Simulation and inference for stochastic differential equations: with R examples
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2008
|
Schriftenreihe: | Springer series in statistics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVIII, 284 S. graph. Darst. |
ISBN: | 9780387758381 0387758380 9780387758398 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV023098561 | ||
003 | DE-604 | ||
005 | 20130905 | ||
007 | t | ||
008 | 080125s2008 gw d||| |||| 00||| eng d | ||
015 | |a 07,N47,0911 |2 dnb | ||
016 | 7 | |a 986188360 |2 DE-101 | |
020 | |a 9780387758381 |c Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 107.50 (freier Pr.) |9 978-0-387-75838-1 | ||
020 | |a 0387758380 |c Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 107.50 (freier Pr.) |9 0-387-75838-0 | ||
020 | |a 9780387758398 |9 978-0-387-75839-8 | ||
024 | 3 | |a 9780387758381 | |
028 | 5 | 2 | |a 11399216 |
035 | |a (OCoLC)191760004 | ||
035 | |a (DE-599)DNB986188360 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-91G |a DE-945 |a DE-83 |a DE-11 |a DE-355 |a DE-384 | ||
050 | 0 | |a QA274.23 | |
082 | 0 | |a 519.2 |2 22 | |
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a SK 835 |0 (DE-625)143260: |2 rvk | ||
084 | |a ST 250 |0 (DE-625)143626: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 606f |2 stub | ||
084 | |a QH 237 |2 sdnb | ||
100 | 1 | |a Iacus, Stefano Maria |e Verfasser |0 (DE-588)171920104 |4 aut | |
245 | 1 | 0 | |a Simulation and inference for stochastic differential equations |b with R examples |c Stefano M. Iacus |
264 | 1 | |a New York, NY |b Springer |c 2008 | |
300 | |a XVIII, 284 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in statistics | |
650 | 4 | |a Équations différentielles stochastiques | |
650 | 4 | |a Stochastic differential equations | |
650 | 0 | 7 | |a R |g Programm |0 (DE-588)4705956-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 1 | |a R |g Programm |0 (DE-588)4705956-4 |D s |
689 | 0 | |C b |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=3018756&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016301325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016301325 |
Datensatz im Suchindex
_version_ | 1805089891834396672 |
---|---|
adam_text |
Contents
Preface
.
VII
Notation.
XVII
1
Stochastic
Processes
and Stochastic Differential
Equations
. 1
1.1
Elements of probability and random variables
. 1
1.1.1
Mean, variance, and moments
. 2
1.1.2
Change of measure and
Radon-Nikodým
derivative
. . 4
1.2
Random number generation
. 5
1.3
The Monte Carlo method
. 5
1.4
Variance reduction techniques
. 8
1.4.1
Preferential sampling
. 9
1.4.2
Control variables
. 12
1.4.3
Antithetic sampling
. 13
1.5
Generalities of stochastic processes
. 14
1.5.1
Filtrations
. 14
1.5.2
Simple and quadratic variation of a process
. 15
1.5.3
Moments, covariance, and increments of stochastic
processes
. 16
1.5.4
Conditional expectation
. 16
1.5.5
Martingales
. 18
1.6
Brownian motion
. 18
1.6.1
Brownian motion as the limit of a random walk
. 20
1.6.2
Brownian motion as L2[0,T] expansion
. 22
1.6.3
Brownian motion paths are nowhere differentiable
. 24
1.7
Geometric Brownian motion
. 24
1.8
Brownian bridge
. 27
1.9
Stochastic integrals and stochastic differential equations
. 29
1.9.1
Properties of the stochastic integral and
Ito
processes
. 32
XII Contents
1.10 Diffusion
processes
. 33
1.10.1 Ergodicity. 35
1.10.2
Markovianìty
. 36
1.10.3
Quadratic variation
. 37
1.10.4
Infinitesimal generator of a diffusion process
. 37
1.10.5
How to obtain a martingale from a diffusion process
. 37
1.11
Ito
formula
. 38
1.11.1
Orders of differentials in the
Ito
formula
. 38
1.11.2
Linear stochastic differential equations
. 39
1.11.3
Derivation of the SDE for the geometric Brownian
motion
. 39
1.11.4
The Lamperti transform
. 40
1.12
Girsanov's theorem and likelihood ratio for
diffusion processes
. 41
1.13
Some parametric families of stochastic processes
. 43
1.13.1
Ornstein-Uhlenbeck or Vasicek process
. 43
1.13.2
The Black-Scholes-Merton or geometric Brownian
motion model
. 46
1.13.3
The Cox-Ingersoll-Ross model
. 47
1.13.4
The CKLS family of models
. 49
1.13.5
The modified
CIR
and hyperbolic processes
. 49
1.13.6
The hyperbolic processes
. 50
1.13.7
The nonlinear mean reversion A'it-Sahalia model
. 50
1.13.8
Double-well potential
. 51
1.13.9
The Jacobi diffusion process
. 51
1.13.10 Ahn
and
Gao
model or inverse of Fellers square
root model
. 52
1.13.11
Radial Ornstein-Uhlenbeck process
. 52
1.13.12
Pearson diffusions
. 52
1.13.13
Another classification of linear stochastic systems
. 54
1.13.14
One epidemic model
. 56
1.13.15
The stochastic cusp catastrophe model
. 57
1.13.16
Exponential families of diffusions
. 58
1.13.17
Generalized inverse
gaussian
diffusions
. 59
2
Numerical Methods for SDE
. 61
2.1
Euler
approximation
. 62
2.1.1
A note on code vectorization
. 63
2.2
Milstein scheme
. 65
2.3
Relationship between Milstein and
Euler
schemes
. 66
2.3.1
Transform of the geometric Brownian motion
. 68
2.3.2
Transform of the Cox-Ingersoll-Ross process
. 68
2.4
Implementation of
Euler
and Milstein schemes:
the sde.sim function
. 69
2.4.1
Example of use
. 70
Contents XIII
2.5
The constant elasticity of variance process
and strange paths
. 72
2.6
Predictor-corrector method
. 72
2.7
Strong convergence for
Euler
and Milstein schemes
. 74
2.8
KPS method of strong order
7 = 1.5 . 77
2.9
Second Milstein scheme
. 81
2.10
Drawing from the transition density
. 82
2.10.1
The Ornstein-Uhlenbeck or Vasicek process
. 83
2.10.2
The Black and Scholes process
. 83
2.10.3
The
CIR
process
. 83
2.10.4
Drawing from one model of the previous classes
. 84
2.11
Local linearization method
. 85
2.11.1
The Ozaki method
. 85
2.11.2
The Shoji-Ozaki method
. 87
2.12
Exact sampling
. 91
2.13
Simulation of diffusion bridges
. 98
2.13.1
The algorithm
. 99
2.14
Numerical considerations about the
Euler
scheme
. 101
2.15
Variance reduction techniques
. 102
2.15.1
Control variables
. 103
2.16
Summary of the function sde.sim
. 105
2.17
Tips and tricks on simulation
. 106
3
Parametric Estimation
. 109
3.1
Exact likelihood inference
. 112
3.1.1
The Ornstein-Uhlenbeck or Vasicek model
. 113
3.1.2
The Black and Scholes or geometric Brownian motion
model
. 117
3.1.3
The Cox-Ingersoll-Ross model
. 119
3.2
Pseudo-likelihood methods
. 122
3.2.1
Euler
method
. 122
3.2.2
Elerian method
. 125
3.2.3
Local linearization methods
. 127
3.2.4
Comparison of pseudo-likelihoods
. 128
3.3
Approximated likelihood methods
. 131
3.3.1 Kessler
method
. 131
3.3.2
Simulated likelihood method
. 134
3.3.3
Hermite polynomials expansion of the likelihood
. 138
3.4
Bayesian estimation
. 155
3.5
Estimating functions
. 157
3.5.1
Simple estimating functions
. 157
3.5.2
Algorithm
1
for simple estimating functions
. 164
3.5.3
Algorithm
2
for simple estimating functions
. 167
3.5.4
Martingale estimating functions
. 172
3.5.5
Polynomial martingale estimating functions
. 173
XIV Contents
3.5.6
Estimating functions based on eigenfunctions
. 178
3.5.7
Estimating functions based on transform functions
. 179
3.6
Discretization of continuous-time estimators
. 179
3.7
Generalized method of moments
. 182
3.7.1
The GMM algorithm
. 184
3.7.2
GMM, stochastic differential equations, and
Euler
method
. 185
3.8
What about multidimensional diffusion processes?
. 190
4
Miscellaneous Topics
. 191
4.1
Model identification via Akaike's information criterion
. 191
4.2
Nonparametric estimation
. 197
4.2.1
Stationary density estimation
. 198
4.2.2
Local-time and stationary density estimators
. 201
4.2.3
Estimation of diffusion and drift coefficients
. 202
4.3
Change-point estimation
. 208
4.3.1
Estimation of the change point with unknown drift.
. 212
4.3.2
A famous example
. 215
Appendix A: A brief excursus into
R
. 217
A.I Typing into the
R
console
. 217
A.
2
Assignments
. 218
A.3
R
vectors and linear algebra
. 220
A.4 Subsetting
. 221
A.5 Different types of objects
. 222
A.6 Expressions and functions
. 225
A.
7
Loops and vectorization
. 227
A.8 Environments
. 228
A.
9
Time series objects
. 229
A.10
R
Scripts
. 231
A.ll Miscellanea
. 232
Appendix B: The sde Package
. 233
BM
. 234
cpoint
. 235
DBridge
. 236
dcElerian
. 237
dcEuler
. 238
dcKossler
. 238
dcOzaki
. 239
dcShoji
. 240
dcSim
. 241
DW.T
. 243
EULERloglik
. 243
gnim
. 245
Contents
XV
HPloglik . 247
ksmooth . 248
linear,
mart,
ef.
250
rcBS. 251
rcCIR. 252
rcOU. 253
rsCIR. 254
rsOU. 255
sde.sim. 256
sdeAIC . 259
SIMloglik. 261
simple.ef. 262
simple.ef2 . 264
References
. 267
Index. 279 |
adam_txt |
Contents
Preface
.
VII
Notation.
XVII
1
Stochastic
Processes
and Stochastic Differential
Equations
. 1
1.1
Elements of probability and random variables
. 1
1.1.1
Mean, variance, and moments
. 2
1.1.2
Change of measure and
Radon-Nikodým
derivative
. . 4
1.2
Random number generation
. 5
1.3
The Monte Carlo method
. 5
1.4
Variance reduction techniques
. 8
1.4.1
Preferential sampling
. 9
1.4.2
Control variables
. 12
1.4.3
Antithetic sampling
. 13
1.5
Generalities of stochastic processes
. 14
1.5.1
Filtrations
. 14
1.5.2
Simple and quadratic variation of a process
. 15
1.5.3
Moments, covariance, and increments of stochastic
processes
. 16
1.5.4
Conditional expectation
. 16
1.5.5
Martingales
. 18
1.6
Brownian motion
. 18
1.6.1
Brownian motion as the limit of a random walk
. 20
1.6.2
Brownian motion as L2[0,T] expansion
. 22
1.6.3
Brownian motion paths are nowhere differentiable
. 24
1.7
Geometric Brownian motion
. 24
1.8
Brownian bridge
. 27
1.9
Stochastic integrals and stochastic differential equations
. 29
1.9.1
Properties of the stochastic integral and
Ito
processes
. 32
XII Contents
1.10 Diffusion
processes
. 33
1.10.1 Ergodicity. 35
1.10.2
Markovianìty
. 36
1.10.3
Quadratic variation
. 37
1.10.4
Infinitesimal generator of a diffusion process
. 37
1.10.5
How to obtain a martingale from a diffusion process
. 37
1.11
Ito
formula
. 38
1.11.1
Orders of differentials in the
Ito
formula
. 38
1.11.2
Linear stochastic differential equations
. 39
1.11.3
Derivation of the SDE for the geometric Brownian
motion
. 39
1.11.4
The Lamperti transform
. 40
1.12
Girsanov's theorem and likelihood ratio for
diffusion processes
. 41
1.13
Some parametric families of stochastic processes
. 43
1.13.1
Ornstein-Uhlenbeck or Vasicek process
. 43
1.13.2
The Black-Scholes-Merton or geometric Brownian
motion model
. 46
1.13.3
The Cox-Ingersoll-Ross model
. 47
1.13.4
The CKLS family of models
. 49
1.13.5
The modified
CIR
and hyperbolic processes
. 49
1.13.6
The hyperbolic processes
. 50
1.13.7
The nonlinear mean reversion A'it-Sahalia model
. 50
1.13.8
Double-well potential
. 51
1.13.9
The Jacobi diffusion process
. 51
1.13.10 Ahn
and
Gao
model or inverse of Fellers square
root model
. 52
1.13.11
Radial Ornstein-Uhlenbeck process
. 52
1.13.12
Pearson diffusions
. 52
1.13.13
Another classification of linear stochastic systems
. 54
1.13.14
One epidemic model
. 56
1.13.15
The stochastic cusp catastrophe model
. 57
1.13.16
Exponential families of diffusions
. 58
1.13.17
Generalized inverse
gaussian
diffusions
. 59
2
Numerical Methods for SDE
. 61
2.1
Euler
approximation
. 62
2.1.1
A note on code vectorization
. 63
2.2
Milstein scheme
. 65
2.3
Relationship between Milstein and
Euler
schemes
. 66
2.3.1
Transform of the geometric Brownian motion
. 68
2.3.2
Transform of the Cox-Ingersoll-Ross process
. 68
2.4
Implementation of
Euler
and Milstein schemes:
the sde.sim function
. 69
2.4.1
Example of use
. 70
Contents XIII
2.5
The constant elasticity of variance process
and strange paths
. 72
2.6
Predictor-corrector method
. 72
2.7
Strong convergence for
Euler
and Milstein schemes
. 74
2.8
KPS method of strong order
7 = 1.5 . 77
2.9
Second Milstein scheme
. 81
2.10
Drawing from the transition density
. 82
2.10.1
The Ornstein-Uhlenbeck or Vasicek process
. 83
2.10.2
The Black and Scholes process
. 83
2.10.3
The
CIR
process
. 83
2.10.4
Drawing from one model of the previous classes
. 84
2.11
Local linearization method
. 85
2.11.1
The Ozaki method
. 85
2.11.2
The Shoji-Ozaki method
. 87
2.12
Exact sampling
. 91
2.13
Simulation of diffusion bridges
. 98
2.13.1
The algorithm
. 99
2.14
Numerical considerations about the
Euler
scheme
. 101
2.15
Variance reduction techniques
. 102
2.15.1
Control variables
. 103
2.16
Summary of the function sde.sim
. 105
2.17
Tips and tricks on simulation
. 106
3
Parametric Estimation
. 109
3.1
Exact likelihood inference
. 112
3.1.1
The Ornstein-Uhlenbeck or Vasicek model
. 113
3.1.2
The Black and Scholes or geometric Brownian motion
model
. 117
3.1.3
The Cox-Ingersoll-Ross model
. 119
3.2
Pseudo-likelihood methods
. 122
3.2.1
Euler
method
. 122
3.2.2
Elerian method
. 125
3.2.3
Local linearization methods
. 127
3.2.4
Comparison of pseudo-likelihoods
. 128
3.3
Approximated likelihood methods
. 131
3.3.1 Kessler
method
. 131
3.3.2
Simulated likelihood method
. 134
3.3.3
Hermite polynomials expansion of the likelihood
. 138
3.4
Bayesian estimation
. 155
3.5
Estimating functions
. 157
3.5.1
Simple estimating functions
. 157
3.5.2
Algorithm
1
for simple estimating functions
. 164
3.5.3
Algorithm
2
for simple estimating functions
. 167
3.5.4
Martingale estimating functions
. 172
3.5.5
Polynomial martingale estimating functions
. 173
XIV Contents
3.5.6
Estimating functions based on eigenfunctions
. 178
3.5.7
Estimating functions based on transform functions
. 179
3.6
Discretization of continuous-time estimators
. 179
3.7
Generalized method of moments
. 182
3.7.1
The GMM algorithm
. 184
3.7.2
GMM, stochastic differential equations, and
Euler
method
. 185
3.8
What about multidimensional diffusion processes?
. 190
4
Miscellaneous Topics
. 191
4.1
Model identification via Akaike's information criterion
. 191
4.2
Nonparametric estimation
. 197
4.2.1
Stationary density estimation
. 198
4.2.2
Local-time and stationary density estimators
. 201
4.2.3
Estimation of diffusion and drift coefficients
. 202
4.3
Change-point estimation
. 208
4.3.1
Estimation of the change point with unknown drift.
. 212
4.3.2
A famous example
. 215
Appendix A: A brief excursus into
R
. 217
A.I Typing into the
R
console
. 217
A.
2
Assignments
. 218
A.3
R
vectors and linear algebra
. 220
A.4 Subsetting
. 221
A.5 Different types of objects
. 222
A.6 Expressions and functions
. 225
A.
7
Loops and vectorization
. 227
A.8 Environments
. 228
A.
9
Time series objects
. 229
A.10
R
Scripts
. 231
A.ll Miscellanea
. 232
Appendix B: The sde Package
. 233
BM
. 234
cpoint
. 235
DBridge
. 236
dcElerian
. 237
dcEuler
. 238
dcKossler
. 238
dcOzaki
. 239
dcShoji
. 240
dcSim
. 241
DW.T
. 243
EULERloglik
. 243
gnim
. 245
Contents
XV
HPloglik . 247
ksmooth . 248
linear,
mart,
ef.
250
rcBS. 251
rcCIR. 252
rcOU. 253
rsCIR. 254
rsOU. 255
sde.sim. 256
sdeAIC . 259
SIMloglik. 261
simple.ef. 262
simple.ef2 . 264
References
. 267
Index. 279 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Iacus, Stefano Maria |
author_GND | (DE-588)171920104 |
author_facet | Iacus, Stefano Maria |
author_role | aut |
author_sort | Iacus, Stefano Maria |
author_variant | s m i sm smi |
building | Verbundindex |
bvnumber | BV023098561 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.23 |
callnumber-search | QA274.23 |
callnumber-sort | QA 3274.23 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 820 SK 835 ST 250 |
classification_tum | MAT 606f |
ctrlnum | (OCoLC)191760004 (DE-599)DNB986188360 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV023098561</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20130905</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080125s2008 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N47,0911</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">986188360</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387758381</subfield><subfield code="c">Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 107.50 (freier Pr.)</subfield><subfield code="9">978-0-387-75838-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387758380</subfield><subfield code="c">Gb. : ca. EUR 65.91 (freier Pr.), ca. sfr 107.50 (freier Pr.)</subfield><subfield code="9">0-387-75838-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387758398</subfield><subfield code="9">978-0-387-75839-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387758381</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11399216</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191760004</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB986188360</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.23</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 835</subfield><subfield code="0">(DE-625)143260:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iacus, Stefano Maria</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)171920104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Simulation and inference for stochastic differential equations</subfield><subfield code="b">with R examples</subfield><subfield code="c">Stefano M. Iacus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 284 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Équations différentielles stochastiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic differential equations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=3018756&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016301325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016301325</subfield></datafield></record></collection> |
id | DE-604.BV023098561 |
illustrated | Illustrated |
index_date | 2024-07-02T19:43:53Z |
indexdate | 2024-07-20T09:31:07Z |
institution | BVB |
isbn | 9780387758381 0387758380 9780387758398 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016301325 |
oclc_num | 191760004 |
open_access_boolean | |
owner | DE-824 DE-91G DE-BY-TUM DE-945 DE-83 DE-11 DE-355 DE-BY-UBR DE-384 |
owner_facet | DE-824 DE-91G DE-BY-TUM DE-945 DE-83 DE-11 DE-355 DE-BY-UBR DE-384 |
physical | XVIII, 284 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series2 | Springer series in statistics |
spelling | Iacus, Stefano Maria Verfasser (DE-588)171920104 aut Simulation and inference for stochastic differential equations with R examples Stefano M. Iacus New York, NY Springer 2008 XVIII, 284 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in statistics Équations différentielles stochastiques Stochastic differential equations R Programm (DE-588)4705956-4 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 s R Programm (DE-588)4705956-4 s b DE-604 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=3018756&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016301325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Iacus, Stefano Maria Simulation and inference for stochastic differential equations with R examples Équations différentielles stochastiques Stochastic differential equations R Programm (DE-588)4705956-4 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
subject_GND | (DE-588)4705956-4 (DE-588)4057621-8 |
title | Simulation and inference for stochastic differential equations with R examples |
title_auth | Simulation and inference for stochastic differential equations with R examples |
title_exact_search | Simulation and inference for stochastic differential equations with R examples |
title_exact_search_txtP | Simulation and inference for stochastic differential equations with R examples |
title_full | Simulation and inference for stochastic differential equations with R examples Stefano M. Iacus |
title_fullStr | Simulation and inference for stochastic differential equations with R examples Stefano M. Iacus |
title_full_unstemmed | Simulation and inference for stochastic differential equations with R examples Stefano M. Iacus |
title_short | Simulation and inference for stochastic differential equations |
title_sort | simulation and inference for stochastic differential equations with r examples |
title_sub | with R examples |
topic | Équations différentielles stochastiques Stochastic differential equations R Programm (DE-588)4705956-4 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd |
topic_facet | Équations différentielles stochastiques Stochastic differential equations R Programm Stochastische Differentialgleichung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=3018756&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016301325&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT iacusstefanomaria simulationandinferenceforstochasticdifferentialequationswithrexamples |