Introduction to scanning tunneling microscopy:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2008
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Monographs on the physics and chemistry of materials
64 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | LXIII, 423 S. Ill., graph. Darst. |
ISBN: | 9780199211500 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV023049245 | ||
003 | DE-604 | ||
005 | 20161124 | ||
007 | t | ||
008 | 071213s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780199211500 |9 978-0-19-921150-0 | ||
035 | |a (OCoLC)137312938 | ||
035 | |a (DE-599)BVBBV023049245 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-29T |a DE-634 |a DE-91G |a DE-11 |a DE-83 | ||
050 | 0 | |a QH212.S35 | |
082 | 0 | |a 502.82 |2 22 | |
084 | |a UH 6310 |0 (DE-625)159500: |2 rvk | ||
084 | |a UH 6320 |0 (DE-625)145762: |2 rvk | ||
084 | |a WC 3200 |0 (DE-625)148082: |2 rvk | ||
084 | |a PHY 135f |2 stub | ||
100 | 1 | |a Chen, C. Julian |e Verfasser |0 (DE-588)1080876596 |4 aut | |
245 | 1 | 0 | |a Introduction to scanning tunneling microscopy |c C. Julian Chen |
250 | |a 2. ed. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2008 | |
300 | |a LXIII, 423 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Monographs on the physics and chemistry of materials |v 64 | |
490 | 0 | |a Oxford science publications | |
650 | 4 | |a Scanning tunneling microscopy | |
650 | 0 | 7 | |a Rastertunnelmikroskopie |0 (DE-588)4252995-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rastertunnelmikroskopie |0 (DE-588)4252995-5 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Monographs on the physics and chemistry of materials |v 64 |w (DE-604)BV000725086 |9 64 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016252646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016252646 |
Datensatz im Suchindex
_version_ | 1804137281463779328 |
---|---|
adam_text | Contents
Preface
to the Second Edition
xxiii
Preface to the First Edition
xxvii
Gallery
xxxiii
Chapter
1:
Overview
1
1.1
The scanning tunneling microscope
............... 1
1.2
The concept of tunneling
..................... 3
1.2.1
Transmission coefficient
................. 3
1.2.2
Semiclassical approximation
............... 6
1.2.3
The
Landauer
theory
................... 6
1.2.4
Tunneling conductance
.................. 10
1.3
Probing electronic structure at atomic scale
.......... 12
1.3.1
Experimental observations
................ 15
1.3.2
Origin of atomic resolution in STM
........... 18
1.4
The atomic force microscope
.................. 21
1.4.1
Atomic-scale imaging by AFM
............. 21
1.4.2
Role of covalent bonding in AFM imaging
....... 24
1.5
Illustrative applications
..................... 25
1.5.1
Catalysis research
.................... 25
1.5.2
Atomic-scale imaging at the liquid-solid interface
... 29
1.5.3
Atom manipulation
................... 33
1.5.4
Imaging and manipulating
DNA
using AFM
..... 35
Part I Principles
41
Chapter
2:
Tunneling Phenomenon
45
2.1
The metal-insulator-metal tunneling junction
......... 46
2.2
The Bardeen theory of tunneling
................ 48
2.2.1
One-dimensional case
.................. 48
2.2.2
Tunneling spectroscopy
................. 52
2.2.3
Energy dependence of tunneling matrix elements
... 53
2.2.4
Asymmetry in tunneling spectrum
........... 54
2.2.5
Three-dimensional case
................. 57
2.2.6
Error estimation
..................... 59
2.2.7
Wavefunction correction
................. 60
2.2.8
The transfer-Hamiltonian formalism
.......... 61
2.2.9
The tunneling matrix
.................. 63
viii Contents
2.2.10 Relation
to the
Landauer
theory
............64
2.3
Inelastic tunneling
........................64
2.3.1
Experimental facts
....................65
2.3.2
Frequency condition
...................66
2.3.3
Effect of finite temperature
...............67
2.4
Spin-polarized tunneling
.....................69
2.4.1
General formalism
....................70
2.4.2
The spin-valve effect
...................72
2.4.3
Experimental observations
................76
Chapter
3:
Tunneling Matrix Elements
77
3.1
Introduction
............................77
3.2
Tip wavefunctions
........................78
3.2.1
General form
.......................78
3.2.2
Tip wavefunctions as Green s functions
........81
3.3
The derivative rule: individual cases
..............82
3.3.1
s-wave tip state
...................... 82
3.3.2
p-wave tip states
..................... 83
3.3.3
d-wave tip states
..................... 84
3.3.4
Complex tip states
.................... 84
3.4
The derivative rule: general case
................85
3.5
An intuitive interpretation
....................91
Chapter
4:
Atomic Forces
93
4.1
Van
der Waals
force
.......................93
4.1.1
The van
der Waals
equation of state
..........93
4.1.2
The origin of van
der Waals
force
............94
4.1.3
Van
der Waals
force between a tip and a sample
... 96
4.2
Hard-core repulsion
........................98
4.3
The ionic bond
..........................98
4.4
The covalent bond: The concept
................100
4.4.1
Heisenberg s model of resonance
............101
4.4.2
The hydrogen molecule-ion
...............104
4.4.3
Three regimes of interaction
...............105
4.4.4
Van
der Waals
force
...................106
4.4.5
Resonance energy as tunneling matrix element
.... 107
4.4.6
Evaluation of the modified Bardeen integral
......
Ill
4.4.7
Repulsive force
......................114
4.5
The covalent bond: Many-electron atoms
...........115
Contents ix
4.5.1
The homonuclear diatomic molecules
..........115
4.5.2
The perturbation approach
...............115
4.5.3
Evaluation of the Bardeen Integral
...........118
4.5.4
Comparison with experimental data
..........119
Chapter
5:
Atomic Forces and Tunneling
123
5.1
The principle of equivalence
...................123
5.2
General theory
..........................126
5.2.1
The double-well problem
.................126
5.2.2
Canonical transformation of the transfer Hamiltonian
128
5.2.3
Diagonizing the tunneling matrix
............130
5.3
Case of a metal tip and a metal sample
............131
5.3.1
Van
der Waals
force
...................132
5.3.2
Resonance energy between two metal electrodes
.... 132
5.3.3
A measurable consequence
................135
5.3.4
Repulsive force
......................136
5.4
Experimental verifications
....................136
5.4.1
An early experiment
...................136
5.4.2
Experiments with frequency-modulation AFM
.... 138
5.4.3
Experiments with static AFM
..............140
5.4.4
Non-contact atomic force spectroscopy
.........143
5.5
Threshold resistance in atom manipulation
..........145
Chapter
6:
Nanometer-Scale Imaging
149
6.1
Types of STM and AFM images
................149
6.2
The Tersoff-Hamann model
...................151
6.2.1
The concept
........................151
6.2.2
The original derivation
..................152
6.2.3
Profiles of surface reconstructions
............155
6.2.4
Extension to finite bias voltages
............158
6.2.5
Surface states: the concept
...............160
6.2.6
Surface states: STM observations
............162
6.2.7
Heterogeneous surfaces
..................166
6.3
Limitations of the Tersoff-Hamann model
...........166
Chapter
7:
Atomic-Scale Imaging
169
7.1
Experimental facts
........................170
7.1.1
Universality of atomic resolution
............170
7.1.2
Corrugation inversion
..................170
7.1.3
Tip-state dependence
..................171
x
Contents
7.1.4
Distance
dependence of corrugation
..........173
7.2
Intuitive explanations
......................174
7.2.1
Sharpness of tip states
..................174
7.2.2
Phase effect
........................175
7.2.3
Arguments based on the reciprocity principle
.....177
7.3
Analytic treatments
.......................178
7.3.1
A one-dimensional case
.................178
7.3.2
Surfaces with hexagonal symmetry
...........182
7.3.3
Corrugation inversion
..................186
7.3.4
Profiles of atomic states as seen by STM
........190
7.3.5
Independent-orbital approximation
...........194
7.4
First-principles studies: tip electronic states
..........198
7.4.1
W
clusters as STM tip models
.............198
7.4.2
Density-functional study of a W-Cu STM junction
. . 199
7.4.3
Transition-metal pyramidal tips
.............199
7.4.4
Transition-metal atoms adsorbed on
W
slabs
.....200
7.5
First-principles studies: the images
...............202
7.5.1
Transition-metal surfaces
................202
7.5.2
Atomic corrugation and surface waves
.........204
7.5.3
Atom-resolved AFM images
...............205
7.6
Spin-polarized STM
.......................209
7.7
Chemical identification of surface atoms
............212
7.8
The principle of reciprocity
...................214
Chapter
8:
Nanomechanical Effects
219
8.1
Mechanical stability of the tip-sample junction
........220
8.1.1
Experimental observations
................220
8.1.2
Condition of mechanical stability
............223
8.1.3
Relaxation and the apparent
G
~
z
relation
......229
8.2
Mechanical effects on observed corrugations
..........231
8.2.1
Soft surfaces
.......................231
8.2.2
Hard surfaces
.......................233
8.2.3
First-principles simulations
...............236
8.2.4
Advanced topics
.....................237
8.2.5
The Pethica mechanism
.................238
8.3
Force in tunneling-barrier measurements
............238
Contents xi
Part II
Instrumentation 241
Chapter
9:
Piezoelectric Scanner
245
9.1
Piezoelectricity
..........................245
9.1.1
Piezoelectric effect
....................245
9.1.2
Inverse piezoelectric effect
................246
9.2
Piezoelectric materials in STM and AFM
...........249
9.2.1
Quartz
...........................249
9.2.2
Lead zirconate titanate ceramics
............250
9.3
Piezoelectric devices in STM and AFM
............254
9.3.1
Tripod scanner
......................254
9.3.2
Bimorph
..........................255
9.4
The tube scanner
.........................257
9.4.1
Deflection
.........................258
9.4.2
In situ testing and calibration
..............260
9.4.3
Resonant frequencies
...................263
9.4.4
Tilt compensation: the s-scanner
............264
9.4.5
Repolarizing a depolarized tube piezo
.........265
9.5
The shear piezo
..........................265
Chapter
10:
Vibration Isolation
269
10.1
Basic concepts
..........................269
10.2
Environmental vibration
.....................273
10.2.1
Measurement method
..................274
10.2.2
Vibration isolation of the foundation
..........275
10.3
Vibrational immunity of STM
..................277
10.4
Suspension-spring systems
....................278
10.4.1
Analysis of two-stage systems
..............278
10.4.2
Choice of springs
.....................280
10.4.3
Eddy-current damper
..................281
10.5
Pneumatic systems
........................282
Chapter
11:
Electronics and Control
283
11.1
Current amplifier
.........................283
11.1.1
Johnson noise and shot noise
..............284
11.1.2
Frequency response
....................286
11.1.3
Microphone effect
....................287
11.1.4
Logarithmic amplifier
..................288
11.2
Feedback circuit
.........................289
xii Contents
11.2.1
Steady-state response
..................290
11.2.2
Transient response
....................292
11.3
Computer interface
........................297
11.3.1
Automatic approaching
.................298
Chapter
12:
Mechanical design
299
12.1
The louse
.............................299
12.2
The pocket-size STM
.......................300
12.3
The single-tube STM
.......................301
12.4
The Besocke-type STM: the beetle
...............302
12.5
The walker
............................305
12.6
The kangaroo
...........................306
12.7
The Inchworm
..........................308
12.8
The match
.............................309
Chapter
13:
Tip Treatment
313
13.1
Introduction
............................313
13.2
Electrochemical tip etching
...................314
13.3
Ex situ tip treatments
......................317
13.3.1
Annealing
.........................317
13.3.2
Field evaporation and controlled deposition
......318
13.3.3
Annealing with a field
..................319
13.3.4
Atomic metallic ion emission
..............320
13.3.5
Field-assisted reaction with nitrogen
..........322
13.4
In situ tip treatments
......................324
13.4.1
High-field treatment
...................324
13.4.2
Controlled collision
....................325
13.5
Tip treatment for spin-polarized STM
.............326
13.5.1
Coating the tip with ferromagnetic materials
.....326
13.5.2
Coating the tip with antiferromagnetic materials
. . . 327
13.5.3
Controlled collision with magnetic surfaces
......327
13.6
Tip preparation for electrochemistry STM
...........328
Chapter
14:
Scanning Tunneling Spectroscopy
331
14.1
Electronics for scanning tunneling spectroscopy
........331
14.2
Nature of the observed tunneling spectra
............332
14.3
Tip treatment for spectroscopy studies
.............334
Contents xiii
14.3.1
Annealing
.........................334
14.3.2
Controlled collision with a metal surface
........336
14.4
The Feenstra parameter
.....................337
14.5
Determination of the tip DOS
..................338
14.5.1
Ex situ methods
.....................338
14.5.2
In situ methods
......................340
14.6
Inelastic scanning tunneling spectroscopy
...........344
14.6.1
Instrumentation
.....................344
14.6.2
Effect of finite modulation voltage
...........345
14.6.3
Experimental observations
................347
Chapter
15:
Atomic Force Microscopy
349
15.1
Static mode and dynamic mode
.................350
15.2
The cantilever
...........................351
15.2.1
Basic requirements
....................351
15.2.2
Fabrication
........................352
15.3
Static force detection
.......................354
15.3.1
Optical beam deflection
.................354
15.3.2
Optical
interferometry
..................356
15.4
Tapping-mode AFM
.......................357
15.4.1
Acoustic actuation in liquids
..............358
15.4.2
Magnetic actuation in liquids
..............359
15.5
Non-contact AFM
........................361
15.5.1
Case of small amplitude
.................361
15.5.2
Case of finite amplitude
.................364
15.5.3
Response function for frequency shift
..........365
15.5.4
Second harmonics
....................366
15.5.5
Average tunneling current
................368
15.5.6
Implementation
......................369
Appendix A: Green s Functions
371
Appendix B: Real Spherical Harmonics
373
Appendix C: Spherical Modified Bessel Functions
377
Appendix D: Plane Groups and Invariant Functions
381
D.I A brief summary of plane groups
................382
D.2 Invariant functions
........................385
xiv Contents
Appendix
E:
Elementary Elasticity Theory
389
E.I Stress and strain
.........................389
E.2 Small deflection of beams
....................391
E.3 Vibration of beams
........................394
E.4 Torsion
..............................395
E.5 Helical springs
..........................397
E.6 Contact stress: The Hertz formulas
...............398
|
adam_txt |
Contents
Preface
to the Second Edition
xxiii
Preface to the First Edition
xxvii
Gallery
xxxiii
Chapter
1:
Overview
1
1.1
The scanning tunneling microscope
. 1
1.2
The concept of tunneling
. 3
1.2.1
Transmission coefficient
. 3
1.2.2
Semiclassical approximation
. 6
1.2.3
The
Landauer
theory
. 6
1.2.4
Tunneling conductance
. 10
1.3
Probing electronic structure at atomic scale
. 12
1.3.1
Experimental observations
. 15
1.3.2
Origin of atomic resolution in STM
. 18
1.4
The atomic force microscope
. 21
1.4.1
Atomic-scale imaging by AFM
. 21
1.4.2
Role of covalent bonding in AFM imaging
. 24
1.5
Illustrative applications
. 25
1.5.1
Catalysis research
. 25
1.5.2
Atomic-scale imaging at the liquid-solid interface
. 29
1.5.3
Atom manipulation
. 33
1.5.4
Imaging and manipulating
DNA
using AFM
. 35
Part I Principles
41
Chapter
2:
Tunneling Phenomenon
45
2.1
The metal-insulator-metal tunneling junction
. 46
2.2
The Bardeen theory of tunneling
. 48
2.2.1
One-dimensional case
. 48
2.2.2
Tunneling spectroscopy
. 52
2.2.3
Energy dependence of tunneling matrix elements
. 53
2.2.4
Asymmetry in tunneling spectrum
. 54
2.2.5
Three-dimensional case
. 57
2.2.6
Error estimation
. 59
2.2.7
Wavefunction correction
. 60
2.2.8
The transfer-Hamiltonian formalism
. 61
2.2.9
The tunneling matrix
. 63
viii Contents
2.2.10 Relation
to the
Landauer
theory
.64
2.3
Inelastic tunneling
.64
2.3.1
Experimental facts
.65
2.3.2
Frequency condition
.66
2.3.3
Effect of finite temperature
.67
2.4
Spin-polarized tunneling
.69
2.4.1
General formalism
.70
2.4.2
The spin-valve effect
.72
2.4.3
Experimental observations
.76
Chapter
3:
Tunneling Matrix Elements
77
3.1
Introduction
.77
3.2
Tip wavefunctions
.78
3.2.1
General form
.78
3.2.2
Tip wavefunctions as Green's functions
.81
3.3
The derivative rule: individual cases
.82
3.3.1
s-wave tip state
. 82
3.3.2
p-wave tip states
. 83
3.3.3
d-wave tip states
. 84
3.3.4
Complex tip states
. 84
3.4
The derivative rule: general case
.85
3.5
An intuitive interpretation
.91
Chapter
4:
Atomic Forces
93
4.1
Van
der Waals
force
.93
4.1.1
The van
der Waals
equation of state
.93
4.1.2
The origin of van
der Waals
force
.94
4.1.3
Van
der Waals
force between a tip and a sample
. 96
4.2
Hard-core repulsion
.98
4.3
The ionic bond
.98
4.4
The covalent bond: The concept
.100
4.4.1
Heisenberg's model of resonance
.101
4.4.2
The hydrogen molecule-ion
.104
4.4.3
Three regimes of interaction
.105
4.4.4
Van
der Waals
force
.106
4.4.5
Resonance energy as tunneling matrix element
. 107
4.4.6
Evaluation of the modified Bardeen integral
.
Ill
4.4.7
Repulsive force
.114
4.5
The covalent bond: Many-electron atoms
.115
Contents ix
4.5.1
The homonuclear diatomic molecules
.115
4.5.2
The perturbation approach
.115
4.5.3
Evaluation of the Bardeen Integral
.118
4.5.4
Comparison with experimental data
.119
Chapter
5:
Atomic Forces and Tunneling
123
5.1
The principle of equivalence
.123
5.2
General theory
.126
5.2.1
The double-well problem
.126
5.2.2
Canonical transformation of the transfer Hamiltonian
128
5.2.3
Diagonizing the tunneling matrix
.130
5.3
Case of a metal tip and a metal sample
.131
5.3.1
Van
der Waals
force
.132
5.3.2
Resonance energy between two metal electrodes
. 132
5.3.3
A measurable consequence
.135
5.3.4
Repulsive force
.136
5.4
Experimental verifications
.136
5.4.1
An early experiment
.136
5.4.2
Experiments with frequency-modulation AFM
. 138
5.4.3
Experiments with static AFM
.140
5.4.4
Non-contact atomic force spectroscopy
.143
5.5
Threshold resistance in atom manipulation
.145
Chapter
6:
Nanometer-Scale Imaging
149
6.1
Types of STM and AFM images
.149
6.2
The Tersoff-Hamann model
.151
6.2.1
The concept
.151
6.2.2
The original derivation
.152
6.2.3
Profiles of surface reconstructions
.155
6.2.4
Extension to finite bias voltages
.158
6.2.5
Surface states: the concept
.160
6.2.6
Surface states: STM observations
.162
6.2.7
Heterogeneous surfaces
.166
6.3
Limitations of the Tersoff-Hamann model
.166
Chapter
7:
Atomic-Scale Imaging
169
7.1
Experimental facts
.170
7.1.1
Universality of atomic resolution
.170
7.1.2
Corrugation inversion
.170
7.1.3
Tip-state dependence
.171
x
Contents
7.1.4
Distance
dependence of corrugation
.173
7.2
Intuitive explanations
.174
7.2.1
Sharpness of tip states
.174
7.2.2
Phase effect
.175
7.2.3
Arguments based on the reciprocity principle
.177
7.3
Analytic treatments
.178
7.3.1
A one-dimensional case
.178
7.3.2
Surfaces with hexagonal symmetry
.182
7.3.3
Corrugation inversion
.186
7.3.4
Profiles of atomic states as seen by STM
.190
7.3.5
Independent-orbital approximation
.194
7.4
First-principles studies: tip electronic states
.198
7.4.1
W
clusters as STM tip models
.198
7.4.2
Density-functional study of a W-Cu STM junction
. . 199
7.4.3
Transition-metal pyramidal tips
.199
7.4.4
Transition-metal atoms adsorbed on
W
slabs
.200
7.5
First-principles studies: the images
.202
7.5.1
Transition-metal surfaces
.202
7.5.2
Atomic corrugation and surface waves
.204
7.5.3
Atom-resolved AFM images
.205
7.6
Spin-polarized STM
.209
7.7
Chemical identification of surface atoms
.212
7.8
The principle of reciprocity
.214
Chapter
8:
Nanomechanical Effects
219
8.1
Mechanical stability of the tip-sample junction
.220
8.1.1
Experimental observations
.220
8.1.2
Condition of mechanical stability
.223
8.1.3
Relaxation and the apparent
G
~
z
relation
.229
8.2
Mechanical effects on observed corrugations
.231
8.2.1
Soft surfaces
.231
8.2.2
Hard surfaces
.233
8.2.3
First-principles simulations
.236
8.2.4
Advanced topics
.237
8.2.5
The Pethica mechanism
.238
8.3
Force in tunneling-barrier measurements
.238
Contents xi
Part II
Instrumentation 241
Chapter
9:
Piezoelectric Scanner
245
9.1
Piezoelectricity
.245
9.1.1
Piezoelectric effect
.245
9.1.2
Inverse piezoelectric effect
.246
9.2
Piezoelectric materials in STM and AFM
.249
9.2.1
Quartz
.249
9.2.2
Lead zirconate titanate ceramics
.250
9.3
Piezoelectric devices in STM and AFM
.254
9.3.1
Tripod scanner
.254
9.3.2
Bimorph
.255
9.4
The tube scanner
.257
9.4.1
Deflection
.258
9.4.2
In situ testing and calibration
.260
9.4.3
Resonant frequencies
.263
9.4.4
Tilt compensation: the s-scanner
.264
9.4.5
Repolarizing a depolarized tube piezo
.265
9.5
The shear piezo
.265
Chapter
10:
Vibration Isolation
269
10.1
Basic concepts
.269
10.2
Environmental vibration
.273
10.2.1
Measurement method
.274
10.2.2
Vibration isolation of the foundation
.275
10.3
Vibrational immunity of STM
.277
10.4
Suspension-spring systems
.278
10.4.1
Analysis of two-stage systems
.278
10.4.2
Choice of springs
.280
10.4.3
Eddy-current damper
.281
10.5
Pneumatic systems
.282
Chapter
11:
Electronics and Control
283
11.1
Current amplifier
.283
11.1.1
Johnson noise and shot noise
.284
11.1.2
Frequency response
.286
11.1.3
Microphone effect
.287
11.1.4
Logarithmic amplifier
.288
11.2
Feedback circuit
.289
xii Contents
11.2.1
Steady-state response
.290
11.2.2
Transient response
.292
11.3
Computer interface
.297
11.3.1
Automatic approaching
.298
Chapter
12:
Mechanical design
299
12.1
The louse
.299
12.2
The pocket-size STM
.300
12.3
The single-tube STM
.301
12.4
The Besocke-type STM: the beetle
.302
12.5
The walker
.305
12.6
The kangaroo
.306
12.7
The Inchworm
.308
12.8
The match
.309
Chapter
13:
Tip Treatment
313
13.1
Introduction
.313
13.2
Electrochemical tip etching
.314
13.3
Ex situ tip treatments
.317
13.3.1
Annealing
.317
13.3.2
Field evaporation and controlled deposition
.318
13.3.3
Annealing with a field
.319
13.3.4
Atomic metallic ion emission
.320
13.3.5
Field-assisted reaction with nitrogen
.322
13.4
In situ tip treatments
.324
13.4.1
High-field treatment
.324
13.4.2
Controlled collision
.325
13.5
Tip treatment for spin-polarized STM
.326
13.5.1
Coating the tip with ferromagnetic materials
.326
13.5.2
Coating the tip with antiferromagnetic materials
. . . 327
13.5.3
Controlled collision with magnetic surfaces
.327
13.6
Tip preparation for electrochemistry STM
.328
Chapter
14:
Scanning Tunneling Spectroscopy
331
14.1
Electronics for scanning tunneling spectroscopy
.331
14.2
Nature of the observed tunneling spectra
.332
14.3
Tip treatment for spectroscopy studies
.334
Contents xiii
14.3.1
Annealing
.334
14.3.2
Controlled collision with a metal surface
.336
14.4
The Feenstra parameter
.337
14.5
Determination of the tip DOS
.338
14.5.1
Ex situ methods
.338
14.5.2
In situ methods
.340
14.6
Inelastic scanning tunneling spectroscopy
.344
14.6.1
Instrumentation
.344
14.6.2
Effect of finite modulation voltage
.345
14.6.3
Experimental observations
.347
Chapter
15:
Atomic Force Microscopy
349
15.1
Static mode and dynamic mode
.350
15.2
The cantilever
.351
15.2.1
Basic requirements
.351
15.2.2
Fabrication
.352
15.3
Static force detection
.354
15.3.1
Optical beam deflection
.354
15.3.2
Optical
interferometry
.356
15.4
Tapping-mode AFM
.357
15.4.1
Acoustic actuation in liquids
.358
15.4.2
Magnetic actuation in liquids
.359
15.5
Non-contact AFM
.361
15.5.1
Case of small amplitude
.361
15.5.2
Case of finite amplitude
.364
15.5.3
Response function for frequency shift
.365
15.5.4
Second harmonics
.366
15.5.5
Average tunneling current
.368
15.5.6
Implementation
.369
Appendix A: Green's Functions
371
Appendix B: Real Spherical Harmonics
373
Appendix C: Spherical Modified Bessel Functions
377
Appendix D: Plane Groups and Invariant Functions
381
D.I A brief summary of plane groups
.382
D.2 Invariant functions
.385
xiv Contents
Appendix
E:
Elementary Elasticity Theory
389
E.I Stress and strain
.389
E.2 Small deflection of beams
.391
E.3 Vibration of beams
.394
E.4 Torsion
.395
E.5 Helical springs
.397
E.6 Contact stress: The Hertz formulas
.398 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Chen, C. Julian |
author_GND | (DE-588)1080876596 |
author_facet | Chen, C. Julian |
author_role | aut |
author_sort | Chen, C. Julian |
author_variant | c j c cj cjc |
building | Verbundindex |
bvnumber | BV023049245 |
callnumber-first | Q - Science |
callnumber-label | QH212 |
callnumber-raw | QH212.S35 |
callnumber-search | QH212.S35 |
callnumber-sort | QH 3212 S35 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | UH 6310 UH 6320 WC 3200 |
classification_tum | PHY 135f |
ctrlnum | (OCoLC)137312938 (DE-599)BVBBV023049245 |
dewey-full | 502.82 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 502 - Miscellany |
dewey-raw | 502.82 |
dewey-search | 502.82 |
dewey-sort | 3502.82 |
dewey-tens | 500 - Natural sciences and mathematics |
discipline | Allgemeine Naturwissenschaft Physik Biologie |
discipline_str_mv | Allgemeine Naturwissenschaft Physik Biologie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01720nam a2200433 cb4500</leader><controlfield tag="001">BV023049245</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20161124 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071213s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199211500</subfield><subfield code="9">978-0-19-921150-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)137312938</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023049245</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH212.S35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">502.82</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6310</subfield><subfield code="0">(DE-625)159500:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 6320</subfield><subfield code="0">(DE-625)145762:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WC 3200</subfield><subfield code="0">(DE-625)148082:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 135f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, C. Julian</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1080876596</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to scanning tunneling microscopy</subfield><subfield code="c">C. Julian Chen</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">LXIII, 423 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Monographs on the physics and chemistry of materials</subfield><subfield code="v">64</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Oxford science publications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scanning tunneling microscopy</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rastertunnelmikroskopie</subfield><subfield code="0">(DE-588)4252995-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rastertunnelmikroskopie</subfield><subfield code="0">(DE-588)4252995-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Monographs on the physics and chemistry of materials</subfield><subfield code="v">64</subfield><subfield code="w">(DE-604)BV000725086</subfield><subfield code="9">64</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016252646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016252646</subfield></datafield></record></collection> |
id | DE-604.BV023049245 |
illustrated | Illustrated |
index_date | 2024-07-02T19:23:57Z |
indexdate | 2024-07-09T21:09:48Z |
institution | BVB |
isbn | 9780199211500 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016252646 |
oclc_num | 137312938 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-29T DE-634 DE-91G DE-BY-TUM DE-11 DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-29T DE-634 DE-91G DE-BY-TUM DE-11 DE-83 |
physical | LXIII, 423 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford Univ. Press |
record_format | marc |
series | Monographs on the physics and chemistry of materials |
series2 | Monographs on the physics and chemistry of materials Oxford science publications |
spelling | Chen, C. Julian Verfasser (DE-588)1080876596 aut Introduction to scanning tunneling microscopy C. Julian Chen 2. ed. Oxford [u.a.] Oxford Univ. Press 2008 LXIII, 423 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Monographs on the physics and chemistry of materials 64 Oxford science publications Scanning tunneling microscopy Rastertunnelmikroskopie (DE-588)4252995-5 gnd rswk-swf Rastertunnelmikroskopie (DE-588)4252995-5 s DE-604 Monographs on the physics and chemistry of materials 64 (DE-604)BV000725086 64 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016252646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Chen, C. Julian Introduction to scanning tunneling microscopy Monographs on the physics and chemistry of materials Scanning tunneling microscopy Rastertunnelmikroskopie (DE-588)4252995-5 gnd |
subject_GND | (DE-588)4252995-5 |
title | Introduction to scanning tunneling microscopy |
title_auth | Introduction to scanning tunneling microscopy |
title_exact_search | Introduction to scanning tunneling microscopy |
title_exact_search_txtP | Introduction to scanning tunneling microscopy |
title_full | Introduction to scanning tunneling microscopy C. Julian Chen |
title_fullStr | Introduction to scanning tunneling microscopy C. Julian Chen |
title_full_unstemmed | Introduction to scanning tunneling microscopy C. Julian Chen |
title_short | Introduction to scanning tunneling microscopy |
title_sort | introduction to scanning tunneling microscopy |
topic | Scanning tunneling microscopy Rastertunnelmikroskopie (DE-588)4252995-5 gnd |
topic_facet | Scanning tunneling microscopy Rastertunnelmikroskopie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016252646&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000725086 |
work_keys_str_mv | AT chencjulian introductiontoscanningtunnelingmicroscopy |