Translation mechanisms:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Georgetown, Tex.
Landes Bioscience/Eurekah.com
2003
New York Kluwer Academic/Plenum Publishers |
Schriftenreihe: | Molecular biology intelligence unit
|
Schlagworte: | |
Online-Zugang: | Table of contents Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 446 p. ill. (some col.) 24 cm |
ISBN: | 0306478390 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023073210 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 080110s2003 xxua||| |||| 00||| eng d | ||
010 | |a 2003011164 | ||
020 | |a 0306478390 |9 0-306-47839-0 | ||
035 | |a (OCoLC)52258665 | ||
035 | |a (DE-599)BVBBV023073210 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-19 |a DE-11 | ||
050 | 0 | |a QH450.5 | |
082 | 0 | |a 572/.645 |2 21 | |
084 | |a WG 1850 |0 (DE-625)148505: |2 rvk | ||
245 | 1 | 0 | |a Translation mechanisms |c [edited by] Jacques Lapointe, Léa Brakier-Gingras |
264 | 1 | |a Georgetown, Tex. |b Landes Bioscience/Eurekah.com |c 2003 | |
264 | 1 | |a New York |b Kluwer Academic/Plenum Publishers | |
300 | |a 446 p. |b ill. (some col.) |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Molecular biology intelligence unit | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Traduction génétique | |
650 | 4 | |a aGenetic translation | |
650 | 4 | |a aTranslation, Genetic | |
700 | 1 | |a Lapointe, Jacques |e Sonstige |4 oth | |
700 | 1 | |a Brakier-Gingras, Léa |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip044/2003011164.html |3 Table of contents | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276339&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016276339 |
Datensatz im Suchindex
_version_ | 1804137317456150528 |
---|---|
adam_text | =^= CONTENTS
Preface xvii
I: The First Step of Translation: tRNA Aminoacylation
1. Transfer RNA Structure and Identity 1
Richard Giege and Magali Frugier
Introduction 1
Structure of tRNAs 1
Aminoacylation and Identity of tRNAs 9
Structure and Identity of Atypical tRNAs
and of tRNA-Like Domains 14
Engineering Structure and Identity of tRNA 16
A Few Remarks on Evolution 17
2. Aminoacyl-tRNA Synthetase Structure and Evolution 25
Dieter Soil and Michael Ibba
Introduction 25
Aminoacyl-tRNA Synthetases 27
Protein Complexes in Aminoacyl-tRNA Synthesis 29
Noncanonical Aminoacyi-tRNA Synthetases 30
Evolution of Aminoacyl-tRNA Synthetases 31
3. Transfer RNA-Dependent Amino Acid Discrimination
by Aminoacyl-tRNA Synthetases 34
Tamara L. Hendrickson and Paul Schimmel
Introduction 34
Aminoacyl-tRNA Synthetases and the Challenge of Accurate
Amino Acid Discrimination 36
Transfer RNA-Dependent Editing of Noncognate Amino Acids 39
Deacylation of Mischarged tRNAs 39
Pre-Transfer Editing 41
Nucleotide Determinants 42
Translocation 44
Mutagenesis of the Editing Center of IleRS 45
Mutations That Disrupt Total tRNA-Dependent Editing 47
Mutations That Affect Only Post-Transfer Editing 47
Mutations That Affect Pre-Transfer Editing 48
Mutations That Have No Effect on tRNA-Dependent Editing 49
The Chemical Mechanism of tRNA-Dependent Editing 49
Other Aminoacyl-tRNA Synthetases with Known
tRNA-Dependent Editing Reactions 49
Class I 49
ValRS 50
The CP1 Editing Domain of ValRS 50
Distinguishing between Pre-and Post-Transfer Editing in ValRS 50
Translocation of Misactivated Amino Acids by ValRS 52
Identity Determinants for Editing in tRNAVal 52
In Vivo Selection of ValRS Derivatives That Are Defective
in tRNA-Dependent Editing 53
Class II 54
ProRS 54
Editing via Cydization - Homocysteine (Hey),
Homoserine (Hse) and Ornithine (Orn) 57
EF-Tu Discrimination of Misacylated-tRNAs as a Third Sieve 59
Conclusions 60
4. Aminoacyl-Transfer RNA Maturation 65
Sylvain Blanquet, Yves Mechulam, Emmanuelle Schmitt
and Lionel Vial
Introduction: Aminoacyl-tRNA Processing in the Context
of Translation 65
Processing of Elongator tRNAs 67
Formylation of Initiator tRNA in Bacteria and Organelles 69
The Recycling of Incorrectly Esterified tRNAs 71
Conclusion: Rejection by Eubacterial EF-Tu
of Aminoacyl-tRNA Intermediates 74
5. The Directed Evolution of Organismal Chemistry;
Unnatural Amino Acid Incorporation 80
Jamie M. Backer and Andrew D. Ellington
Introduction 80
Chemical Homeostasis and Variety During
Organismal Evolution 81
Engineering Organismal Chemistry 86
Prospects for the Alteration and Expansion of the Genetic Code
and Organismal Chemistry in General 92
6. In Vitro Tools and in Vivo Engineering:
Incorporation of Unnatural Amino Acids into Proteins 95
Thomas J. Magliery, Miro Pastrnak, ]. Christopher Anderson,
Stephen W. Santoro, Brad Herberich, Eric Meggers, Lei Wang
and Peter G. Schultz
Introduction 95
Chemical and in Vitro Biosynthetic Approaches 96
In Vivo Approaches 102
Conclusion 109
7. Tests of a Stereochemical Genetic Code 115
Rob Knight, Laura Landweber and Michael Yarns
The Codon Correspondence Hypothesis 115
Chemical Associations: A Historical Perspective 116
Adaptors and Adaptation 118
Statistical Evidence for Triplet/Binding Site Associations 119
Concluding Remarks 125
8. Mitochondrial tRNA Aminoacylation and Human Diseases 129
Catherine Florentz and Marie Sissler
Introduction 129
Aminoacyl-tRNA Synthetases and tRNAs in Human
mt Translation 130
Human Diseases Correlated to Point Mutations
in mt tRNA Genes 136
Perspectives 143
II: Control of mRNA Degradation
Section A: Prokaryotic mRNA Decay
9. mRNA Decay in Escherichia colt: Enzymes, Mechanisms
and Adaptation 148
Rudolf K. Beran, Annie Prud homme-Ginereux, Kristian E. Baker,
Xin Miao, Robert W. Simons and George A. Mackie
Importance of mRNA Decay in Prokaryotes 148
mRNA Decay in Escherichia coli: A Current Model 149
The Initiating Step in mRNA Decay 149
Propagation of the Initiating Cleavage 152
Exonucleases and 3-End Scavenging 153
Polyadenylation and the Problem of Terminal
Secondary Structures 156
The Enigma of the RNA Degradosome 157
Adaptation of the RNA Decay Machinery 159
Concluding Remarks 160
10. The Interplay between Translation and mRNA Decay
in Prokaryotes: A Discussion on Current Paradigms 165
Marc Dreyfus and Susan Joyce
Introduction 165
Translation-Degradation Interplay: Definitions
and Practical Considerations 166
Translation and Degradation Relationship: Individual mRNAs 170
Translation and Degradation: The Global Relationship 178
11. Polyadenylation and Degradation of RNA in Prokaryotes 184
Philippe Regnier and Paulo E. Marujo
Introduction 184
Characterization of Poly(A) Tails 184
Enzymes of Poly(A) Metabolism 185
A Model of Poly(A) Metabolism 188
Functions of Polyadenylation 189
The Role of Polyadenylation in mRNA Decay 190
Conclusions and Perspectives 193
Section B: Eukaryotic mRNA Decay
12. The End in Sight: Poly(A), Translation and mRNA Stability
in Eukaryotes 197
Thomas Preiss
Introduction 197
The Mechanistic Role of the Poly(A) Tail during Initiation
of Translation 199
Structural Information on the Building Blocks of the Bridge
between Cap Structure and Poly(A) Tail 202
Molecular Concepts to Explain Translational Synergy 203
Mechanisms of Translational Control Involving the Poly(A) Tail 203
Translation and mRNA Degradation 206
Components of the mRNA Degradation Machinery 206
Perspectives 208
13. Nonsense-Mediated mRNA Decay in Mammalian Cells: From
Pre-mRNA Processing to mRNA Translation and Degradation 213
Lynne E. Maquat
Introduction 213
Translation Is Required for NMD 213
Pre-mRNA Splicing Is Generally Required for NMD 214
NMD Takes Place on CBP80-Bound mRNA 214
Sub-Cellular Location of NMD 215
mRNP Dynamics Leading Up to NMD: A Model 216
Deadenylation-Independent NMD in Mammalian Cells? 219
Conclusions 219
14. The Role of the Exosome and Ski Complexes
in mRNA Turnover 223
Philip Mitchell
Introduction 223
The Complement of the Yeast Exosome 226
The Relationship between Rrp6p Function and the Exosome 226
Exosome Complexes from Other Organisms 227
Structural Organization of the Exosome 227
mRNA Decay in Yeast 228
mRNA Decapping and the Lsm Complex 230
The 3 - 5 mRNA Decay Pathway 231
The Ski Mutants: Translation or Turnover? 232
Perspectives 233
Ill: The Ribosome and Associated Factors, and the Steps
of Polypeptide Biosynthesis
Section A: Ribosome Structure, Conformational Changes and Function
15. Crystal Structures of the Ribosome and Ribosomal Subunits 237
Brian T. Wimberly
Introduction 237
Structure of the 50S Subunit 240
Structure of the 30S Subunit 240
Structure of the 70S Ribosome 242
16. Probing the Role of Ribosomal RNA in Protein Synthesis
through Mutagenesis 247
Lea Brakier-Gingras, Francois Belanger and Michael O Connor
Introduction 247
Strategies for Mutagenesis of Ribosomal RNA 248
Effects of Mutations in Ribosomal RNA 250
Summary and Perspectives 259
17. Conformational Dynamics within the Ribosome 264
J. Stephen Lodmell and Scott P. Hennelly
The Active-Inactive Interconversion of 30S and 50S Subunits 264
Structural Changes Associated with mRNA Binding
and Initiation Events 266
Conformational Changes during Ribosome-tRNA Interactions 268
Ribosome : aa-tRNA Interactions and Translational Fidelity 268
Conformational Changes during Translocation 273
Other tRNA-rRNA Interactions 273
Conformational Changes Related to Antibiotic Binding 274
Evidence for Other Conformational Switches 275
Ribosome Assembly 275
Concluding Remarks 276
Section B: The Ribosome-Associated Protein Factors: Structure,
Function and Evolution
18. Mechanism of Translation Initiation in Eukaryotes 280
Francis Poulin and Nahum Sonenberg
Introduction 280
Formation of the 43S Preinitiation Complex 282
Recruitment of the 43S Complex to the mRNA 286
Scanning and Localization of the Initiator AUG 289
60S Ribosomal Subunit Joining 290
Regulation of Translation Initiation 291
Conclusion 292
19. Ribosomes on Standby: A Prelude to Translational (Re)Initiation 298
Maarten H. de Smit and Jan van Duin
Introduction 298
From Reinitiation to Initiation 298
Do We Need Standby Binding? 301
Nature and Biology of 30S Standby Binding 304
Physical Chemistry of 30S Standby Binding 312
Conclusion: Target Location in Translation 317
20. Translational Elongation 322
Poul Nissen, Jens Nyborg and Brian F. C. Clark
Introduction 322
Elongation Factor Tu Structures 326
Protein-RNA Interactions Studied
in the aa-tRNA:EF-Tu:GTP Complex 330
Macromolecular Mimicry in Translation 335
21. Translational Termination, Ribosome Recycling
and tmRNA Function 340
R.H. Buckingham andM. Ehrenberg
Introduction 340
The Nature of the Translational Stop Signal, Genetic Code
Variations and the Importance of Codon Context 340
Codon-Specific Release Factors (Class I Factors) 341
The Ribosome in Termination—Ribosomal Mutations
Affecting Termination 344
Class II Release Factors 344
Ribosome Recycling 346
tmRNA Function and Mechanism 348
22. Recoding: Site- or mRNA-Specific Alteration of Genetic
Readout Utilized for Gene Expression 354
Ivaylo P. Ivanov, Olga L. Gurvich, Raymond F. Gesteland
and John F. Atkins
Frameshifting 354
Redefinition 354
Bypassing 355
Examples of Recoding Events in Gene Regulation 355
Mechanisms of Recoding 357
Cis-Acting mRNA Sequences Stimulate Simultaneous Slippage 359
P-Site Events 359
Cis-Acting Sequences Stimulate Stop Codon Readthrough 359
+1 Frameshifting 360
Cis-Acting mRNA Sequences Stimulating +1 Frameshifting 361
Ribosomal Hopping 362
Cis-Acting mRNA Sequences Stimulate Ribosome Hopping 362
Selenocysteine Incorporation 362
Conclusion—Overview of the Field 365
IV: Regulation of the Biosynthesis of the Translation;*] Machinery
23. Control of Stable RNA Synthesis 370
Melanie M. Barker and Richard L Gourse
Contributors to the High Rate of Transcription of rRNA Genes 370
Regulation of Transcription of rRNA Genes 375
tRNA Promoters 381
Ribosomal Protein Synthesis 381
Conclusions and Future Directions 382
24. Regulation of the Expression of Aminoacyl-tRNA Synthetases
and Translation Factors 388
Harald Putzer and Soumaya Laalami
Introduction 388
Aminoacyl-tRNA Synthetases 388
Specific Control Mechanisms 390
Genetic Organization 395
A Specific but Conserved Control Mechanism 396
Structure and Expression off. colt Translation Factor Genes 401
Conclusions and Perspectives 410
V: Inhibitors of Protein Synthesis
25. Inhibitors of Aminoacyl-tRNA Synthetases as Antibiotics
and Tools for Structural and Mechanistic Studies 416
Robert Chenevert, Stiphane Bernier and Jacques Lapointe
Introduction 416
Natural Products and Analogues 418
Synthetic Inhibitors 421
Conclusion and Perspectives 425
26. Antibiotics as Indicators of the Functional Components
of the Ribosome 429
Dominique Fourmy, Satoko Yoshizawa and Stephen Douthwaite
Introduction 429
Aminoglycoside Antibiotics 430
Structural Studies of Aminoglycosides Bound to Their Target 433
Resistance to Aminoglycosides 437
Deciphering the Genetic Code 438
Additional Perspectives 438
Note Added in Proof 439
Index 443
|
adam_txt |
=^= CONTENTS
Preface xvii
I: The First Step of Translation: tRNA Aminoacylation
1. Transfer RNA Structure and Identity 1
Richard Giege and Magali Frugier
Introduction 1
Structure of tRNAs 1
Aminoacylation and Identity of tRNAs 9
Structure and Identity of Atypical tRNAs
and of tRNA-Like Domains 14
Engineering Structure and Identity of tRNA 16
A Few Remarks on Evolution 17
2. Aminoacyl-tRNA Synthetase Structure and Evolution 25
Dieter Soil and Michael Ibba
Introduction 25
Aminoacyl-tRNA Synthetases 27
Protein Complexes in Aminoacyl-tRNA Synthesis 29
Noncanonical Aminoacyi-tRNA Synthetases 30
Evolution of Aminoacyl-tRNA Synthetases 31
3. Transfer RNA-Dependent Amino Acid Discrimination
by Aminoacyl-tRNA Synthetases 34
Tamara L. Hendrickson and Paul Schimmel
Introduction 34
Aminoacyl-tRNA Synthetases and the Challenge of Accurate
Amino Acid Discrimination 36
Transfer RNA-Dependent Editing of Noncognate Amino Acids 39
Deacylation of Mischarged tRNAs 39
Pre-Transfer Editing 41
Nucleotide Determinants 42
Translocation 44
Mutagenesis of the Editing Center of IleRS 45
Mutations That Disrupt Total tRNA-Dependent Editing 47
Mutations That Affect Only Post-Transfer Editing 47
Mutations That Affect Pre-Transfer Editing 48
Mutations That Have No Effect on tRNA-Dependent Editing 49
The Chemical Mechanism of tRNA-Dependent Editing 49
Other Aminoacyl-tRNA Synthetases with Known
tRNA-Dependent Editing Reactions 49
Class I 49
ValRS 50
The CP1 Editing Domain of ValRS 50
Distinguishing between Pre-and Post-Transfer Editing in ValRS 50
Translocation of Misactivated Amino Acids by ValRS 52
Identity Determinants for Editing in tRNAVal 52
In Vivo Selection of ValRS Derivatives That Are Defective
in tRNA-Dependent Editing 53
Class II 54
ProRS 54
Editing via Cydization - Homocysteine (Hey),
Homoserine (Hse) and Ornithine (Orn) 57
EF-Tu Discrimination of Misacylated-tRNAs as a Third Sieve 59
Conclusions 60
4. Aminoacyl-Transfer RNA Maturation 65
Sylvain Blanquet, Yves Mechulam, Emmanuelle Schmitt
and Lionel Vial
Introduction: Aminoacyl-tRNA Processing in the Context
of Translation 65
Processing of Elongator tRNAs 67
Formylation of Initiator tRNA in Bacteria and Organelles 69
The Recycling of Incorrectly Esterified tRNAs 71
Conclusion: Rejection by Eubacterial EF-Tu
of Aminoacyl-tRNA Intermediates 74
5. The Directed Evolution of Organismal Chemistry;
Unnatural Amino Acid Incorporation 80
Jamie M. Backer and Andrew D. Ellington
Introduction 80
Chemical Homeostasis and Variety During
Organismal Evolution 81
Engineering Organismal Chemistry 86
Prospects for the Alteration and Expansion of the Genetic Code
and Organismal Chemistry in General 92
6. In Vitro Tools and in Vivo Engineering:
Incorporation of Unnatural Amino Acids into Proteins 95
Thomas J. Magliery, Miro Pastrnak, ]. Christopher Anderson,
Stephen W. Santoro, Brad Herberich, Eric Meggers, Lei Wang
and Peter G. Schultz
Introduction 95
Chemical and in Vitro Biosynthetic Approaches 96
In Vivo Approaches 102
Conclusion 109
7. Tests of a Stereochemical Genetic Code 115
Rob Knight, Laura Landweber and Michael Yarns
The Codon Correspondence Hypothesis 115
Chemical Associations: A Historical Perspective 116
Adaptors and Adaptation 118
Statistical Evidence for Triplet/Binding Site Associations 119
Concluding Remarks 125
8. Mitochondrial tRNA Aminoacylation and Human Diseases 129
Catherine Florentz and Marie Sissler
Introduction 129
Aminoacyl-tRNA Synthetases and tRNAs in Human
mt Translation 130
Human Diseases Correlated to Point Mutations
in mt tRNA Genes 136
Perspectives 143
II: Control of mRNA Degradation
Section A: Prokaryotic mRNA Decay
9. mRNA Decay in Escherichia colt: Enzymes, Mechanisms
and Adaptation 148
Rudolf K. Beran, Annie Prud'homme-Ginereux, Kristian E. Baker,
Xin Miao, Robert W. Simons and George A. Mackie
Importance of mRNA Decay in Prokaryotes 148
mRNA Decay in Escherichia coli: A Current Model 149
The Initiating Step in mRNA Decay 149
Propagation of the Initiating Cleavage 152
Exonucleases and 3-End Scavenging 153
Polyadenylation and the Problem of Terminal
Secondary Structures 156
The Enigma of the RNA Degradosome 157
Adaptation of the RNA Decay Machinery 159
Concluding Remarks 160
10. The Interplay between Translation and mRNA Decay
in Prokaryotes: A Discussion on Current Paradigms 165
Marc Dreyfus and Susan Joyce
Introduction 165
Translation-Degradation Interplay: Definitions
and Practical Considerations 166
Translation and Degradation Relationship: Individual mRNAs 170
Translation and Degradation: The Global Relationship 178
11. Polyadenylation and Degradation of RNA in Prokaryotes 184
Philippe Regnier and Paulo E. Marujo
Introduction 184
Characterization of Poly(A) Tails 184
Enzymes of Poly(A) Metabolism 185
A Model of Poly(A) Metabolism 188
Functions of Polyadenylation 189
The Role of Polyadenylation in mRNA Decay 190
Conclusions and Perspectives 193
Section B: Eukaryotic mRNA Decay
12. The End in Sight: Poly(A), Translation and mRNA Stability
in Eukaryotes 197
Thomas Preiss
Introduction 197
The Mechanistic Role of the Poly(A) Tail during Initiation
of Translation 199
Structural Information on the Building Blocks of the Bridge
between Cap Structure and Poly(A) Tail 202
Molecular Concepts to Explain Translational Synergy 203
Mechanisms of Translational Control Involving the Poly(A) Tail 203
Translation and mRNA Degradation 206
Components of the mRNA Degradation Machinery 206
Perspectives 208
13. Nonsense-Mediated mRNA Decay in Mammalian Cells: From
Pre-mRNA Processing to mRNA Translation and Degradation 213
Lynne E. Maquat
Introduction 213
Translation Is Required for NMD 213
Pre-mRNA Splicing Is Generally Required for NMD 214
NMD Takes Place on CBP80-Bound mRNA 214
Sub-Cellular Location of NMD 215
mRNP Dynamics Leading Up to NMD: A Model 216
Deadenylation-Independent NMD in Mammalian Cells? 219
Conclusions 219
14. The Role of the Exosome and Ski Complexes
in mRNA Turnover 223
Philip Mitchell
Introduction 223
The Complement of the Yeast Exosome 226
The Relationship between Rrp6p Function and the Exosome 226
Exosome Complexes from Other Organisms 227
Structural Organization of the Exosome 227
mRNA Decay in Yeast 228
mRNA Decapping and the Lsm Complex 230
The 3'- 5' mRNA Decay Pathway 231
The Ski Mutants: Translation or Turnover? 232
Perspectives 233
Ill: The Ribosome and Associated Factors, and the Steps
of Polypeptide Biosynthesis
Section A: Ribosome Structure, Conformational Changes and Function
15. Crystal Structures of the Ribosome and Ribosomal Subunits 237
Brian T. Wimberly
Introduction 237
Structure of the 50S Subunit 240
Structure of the 30S Subunit 240
Structure of the 70S Ribosome 242
16. Probing the Role of Ribosomal RNA in Protein Synthesis
through Mutagenesis 247
Lea Brakier-Gingras, Francois Belanger and Michael O'Connor
Introduction 247
Strategies for Mutagenesis of Ribosomal RNA 248
Effects of Mutations in Ribosomal RNA 250
Summary and Perspectives 259
17. Conformational Dynamics within the Ribosome 264
J. Stephen Lodmell and Scott P. Hennelly
The "Active-Inactive" Interconversion of 30S and 50S Subunits 264
Structural Changes Associated with mRNA Binding
and Initiation Events 266
Conformational Changes during Ribosome-tRNA Interactions 268
Ribosome : aa-tRNA Interactions and Translational Fidelity 268
Conformational Changes during Translocation 273
Other tRNA-rRNA Interactions 273
Conformational Changes Related to Antibiotic Binding 274
Evidence for Other Conformational Switches 275
Ribosome Assembly 275
Concluding Remarks 276
Section B: The Ribosome-Associated Protein Factors: Structure,
Function and Evolution
18. Mechanism of Translation Initiation in Eukaryotes 280
Francis Poulin and Nahum Sonenberg
Introduction 280
Formation of the 43S Preinitiation Complex 282
Recruitment of the 43S Complex to the mRNA 286
Scanning and Localization of the Initiator AUG 289
60S Ribosomal Subunit Joining 290
Regulation of Translation Initiation 291
Conclusion 292
19. Ribosomes on Standby: A Prelude to Translational (Re)Initiation 298
Maarten H. de Smit and Jan van Duin
Introduction 298
From Reinitiation to Initiation 298
Do We Need Standby Binding? 301
Nature and Biology of 30S Standby Binding 304
Physical Chemistry of 30S Standby Binding 312
Conclusion: Target Location in Translation 317
20. Translational Elongation 322
Poul Nissen, Jens Nyborg and Brian F. C. Clark
Introduction 322
Elongation Factor Tu Structures 326
Protein-RNA Interactions Studied
in the aa-tRNA:EF-Tu:GTP Complex 330
Macromolecular Mimicry in Translation 335
21. Translational Termination, Ribosome Recycling
and tmRNA Function 340
R.H. Buckingham andM. Ehrenberg
Introduction 340
The Nature of the Translational Stop Signal, Genetic Code
Variations and the Importance of Codon Context 340
Codon-Specific Release Factors (Class I Factors) 341
The Ribosome in Termination—Ribosomal Mutations
Affecting Termination 344
Class II Release Factors 344
Ribosome Recycling 346
tmRNA Function and Mechanism 348
22. Recoding: Site- or mRNA-Specific Alteration of Genetic
Readout Utilized for Gene Expression 354
Ivaylo P. Ivanov, Olga L. Gurvich, Raymond F. Gesteland
and John F. Atkins
Frameshifting 354
Redefinition 354
Bypassing 355
Examples of Recoding Events in Gene Regulation 355
Mechanisms of Recoding 357
Cis-Acting mRNA Sequences Stimulate Simultaneous Slippage 359
P-Site Events 359
Cis-Acting Sequences Stimulate Stop Codon Readthrough 359
+1 Frameshifting 360
Cis-Acting mRNA Sequences Stimulating +1 Frameshifting 361
Ribosomal Hopping 362
Cis-Acting mRNA Sequences Stimulate Ribosome Hopping 362
Selenocysteine Incorporation 362
Conclusion—Overview of the Field 365
IV: Regulation of the Biosynthesis of the Translation;*] Machinery
23. Control of Stable RNA Synthesis 370
Melanie M. Barker and Richard L Gourse
Contributors to the High Rate of Transcription of rRNA Genes 370
Regulation of Transcription of rRNA Genes 375
tRNA Promoters 381
Ribosomal Protein Synthesis 381
Conclusions and Future Directions 382
24. Regulation of the Expression of Aminoacyl-tRNA Synthetases
and Translation Factors 388
Harald Putzer and Soumaya Laalami
Introduction 388
Aminoacyl-tRNA Synthetases 388
Specific Control Mechanisms 390
Genetic Organization 395
A Specific but Conserved Control Mechanism 396
Structure and Expression off. colt'Translation Factor Genes 401
Conclusions and Perspectives 410
V: Inhibitors of Protein Synthesis
25. Inhibitors of Aminoacyl-tRNA Synthetases as Antibiotics
and Tools for Structural and Mechanistic Studies 416
Robert Chenevert, Stiphane Bernier and Jacques Lapointe
Introduction 416
Natural Products and Analogues 418
Synthetic Inhibitors 421
Conclusion and Perspectives 425
26. Antibiotics as Indicators of the Functional Components
of the Ribosome 429
Dominique Fourmy, Satoko Yoshizawa and Stephen Douthwaite
Introduction 429
Aminoglycoside Antibiotics 430
Structural Studies of Aminoglycosides Bound to Their Target 433
Resistance to Aminoglycosides 437
Deciphering the Genetic Code 438
Additional Perspectives 438
Note Added in Proof 439
Index 443 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV023073210 |
callnumber-first | Q - Science |
callnumber-label | QH450 |
callnumber-raw | QH450.5 |
callnumber-search | QH450.5 |
callnumber-sort | QH 3450.5 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WG 1850 |
ctrlnum | (OCoLC)52258665 (DE-599)BVBBV023073210 |
dewey-full | 572/.645 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 572 - Biochemistry |
dewey-raw | 572/.645 |
dewey-search | 572/.645 |
dewey-sort | 3572 3645 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01588nam a2200421zc 4500</leader><controlfield tag="001">BV023073210</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">080110s2003 xxua||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2003011164</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0306478390</subfield><subfield code="9">0-306-47839-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)52258665</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023073210</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH450.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">572/.645</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WG 1850</subfield><subfield code="0">(DE-625)148505:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Translation mechanisms</subfield><subfield code="c">[edited by] Jacques Lapointe, Léa Brakier-Gingras</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Georgetown, Tex.</subfield><subfield code="b">Landes Bioscience/Eurekah.com</subfield><subfield code="c">2003</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Kluwer Academic/Plenum Publishers</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">446 p.</subfield><subfield code="b">ill. (some col.)</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Molecular biology intelligence unit</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traduction génétique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aGenetic translation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aTranslation, Genetic</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lapointe, Jacques</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brakier-Gingras, Léa</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip044/2003011164.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276339&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016276339</subfield></datafield></record></collection> |
id | DE-604.BV023073210 |
illustrated | Illustrated |
index_date | 2024-07-02T19:33:53Z |
indexdate | 2024-07-09T21:10:22Z |
institution | BVB |
isbn | 0306478390 |
language | English |
lccn | 2003011164 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016276339 |
oclc_num | 52258665 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-11 |
physical | 446 p. ill. (some col.) 24 cm |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Landes Bioscience/Eurekah.com Kluwer Academic/Plenum Publishers |
record_format | marc |
series2 | Molecular biology intelligence unit |
spelling | Translation mechanisms [edited by] Jacques Lapointe, Léa Brakier-Gingras Georgetown, Tex. Landes Bioscience/Eurekah.com 2003 New York Kluwer Academic/Plenum Publishers 446 p. ill. (some col.) 24 cm txt rdacontent n rdamedia nc rdacarrier Molecular biology intelligence unit Includes bibliographical references and index Traduction génétique aGenetic translation aTranslation, Genetic Lapointe, Jacques Sonstige oth Brakier-Gingras, Léa Sonstige oth http://www.loc.gov/catdir/toc/ecip044/2003011164.html Table of contents HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276339&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Translation mechanisms Traduction génétique aGenetic translation aTranslation, Genetic |
title | Translation mechanisms |
title_auth | Translation mechanisms |
title_exact_search | Translation mechanisms |
title_exact_search_txtP | Translation mechanisms |
title_full | Translation mechanisms [edited by] Jacques Lapointe, Léa Brakier-Gingras |
title_fullStr | Translation mechanisms [edited by] Jacques Lapointe, Léa Brakier-Gingras |
title_full_unstemmed | Translation mechanisms [edited by] Jacques Lapointe, Léa Brakier-Gingras |
title_short | Translation mechanisms |
title_sort | translation mechanisms |
topic | Traduction génétique aGenetic translation aTranslation, Genetic |
topic_facet | Traduction génétique aGenetic translation aTranslation, Genetic |
url | http://www.loc.gov/catdir/toc/ecip044/2003011164.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016276339&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lapointejacques translationmechanisms AT brakiergingraslea translationmechanisms |