdir/enhancements/fy0661/2006274469-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016321781&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV004079923 |
work_keys_str_mv | AT pachepskyyakov developmentofpedotransferfunctionsinsoilhydrology |