Advanced wireless communications: 4G cognitive and cooperative broadband technology
Saved in:
Main Author: | |
---|---|
Format: | Book |
Language: | English |
Published: |
Chichester
Wiley
2007
|
Edition: | 2. ed. |
Subjects: | |
Online Access: | Publisher description Table of contents Inhaltsverzeichnis |
Physical Description: | XXII, 865 S. graph. Darst. |
ISBN: | 9780470059777 047005977X |
Staff View
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV023048038 | ||
003 | DE-604 | ||
005 | 20080128 | ||
007 | t | ||
008 | 071212s2007 xxkd||| |||| 00||| eng d | ||
015 | |a GBA4-Z3364 |2 dnb | ||
020 | |a 9780470059777 |9 978-0-470-05977-7 | ||
020 | |a 047005977X |9 0-470-05977-X | ||
035 | |a (OCoLC)85692935 | ||
035 | |a (DE-599)BVBBV023048038 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxk |c GB | ||
049 | |a DE-1102 | ||
050 | 0 | |a TK5103.2 | |
082 | 0 | |a 621.384 |2 22 | |
084 | |a ST 273 |0 (DE-625)143640: |2 rvk | ||
084 | |a ZN 6400 |0 (DE-625)157560: |2 rvk | ||
100 | 1 | |a Glisic, Savo G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Advanced wireless communications |b 4G cognitive and cooperative broadband technology |c Savo G. Glisic |
250 | |a 2. ed. | ||
264 | 1 | |a Chichester |b Wiley |c 2007 | |
300 | |a XXII, 865 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Wireless communication systems | |
650 | 0 | 7 | |a Funknetz |0 (DE-588)4216130-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Telekommunikation |0 (DE-588)4059360-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funknetz |0 (DE-588)4216130-7 |D s |
689 | 0 | 1 | |a Telekommunikation |0 (DE-588)4059360-5 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/description/wiley042/2004274972.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/toc/wiley041/2004274972.html |3 Table of contents | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016251464&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016251464 |
Record in the Search Index
_version_ | 1804137279742017536 |
---|---|
adam_text | ADVANCED WIRELESS COMMUNICATIONS 4G COGNITIVE AND COOPERATIVE BROADBAND
TECHNOLOGY SECOND EDITION SAVO G. GLISIC UNIVERSITY OF OULU, FINLAND BJC
E NTENNIAL 1 8 O 7 SWILEY 2 OO 7 B I C E N T FCNNIAI. JOHN WILEY & SONS,
LTD CONTENTS PREFACE TO THE SECOND EDITION XXI 1 FUNDAMENTALS 1 1.1 4G
AND THE BOOK LAYOUT 1 1.2 GENERAL STRUCTURE OF 4G SIGNALS 4 1.2.1
ADVANCED TIME DIVISION MULTIPLE ACCESS (ATDMA) 5 1.2.2 CODE DIVISION
MULTIPLE ACCESS (CDMA) 5 1.2.3 ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING (OFDM) 6 1.2.4 MULTICARRIER CDMA (MC CDMA) 8 1.2.5 ULTRA
WIDE BAND (UWB) SIGNALS 11 REFERENCES 16 ADAPTIVE CODING 21 2.1 ADAPTIVE
AND RECONFIGURABLE BLOCK CODING 21 2.2 ADAPTIVE AND RECONFIGURABLE
CONVOLUTIONAL CODES 26 2.2.1 PUNCTURED CONVOLUTIONAL CODES/CODE
RECONNGURABILITY 31 2.2.2 MAXIMUM LIKELIHOOD DECODING/VITERBI ALGORITHM
32 2.2.3 SYSTEMATIC RECURSIVE CONVOLUTIONAL CODES 33 2.3 CONCATENATED
CODES WITH INTERLEAVERS 36 2.3.1 THE ITERATIVE DECODING ALGORITHM 37 2.4
ADAPTIVE CODING, PRACTICE AND PROSPECTS 43 2.5 DISTRIBUTED SOURCE CODING
44 2.5.1 CONTINUOUS VALUED SOURCE 46 2.5.2 SCALAR QUANTIZATION AND
TRELLIS-BASED COSET CONSTRUCTION 48 2.5.3 TRELLIS-BASED QUANTIZATION AND
MEMORYLESS 50 2.5.4 PERFORMANCE EXAMPLES 50 APPENDIX 2.1 MAXIMUM A
POSTERIORI DETECTION 53 REFERENCES 56 VIII CONTENTS ADAPTIVE AND
RECONFIGURABLE MODULATION 63 3.1 CODED MODULATION 63 3.1.1 EUCLIDEAN
DISTANCE 64 3.1.2 EXAMPLES OF TCM SCHEMES 65 3.1.3 SET PARTITIONING 68
3.1.4 REPRESENTATION OF TCM 70 3.1.5 TCM WITH MULTIDIMENSIONAL
CONSTELLATION 70 3.2 ADAPTIVE CODED MODULATION FOR FADING CHANNELS 72
3.2.1 MAINTAINING A FIXED DISTANCE 73 3.2.2 INFORMATION RATE 74
REFERENCES 75 SPACE-TIME CODING 79 4.1 DIVERSITY GAIN 79 4.1.1
TWO-BRANCH TRANSMIT DIVERSITY SCHEME WITH ONE RECEIVER 80 4.1.2 TWO
TRANSMITTERS AND M RECEIVERS 82 4.2 SPACE-TIME CODING 84 4.2.1 THE
SYSTEM MODEL 84 4.2.2 THE CASE OF INDEPENDENT FADE COEFFICIENTS 85 4.2.3
RAYLEIGH FADING 86 4.2.4 DESIGN CRITERIA FOR RAYLEIGH SPACE-TIME CODES
86 4.2.5 CODE CONSTRUCTION 87 4.2.6 RECONFIGURATION EFFICIENCY OF
SPACE-TIME CODING 91 4.2.7 DELAY DIVERSITY 94 4.3 SPACE-TIME BLOCK CODES
FROM ORTHOGONAL DESIGNS 96 4.3.1 THE CHANNEL MODEL AND THE DIVERSITY
CRITERION 96 4.3.2 REAL ORTHOGONAL DESIGNS 97 4.3.3 SPACE-TIME ENCODER
97 4.3.4 THE DIVERSITY ORDER 97 4.3.5 THE DECODING ALGORITHM 98 4.3.6
INEAR PROCESSING ORTHOGONAL DESIGNS 98 4.3.7 GENERALIZED REAL ORTHOGONAL
DESIGNS 99 4.3.8 ENCODING 99 4.3.9 THE ALAMOUTI SCHEME 100 4.3.10
COMPLEX ORTHOGONAL DESIGNS 100 4.3.11 GENERALIZED COMPLEX ORTHOGONAL
DESIGNS 100 4.3.12 SPECIAL CODES 101 4.3.13 PERFORMANCE RESULTS 102 4.4
CHANNEL ESTIMATION IMPERFECTIONS 102 4.4.1 CHANNEL ESTIMATOR 106 4.5
QUASI-ORTHOGONAL SPACE-TIME BLOCK CODES 107 4.5.1 DECODING 108 4.5.2
DECISION METRIC 108 4.6 SPACE-TIME CONVOLUTIONAL CODES 109 4.7 ALGEBRAIC
SPACE-TIME CODES 111 4.7.1 FUELL SPATIAL DIVERSITY 116 4.7.2 QPSK
MODULATION 116 CONTENTS IX 4.8 DIFFERENTIAL SPACE-TIME MODULATION 116
4.8.1 THE ENCODING ALGORITHM 122 4.8.2 DIFFERENTIAL DECODING 123 4.9
MULTIPLE TRANSMIT ANTENNA DIFFERENTIAL DETECTION FROM GENERALIZED
ORTHOGONAL DESIGNS 125 4.9.1 DIFFERENTIAL ENCODING 126 4.9.2 RECEIVED
SIGNAL 126 4.9.3 ORTHOGONALITY 127 4.9.4 ENCODING 127 4.9.5 DIFFERENTIAL
DECODING 128 4.9.6 RECEIVED SIGNAL 129 4.9.7 DEMODULATION 130 4.9.8
MULTIPLE RECEIVE ANTENNAS 130 4.9.9 THE NUMBER OF TRANSMIT ANTENNAS
LOWER THAN THE NUMBER OF SYMBOLS 130 4.9.10 FINAL RESULT 131 4.9.11 REAL
CONSTELLATION SET 131 4.10 LAYERED SPACE-TIME CODING 133 4.10.1 RECEIVER
COMPLEXITY 134 4.10.2 GROUP INTERFERENCE SUPPRESSION 134 4.10.3
SUPPRESSION METHOD 134 4.10.4 THE NULL SPACE 134 4.10.5 RECEIVER 135
4.10.6 DECISION METRIC 135 4.10.7 MULTILAYERED SPACE-TIME CODED
MODULATION 135 4.10.8 DIVERSITY GAIN 136 4.10.9 ADAPTIVE RECONFIGURABLE
TRANSMIT POWER ALLOCATION 136 4.11 CONCATENATED SPACE-TIME BLOCK CODING
140 4.11.1 SYSTEM MODEL 140 4.11.2 PRODUCT SUM DISTANCE 141 4.11.3 ERROR
RATE BOUND 141 4.11.4 THE CASE OF LOW SNR 142 4.11.5 CODE DESIGN 142
4.12 ESTIMATION OF MIMO CHANNEL 145 4.12.1 SYSTEM MODEL 146 4.12.2
TRAINING 148 4.12.3 PERFORMANCE MEASURE 148 4.12.4 DEFINITIONS 148
4.12.5 CHANNEL ESTIMATION ERROR 148 4.12.6 ERROR STATISTIC 149 4.12.7
RESULTS 149 4.13 SPACE-TIME CODES FOR FREQUENCY SELECTIVE CHANNELS 151
4.13.1 DIVERSITY GAIN PROPERTIES 153 4.13.2 CODING GAIN PROPERTIES 154
4.13.3 SPACE-TIME TRELLIS CODE DESIGN 155 4.14 OPTIMIZATION OF A MIMO
SYSTEM 157 4.14.1 THE CHANNEL MODEL 157 4.14.2 GAIN OPTIMIZATION BY
SINGULAR VALUE DECOMPOSITION (SVD) 158 CONTENTS 4.14.3 THE GENERAL (M,
AO CASE 159 4.14.4 GAIN OPTIMIZATION BY ITERATION FOR A RECIPROCAL
CHANNEL 161 4.14.5 SPECTRAL EFFICIENCY OF PARALLEL CHANNELS 162 4.14.6
CAPACITY OF THE (M, N) ARRAY 163 4.15 MIMO SYSTEMS WITH CONSTELLATION
ROTATION 163 4.15.1 SYSTEM MODEL 163 4.15.2 PERFORMANCE IN A RAYLEIGH
FADING CHANNEL 165 4.16 DIAGONAL ALGEBRAIC SPACE-TIME BLOCK CODES 167
4.16.1 SYSTEM MODEL 167 4.16.2 THE DAST CODING ALGORITHM 169 4.16.3 THE
DAST DECODING ALGORITHM 170 APPENDIX 4.1 QR FACTORIZATION 173 APPENDIX
4.2 LATTICE CODE DECODER FOR SPACE-TIME CODES 175 APPENDIX 4.3 MIMO
CHANNEL CAPACITY 176 REFERENCES 180 MULTIUSER COMMUNICATION 191 5.1
PSEUDORANDOM SEQUENCES 191 5.1.1 BINARY SHIFT REGISTER SEQUENCES 191
5.1.2 PROPERTIES OF BINARY MAXIMAL LENGTH SEQUENCES 193 5.1.3
CROSSCORRELATION SPECTRA 193 5.1.4 MAXIMAL CONNECTED SETS OF M-SEQUENCES
194 5.1.5 GOLD SEQUENCES 194 5.1.6 GOLD-LIKE AND DUAL-BCH SEQUENCES 195
5.1.7 KASAMI SEQUENCES 196 5.1.8 JPL SEQUENCES 197 5.1.9 KRONECKER
SEQUENCES 197 5.1.10 WALSH FUNCTIONS 198 5.1.11 OPTIMUM PN SEQUENCES 199
5.1.12 GOLAYCODE 199 5.2 MULTIUSER CDMA RECEIVERS 201 5.2.1 SYNCHRONOUS
CDMA CHANNELS 202 5.2.2 THE DECORRELATING DETECTOR 202 5.2.3 THE OPTIMUM
LINEAR MULTIUSER DETECTOR 202 5.2.4 MULTISTAGE DETECTION IN ASYNCHRONOUS
CDMA [43] 203 5.2.5 NON-COHERENT DETECTOR 205 5.2.6 NON-COHERENT
DETECTION IN ASYNCHRONOUS MULTIUSER CHANNELS [45] 205 5.2.7 MULTIUSER
DETECTION IN FREQUENCY NON-SELECTIVE RAYLEIGH FADING CHANNELS 207 5.2.8
MULTIUSER DETECTION IN FREQUENCY SELECTIVE RAYLEIGH FADING CHANNELS 210
5.3 MINIMUM MEAN SQUARE ERROR (MMSE) LINEAR MULTIUSER DETECTION 216
5.3.1 SYSTEM MODEL IN MULTIPATH FADING CHANNELS 217 5.3.2 MMSE DETECTOR
STRUCTURES 220 5.3.3 SPATIAL PROCESSING 221 CONTENTS XI 5.4 SINGLE USER
LMMSE RECEIVERS FOR FREQUENCY SELECTIVE FADING CHANNELS 225 5.4.1
ADAPTIVE PRECOMBINING LMMSE RECEIVERS 225 5.4.2 BLIND LEAST SQUARES
RECEIVERS 230 5.4.3 LEAST SQUARES (LS) RECEIVER 230 5.4.4 METHOD BASED
ON THE MATRIX INVERSION LEMMA 231 5.5 SIGNAL SUBSPACE-BASED CHANNEL
ESTIMATION FOR CDMA SYSTEMS 232 5.5.1 ESTIMATING THE SIGNAL SUBSPACE 234
5.5.2 CHANNEL ESTIMATION 235 5.6 ITERATIVE RECEIVERS FOR LAYERED
SPACE-TIME CODING 236 5.6.1 LST ARCHITECTURES 237 5.6.2 LST RECEIVERS
241 5.6.3 QR DECOMPOSITION/SIC DETECOR 242 5.6.4 MMSE/SIC DETECTOR 244
5.6.5 ITERATIVE LST RECEIVERS 246 APPENDIX 5.1 LINEAR AND MATRIX ALGEBRA
253 DEFINITIONS 253 SPECIAL MATRICES 254 MATRIX MANIPULATION AND
FORMULAS 255 THEOREMS 257 EIGENDECOMPOSTION OF MATRICES 257 CALCULATION
OF EIGENVALUES AND EIGENVECTORS 258 REFERENCES 259 CHANNEL ESTIMATION
AND EQUALIZATION 269 6.1 EQUALIZATION IN THE DIGITAL DATA TRANSMISSION
SYSTEM 269 6.1.1 ZERO-FORCING EQUALIZERS 269 6.2 LMS EQUALIZER 275 6.2.1
SIGNAL MODEL 275 6.2.2 ADAPTIVE WEIGHT ADJUSTMENT 276 6.2.3 AUTOMATIC
SYSTEMS 276 6.2.4 ITERATIVE ALGORITHM 277 6.2.5 THE LMS ALGORITHM 277
6.2.6 DECISION FEEDBACK EQUALIZER (DFE) 277 6.2.7 BLIND EQUALIZERS 278
6.3 DETECTION FOR A STATISTICALLY KNOWN, TIME VARYING CHANNEL 279 6.3.1
SIGNAL MODEL 279 6.3.2 CHANNEL MODEL 279 6.3.3 STATISTICAL DESCRIPTION
OF THE RECEIVED SEQUENCE 281 6.3.4 THE ML SEQUENCE (BLOCK) ESTIMATOR FOR
A STATISTICALLY KNOWN CHANNEL 281 6.4 LMS-ADAPTIVE MLSE EQUALIZATION ON
MULTIPATH FADING CHANNELS 284 6.4.1 SYSTEM AND CHANNEL MODEIS 284 6.4.2
ADAPTIVE CHANNEL ESTIMATOR AND LMS ESTIMATOR MODEL 285 6.4.3 THE CHANNEL
PREDICTION ALGORITHM 285 CONTENTS 6.5 ADAPTIVE CHANNEL IDENTIFICATION
AND DATA DEMODULATION 288 6.5.1 SYSTEM MODEL 288 6.5.2 JOINT CHANNEL AND
DATA ESTIMATION 288 6.5.3 DATA ESTIMATION AND TRACKING FOR A FADING
CHANNEL 292 6.5.4 THE STATIC CHANNEL ENVIRONMENT 293 6.5.5 THE TIME
VARYING CHANNEL ENVIRONMENT 296 6.6 TURBO EQUALIZATION 301 6.6.1 SIGNAL
FORMAT 301 6.6.2 EQUIVALENT DISCRETE TIME CHANNEL MODEL 302 6.6.3
EQUIVALENT SYSTEM STATE REPRESENTATIONS 302 6.6.4 TURBO EQUALIZATION 302
6.6.5 VITERBI ALGORITHM 303 6.6.6 ITERATIVE IMPLEMENTATION OF TURBO
EQUALIZATION 304 6.6.7 PERFORMANCE 304 6.7 KAIMAN FILTER BASED JOINT
CHANNEL ESTIMATION AND DATA DETECTION OVER FADING CHANNELS 305 6.7.1
CHANNEL MODEL 308 6.7.2 THE RECEIVED SIGNAL 308 6.7.3 CHANNEL ESTIMATION
ALTERNATIVES 308 6.7.4 IMPLEMENTING THE ESTIMATOR 309 6.7.5 THE KAIMAN
FILIER 310 6.7.6 IMPLEMENTATION ISSUES 310 6.8 EQUALIZATION USING HIGHER
ORDER SIGNAL STATISTICS 311 6.8.1 PROBLEM STATEMENT 311 6.8.2 SIGNAL
MODEL 313 6.8.3 DERIVATION OF ALGORITHMS FOR DFE 313 6.8.4 THE EQUALIZER
COEFFICIENTS 314 6.8.5 STOCHASTIC GRADIENT DFE ADAPTIVE ALGORITHMS 315
6.8.6 CONVERGENCE ANALYSIS 316 6.8.7 KURTOSIS-BASED ALGORITHM 318 6.8.8
PERFORMANCE RESULTS 321 REFERENCES 321 ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING*OFDM AND MULTICARRIER CDMA 329 7.1 TIMING AND FREQUENCY
OFFSET IN OFDM 329 7.1.1 ROBUST FREQUENCY AND TIMING SYNCHRONIZATION FOR
OFDM 331 7.2 FADING CHANNEL ESTIMATION FOR OFDM SYSTEMS 334 7.2.1
STATISTICS OF MOBILE RADIO CHANNELS 334 7.2.2 DIVERSITY RECEIVER 335
7.2.3 MMSE CHANNEL ESTIMATION 335 7.2.4 FIR CHANNEL ESTIMATOR 337 7.2.5
SYSTEM PERFORMANCE 338 7.2.6 REFERENCE GENERATION 339 7.3 64 DAPSK AND
64 QAM MODULATED OFDM SIGNALS 339 CONTENTS XIII 7.4 SPACE-TIME CODING
WITH OFDM SIGNALS 344 7.4.1 SIGNAL AND CHANNEL PARAMETERS 345 7.4.2 THE
WIRELESS ASYNCHRONOUS TRANSFER MODE SYSTEM 349 7.4.3 SPACE-TIME CODED
ADAPTIVE MODULATION FOR OFDM 349 7.4.4 TURBO AND SPACE-TIME CODED
ADAPTIVE OFDM 349 7.5 LAYERED SPACE-TIME CODING FOR MIMO OFDM 351 7.5.1
SYSTEM MODEL (TWO TIMES TWO TRANSMIT ANTENNAS) 352 7.5.2 INTERFERENCE
CANCELLATION 353 7.5.3 FOUR TRANSMIT ANTENNAS 353 7.6 SPACE-TIME CODED
TDMA/OFDM RECONFIGURATION EFFICIENCY 356 7.6.1 FREQUENCY SELECTIVE
CHANNEL MODEL 356 7.6.2 FRONT END PREFILTER 357 7.6.3 TIME-INVARIANT
CHANNEL 357 7.6.4 OPTIMIZATION PROBLEM 358 7.6.5 AVERAGE CHANNEL 358
7.6.6 PREFILTERED M-BCJR EQUALIZER 358 7.6.7 DECISION 359 7.6.8
PREFILTERED MLSE/DDFSE EQUALIZER COMPLEXITY 359 7.6.9 DELAYED DECISION
FEEDBACK SEQUENCE ESTIMATION (DDFSE) 360 7.6.10 EQUALIZATION SCHEMES FOR
STBC 360 7.6.11 SINGLE-CARRIER FREQUENCY DOMAIN EQUALIZED SPACE-TIME
BLOCK CODING SC FDE STBC 361 7.7 MULTICARRIER CDMA SYSTEM 369 7.7.1
DATADEMODULATION 370 7.7.2 PERFORMANCE EXAMPLES 371 7.8 MULTICARRIER
DS-CDMA BROADCAST SYSTEMS 371 7.9 FRAME BY FRAME ADAPTIVE RATE CODED
MULTICARRIER DS-CDMA SYSTEM 375 7.9.1 TRANSMITTER 377 7.9.2 RECEIVER 378
7.9.3 RATE-COMPATIBLE PUNCTURED CONVOLUTIONAL (RCPC) CODES 379 7.9.4
RATE ADAPTATION 380 7.10 INTERMODULATION INTERFERENCE SUPPRESSION IN
MULTICARRIER CDMA SYSTEMS 382 7.10.1 TRANSMITTER 382 7.10.2 NON-LINEAR
POWER AMPLIFIER MODEL 383 7.10.3 MMSE RECEIVER 383 7.11 SUCCESSIVE
INTERFERENCE CANCELLATION IN MULTICARRIER DS-CDMA SYSTEMS 386 7.11.1
SYSTEM AND CHANNEL MODEL 386 7.12 MMSE DETECTION OF MULTICARRIER CDMA
387 7.12.1 TRACKING THE FADING PROCESSES 390 7.13 APPROXIMATION OF
OPTIMUM MULTIUSER RECEIVER FOR SPACE-TIME CODED MULTICARRIER CDMA
SYSTEMS 393 7.13.1 FREQUENCY SELECTIVE FADING CHANNELS 397 7.13.2
RECEIVER SIGNAL MODEL OF STBC MC CDMA SYSTEMS 398 7.13.3 BLIND APPROACH
399 CONTENTS 7.13.4 BAYESIAN OPTIMAL BLIND RECEIVER 400 7.13.5 BLIND
BAYESIAN MONTE CARLO MULTIUSER RECEIVER APPROXIMATION 400 7.13.6 GIBBS
SAMPLER 400 7.13.7 PRIOR DISTRIBUTIONS 401 7.13.8 CONDITIONAL POSTERIOR
DISTRIBUTIONS 401 7.13.9 GIBBS MULTIUSER DETECTION 402 7.13.10 SAMPLING
SPACE OF DATA 403 7.13.11 THE ORTHOGONALITY PROPERTY 403 7.13.12 BLIND
TURBO MULTIUSER RECEIVER 403 7.13.13 DECODER-ASSISTED CONVERGENCE
ASSESSMENT 404 7.13.14 PERFORMANCE EXAMPLE 404 7.14 PARALLEL
INTERFERENCE CANCELLATION IN OFDM SYSTEMS IN TIME-VARYING MULTIPATH
FADING CHANNELS 405 7.15 ZERO FORCING OFDM EQUALIZER IN TIME-VARYING
MULTIPATH FADING CHANNELS 411 7.16 CHANNEL ESTIMATION FOR OFDM SYSTEMS
415 7.17 TURBO PROCESSING FOR AN OFDM-BASED MIMO SYSTEM 418 7.18 PAPR
REDUCTION OF OFDM SIGNALS 420 APPENDIX 424 REFERENCES 425 ULTRA WIDE
BAND RADIO 433 8.1 UWB MULTIPLE ACCESS IN A GAUSSIAN CHANNEL 433 8.1.1
THE MULTIPLE ACCESS CHANNEL 433 8.1.2 RECEIVER 434 8.2 THE UWB CHANNEL
436 8.2.1 ENERGY CAPTURE 436 8.2.2 THE RECEIVED SIGNAL MODEL 436 8.2.3
THE UWB SIGNAL PROPAGATION EXPERIMENT 1 436 8.2.4 UWB PROPAGATION
EXPERIMENT 2 437 8.2.5 CLUSTERING MODEIS FOR THE INDOOR MULTIPATH
PROPAGATION CHANNEL 438 8.2.6 PATH LOSS MODELING 440 8.3 UWB SYSTEM WITH
M-ARY MODULATION 442 8.3.1 PERFORMANCE IN A GAUSSIAN CHANNEL 442 8.3.2
PERFORMANCE IN A DENSE MULTIPATH CHANNEL 446 8.3.3 RECEIVER AND BER
PERFORMANCE 447 8.3.4 TIME VARIATIONS 447 8.3.5 PERFORMANCE EXAMPLE 448
8.4 M-ARY PPM UWB MULTIPLE ACCESS 448 8.4.1 M-ARY PPM SIGNAL SETS 451
8.4.2 PERFORMANCE RESULTS 453 8.5 CODED UWB SCHEMES 453 8.5.1
PERFORMANCE 457 8.5.2 THE UNCODED SYSTEM AS A CODED SYSTEM WITH
REPETITION 457 8.6 MULTIUSER DETECTION IN UWB RADIO 458 CONTENTS XV 8.7
UWB WITH SPACE-TIME PROCESSING 460 8.7.1 SIGNAL MODEL 460 8.7.2 THE
MONOPULSE TRACKING SYSTEM 464 8.8 BEAMFORMING FOR UWB RADIO 467 8.8.1
CIRCULAR ARRAY 467 REFERENCES 492 9 LINEAR PRECODING FOR MIMO CHANNELS
497 9.1 SPACE-TIME PRECODERS AND EQUALIZERS FOR MIMO CHANNELS 497 9.1.1
ISI MODELLING IN MIMO CHANNELS 497 9.1.2 MIMO SYSTEM PRECODING AND
EQUALIZATION 499 9.1.3 PRECODER AND EQUALIZER DESIGN FOR STBC SYSTEMS
502 9.2 LINEAR PRECODING BASED ON CONVEX OPTIMIZATION THEORY 504 9.2.1
GENERALIZED MIMO SYSTEMS 505 9.2.2 CONVEX OPTIMIZATION 506 9.2.3
PRECODING FOR POWER OPTIMIZATION 507 9.2.4 PRECODER FOR SINR
OPTIMIZATION 510 9.2.5 PERFORMANCE EXAMPLE 512 9.3 CONVEX
OPTIMIZATION-THEORY-BASED BEAMFORMING 513 9.3.1 MULTICARRIER MIMO SIGNAL
MODEL 514 9.3.2 CHANNEL DIAGONALIZATION 516 9.3.3 CONVEX
OPTIMIZATION-BASED BEAMFORMING 520 9.3.4 CONSTRAINTS IN MULTICARRIER
SYSTEMS 526 9.3.5 PERFORMANCE EXAMPLES 527 REFERENCES 533 10 COGNITIVE
RADIO 537 10.1 ENERGY-EFFICIENT COGNITIVE RADIO 537 10.1.1 FRAME LENGTH
ADAPTATION 537 10.1.2 FRAME LENGTH ADAPTATION IN FLAT FADING CHANNELS
539 10.1.3 THE ADAPTATION ALGORITHM 542 10.1.4 ENERGY-EFFICIENT ADAPTIVE
ERROR CONTROL 542 10.1.5 PROCESSING GAIN ADAPTATION 545 10.1.6
TRELLIS-BASED PROCESSING/ADAPTIVE MAXIMUM LIKELIHOOD SEQUENCE EQUALIZER
547 10.1.7 HIDDEN MARKOV CHANNEL MODEL 548 10.1.8 LINK LAYER PERFORMANCE
WITH INADEQUATE EQUALIZATION 549 10.1.9 LINK LAYER PERFORMANCE WITH
ADEQUATE EQUALIZATION 551 10.2 A COGNITIVE RADIO ARCHITECTURE FOR LINEAR
MULTIUSER DETECTION 556 10.2.1 A UNIFIED ARCHITECTURE FOR LINEAR
MULTIUSER DETECTION AND DYNAMIC RECONFIGURABILITY 556 10.2.2
EXPERIMENTAL RESULTS 563 10.2.3 THE EFFECTS OF QUANTIZATION 564 10.2.4
THE EFFECT ON THE NEAR-FAR RESISTANCE 565 10.3 RECONFIGURABLE ASIC
ARCHITECTURE 567 XVI CONTENTS 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6
10.3.7 10.3.8 10.3.9 10.3.10 10.3.11 10.3.12 10.3.13 10.3.14 MOTIVATION
AND PRESENT ART 569 ALTERNATIVE IMPLEMENTATIONS 570 EXAMPLE ARCHITECTURE
VERSUS AN FPGA 570 DSP AGAINST THE EXAMPLE ARCHITECTURE 571 COMPUTATION
OF A COMPLEX 16-POINT DFT - THE GOERTZEL FFTMODE 571 FIXED COEFFICIENT
ALTERS 573 REAL FIR/CORRELATOR 574 REAL IIR/CORRELATOR 574 CASCADING
FIXED COEFFICIENT ALTERS 574 ADAPTIVE FILTERING 574 DIRECT DIGITAL
FREQUENCY SYNTHESIS 576 CORDIC ALGORITHM [83] 577 DISCRETE FOURIER
TRANSFORM 578 GOERTZEL ALGORITHM 578 REFERENCES 580 11 COOPERATIVE
DIVERSITY IN COGNITIVE WIRELESS NETWORKS 587 11.1 SYSTEM MODELING 587
11.1.1 SYSTEM CAPACITY 588 11.1.2 PROBABILITY OF OUTAGE 591 11.1.3
CELLULAR COVERAGE 592 11.2 COOPERATIVE DIVERSITY PROTOCOLS 593 11.2.1
SYSTEM AND CHANNEL MODEIS 593 11.2.2 COPERATIVE DIVERSITY PROTOCOLS 594
11.2.3 OUTAGE PROBABILITIES 595 11.2.4 PERFORMANCE BOUNDS FOR
COOPERATIVE DIVERSITY 598 11.3 DISTRIBUTED SPACE-TIME CODING 600 11.3.1
SYSTEM DESCRIPTION 600 11.3.2 BER ANALYSIS IN DSTC 603 11.4
GENERALIZATION OF DISTRIBUTED SPACE-TIME-CODING BASED ON COOPERATIVE
DIVERSITY 605 11.4.1 SYSTEM AND CHANNEL MODEL 605 11.4.2 COOPERATIVE
DIVERSITY BASED ON REPETITION 608 11.4.3 COOPERATIVE DIVERSITY USING
SPACE-TIME CODING 612 APPENDIX 11.1 ASYMPTOTIC CDF APPROXIMATIONS 614
APPENDIX 11.2 AMPLIFY-AND-FORWARD MUTUAL INFORMATION 619 APPENDIX 11.3
INPUT DISTRIBUTIONS FOR TRANSMIT DIVERSITY BOUND 620 REFERENCES 621 12
COGNITIVE UWB COMMUNICATIONS 625 12.1 INTRODUCTION 625 12.2 SIGNAL AND
INTERFERENCE MODEIS 627 12.3 RECEIVER STRUCTURE AND PERFORMANCE 628
12.3.1 INTERFERENCE REJECTION CIRCUIT MODEL 629 12.4 PERFORMANCE
EXAMPLES 635 REFERENCES 641 CONTENTS XVII 13 POSITIONING IN WIRELESS
NETWORKS 645 13.1 MOBILE STATION LOCATION IN CELLULAR NETWORKS 645
13.1.1 INTRODUCTION 645 13.1.2 MS LOCATION ESTIMATION USING AD AND RD
MEASUREMENTS 646 13.1.3 THE CIRCULAR, HYPERBOLIC, AND MIXED
MULTILATERATION 646 13.1.4 WLS SOLUTION OFTHE LOCATION PROBLEM 648
13.1.5 ACCURACY MEASURE 649 13.1.6 CIRCULAR MULTILATERATION 650 13.1.7
HYPERBOLIC MULTILATERATION 651 13.1.8 MIXED MULTILATERATION 652 13.1.9
PERFORMANCE RESULTS FOR THREE STATIONS 652 13.1.10 PERFORMANCE RESULTS
FOR N STATIONS 654 13.2 RELATIVE POSITIONING IN WIRELESS SENSOR NETWORKS
655 13.2.1 PERFORMANCE BOUNDS 656 13.2.2 RELATIVE LOCATION ESTIMATION
659 13.3 AVERAGE PERFORMANCE OF CIRCULAR AND HYPERBOLIC GEOLOCATION 664
13.3.1 SIGNAL MODEIS AND PERFORMANCE LIMITS 664 13.3.2 PERFORMANCE OF
LOCATION TECHNIQUES 666 13.3.3 AVERAGE PERFORMANCE OF LOCATION
TECHNIQUES 667 REFERENCES 671 14 CHANNEL MODELING AND MEASUREMENTS FOR
4G 675 14.1 MACROCELLULAR ENVIRONMENTS (1.8 GHZ) 675 14.1.1 PDF OF
SHADOW FADING 677 14.2 URBAN SPATIAL RADIO CHANNELS IN MACRO/MICROCELL
(2.154 GHZ) 681 14.2.1 DESCRIPTION OF ENVIRONMENT 682 14.2.2 RESULTS 682
14.3 MIMO CHANNELS IN MICROCELL AND PICOCELL ENVIRONMENTS (1.71/2.05
GHZ) 688 14.3.1 SIMULATION OF CHANNEL COEFFICIENTS 690 14.3.2
MEASUREMENT SETUPS 690 14.3.3 VALIDATION OF THE STOCHASTIC MIMO CHANNEL
MODEL ASSUMPTIONS 690 14.3.4 INPUT PARAMETERS TO THE VALIDATION OF THE
MIMO MODEL 692 14.3.5 THE EIGENANALYSIS METHOD 693 14.4 OUTDOOR MOBILE
CHANNEL (5.3 GHZ) 696 14.4.1 PATH LOSS MODEIS 700 14.4.2 WINDOW LENGTH
FOR AVERAGING FAST FADING COMPONENTS AT 5 GHZ 702 14.4.3 SPATIAL AND
FREQUENCY CORRELATIONS 702 14.4.4 PATH NUMBER DISTRIBUTION 705 14.4.5
ROTATION MEASUREMENTS IN AN URBAN ENVIRONMENT 706 14.5 MICROCELL CHANNEL
(8.45 GHZ) 708 14.5.1 AZIMUTH PROFILE 709 14.5.2 DELAY PROFILE FOR THE
FORWARD ARRIVAL WAVES 710 14.5.3 SHORT-TERM AZIMUTH SPREAD (AS) FOR
FORWARD ARRIVAL WAVES 712 XVIII CONTENTS 14.6 WIRELESS MIMO LAN
ENVIRONMENTS (5.2 GHZ) 714 14.6.1 DATA EVALUATION 715 14.6.2 CAPACITY
COMPUTATION 716 14.6.3 MEASUREMENT ENVIRONMENTS 717 14.7 INDOOR WLAN
CHANNEL (17 GHZ) 718 14.8 INDOOR WLAN CHANNEL (60 GHZ) 727 14.8.1
DEFINITION OF THE STATISTICAL PARAMETERS 728 14.9 UWB CHANNEL MODEL 732
14.9.1 THE LARGE-SCALE STATISTICS 736 14.9.2 THE SMALL-SCALE STATISTICS
739 14.9.3 CORRELATION OF MPCS AMONG DIFFERENT DELAY BINS 741 14.9.4 THE
STATISTICAL MODEL 741 14.9.5 SIMULATION STEPS 742 REFERENCES 745 15
ADAPTIVE 4G NETWORKS 753 15.1 ADAPTIVE MAC LAYER 753 15.1.1 SIGNAL
VARIATIONS AND THE POWER CONTROL PROBLEM 755 15.1.2 SPECTRAL EFFICIENCY
AND EFFECTIVE LOAD FACTOR OF THE MULTIRATE DS-CDMA PRN 755 15.1.3
CLSP/DS-CDMA PACKET ACCESS AND TRAFFIC MODEL 756 15.1.4 BIT RATE
ADAPTATION 756 15.1.5 THE CORRELATED FADING MODEL AND OPTIMAL PACKET
SIZE 758 15.1.6 PERFORMANCE 760 15.2 MINIMUM ENERGY PEER-TO-PEER MOBILE
WIRELESS NETWORKS 770 15.2.1 NETWORK LAYER REQUIREMENTS 770 15.2.2 THE
POWER CONSUMPTION MODEL 771 15.2.3 MINIMUM POWER NETWORKS 772 15.2.4
DISTRIBUTED NETWORK ROUTING PROTOCOL 773 15.2.5 DISTRIBUTED MOBILE
NETWORKS 775 15.3 LEAST RESISTANCE ROUTING IN WIRELESS NETWORKS 778
15.3.1 LEAST RESISTANCE ROUTING (LRR) 778 15.3.2 MULTIMEDIA LEAST
RESISTANCE ROUTING (MLRR) 779 15.3.3 NETWORK PERFORMANCE EXAMPLES: LRR
VERSUS MLRR 780 15.3.4 SENSITIVITY TO THE NUMBER OF ALLOWABLE WORD
ERASURES 783 15.4 POWER OPTIMAL ROUTING IN WIRELESS NETWORKS FOR
GUARANTEED TCP LAYER QOS 786 15.4.1 CONSTANT END-TO-END ERROR RATE 786
15.4.2 OPTIMIZATION PROBLEM 788 15.4.3 ERROR RATE MODEIS 789 15.4.4
PROPERTIES OF POWER OPTIMAL PATHS 790 REFERENCES 791 16 COGNITIVE
NETWORKS AND GAME THEORY 797 16.1 COGNITIVE POWER CONTROL 797 16.1.1
NONCOOPERATIVE POWER CONTROL GAME 797 16.1.2 NASH EQUILIBRIUM 799
CONTENTS XIX 16.1.3 PARETO OPTIMALITY 800 16.1.4 SUPERMODULAR GAMES AND
SOCIAL OPTIMALITY 801 16.2 POWER CONTROL GAME WITH QOS GUARANTEE 805
16.3 POWER CONTROL GAME AND MULTIUSER DETECTION 809 16.4 POWER CONTROL
GAME IN MIMO SYSTEMS 811 16.5 GAME THEORY BASED MAC FOR AD HOC NETWORKS
813 16.6 TIT-FOR-TAT (TFT) GAME THEORY BASED PACKET FORWARDING
STRATEGIES IN AD HOC NETWORKS 815 16.6.1 STRATEGY MODEIS 815 16.6.2
NETWORK NODES DEPENDENCY GRAPH AND SYSTEM METAMODEL 817 16.6.3 THE
PAYOFF OF ITERATIVE GAME 819 16.7 TFT GAME THEORY BASED MODELING OF NODE
COOPERATION WITH ENERGY CONSTRAINT 823 16.7.1 ACCEPTANCE RATE 823 16.7.2
PARETO OPTIMUM 823 16.7.3 PRISONER S DILEMMA AND TFT GAME 825 16.8
PACKET FORWARDING MODEL BASED ON DYNAMIC BAYESIAN GAMES 828 16.9 GAME
THEORETIC MODEIS FOR ROUTING IN WIRELESS SENSOR NETWORKS 830 16.9.1
COGNITIVE WIRELESS SENSOR NETWORK MODEL 830 16.9.2 OPTIMAL ROUT
COMPUTATION 832 16.10 PROFIT DRIVEN ROUTING IN COGNITIVE NETWORKS 832
16.10.1 ALGORITHMIC MECHANISM DESIGN 832 16.10.2 PROFIT DRIVEN PRICING
MECHANISM 833 16.10.3 TRUTHFUL BEHAVIOR IN COGNITIVE NETWORKS 835
16.10.4 COLLUSION OF NODES IN COGNITIVE NETWORKS 836 16.11 GAME
THEORETICAL MODEL OF FLEXIBLE SPECTRA SHARING IN COGNITIVE NETWORKS WITH
SOCIAL AWARENESS 838 16.12 A GAME THEORETICAL MODELLING OF SLOTTED ALOHA
PROTOCOL 839 16.13 GAME-THEORY-BASED MODELING OF ADMISSION IN
COMPETITIVE WIRELESS NETWORKS 842 16.13.1 SYSTEM MODEL 842 16.13.2
EQUILIBRIUM SOLUTIONS 845 16.14 MODELLING ACCESS POINT PRICING AS A
DYNAMIC GAME 846 16.14.1 THE SYSTEM MODEL 846 16.14.2 MODELLING SERVICE
RESELLING 848 16.14.3 FILE TRANSFER MODEL 848 16.14.4 BAYESIAN MODEL FOR
UNKNOWN TRAFFIC 849 REFERENCES 851
|
adam_txt |
ADVANCED WIRELESS COMMUNICATIONS 4G COGNITIVE AND COOPERATIVE BROADBAND
TECHNOLOGY SECOND EDITION SAVO G. GLISIC UNIVERSITY OF OULU, FINLAND BJC
E NTENNIAL 1 8 O 7 SWILEY 2 OO 7 B I C E N T FCNNIAI. JOHN WILEY & SONS,
LTD CONTENTS PREFACE TO THE SECOND EDITION XXI 1 FUNDAMENTALS 1 1.1 4G
AND THE BOOK LAYOUT 1 1.2 GENERAL STRUCTURE OF 4G SIGNALS 4 1.2.1
ADVANCED TIME DIVISION MULTIPLE ACCESS (ATDMA) 5 1.2.2 CODE DIVISION
MULTIPLE ACCESS (CDMA) 5 1.2.3 ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING (OFDM) 6 1.2.4 MULTICARRIER CDMA (MC CDMA) 8 1.2.5 ULTRA
WIDE BAND (UWB) SIGNALS 11 REFERENCES 16 ADAPTIVE CODING 21 2.1 ADAPTIVE
AND RECONFIGURABLE BLOCK CODING 21 2.2 ADAPTIVE AND RECONFIGURABLE
CONVOLUTIONAL CODES 26 2.2.1 PUNCTURED CONVOLUTIONAL CODES/CODE
RECONNGURABILITY 31 2.2.2 MAXIMUM LIKELIHOOD DECODING/VITERBI ALGORITHM
32 2.2.3 SYSTEMATIC RECURSIVE CONVOLUTIONAL CODES 33 2.3 CONCATENATED
CODES WITH INTERLEAVERS 36 2.3.1 THE ITERATIVE DECODING ALGORITHM 37 2.4
ADAPTIVE CODING, PRACTICE AND PROSPECTS 43 2.5 DISTRIBUTED SOURCE CODING
44 2.5.1 CONTINUOUS VALUED SOURCE 46 2.5.2 SCALAR QUANTIZATION AND
TRELLIS-BASED COSET CONSTRUCTION 48 2.5.3 TRELLIS-BASED QUANTIZATION AND
MEMORYLESS 50 2.5.4 PERFORMANCE EXAMPLES 50 APPENDIX 2.1 MAXIMUM A
POSTERIORI DETECTION 53 REFERENCES 56 VIII CONTENTS ADAPTIVE AND
RECONFIGURABLE MODULATION 63 3.1 CODED MODULATION 63 3.1.1 EUCLIDEAN
DISTANCE 64 3.1.2 EXAMPLES OF TCM SCHEMES 65 3.1.3 SET PARTITIONING 68
3.1.4 REPRESENTATION OF TCM 70 3.1.5 TCM WITH MULTIDIMENSIONAL
CONSTELLATION 70 3.2 ADAPTIVE CODED MODULATION FOR FADING CHANNELS 72
3.2.1 MAINTAINING A FIXED DISTANCE 73 3.2.2 INFORMATION RATE 74
REFERENCES 75 SPACE-TIME CODING 79 4.1 DIVERSITY GAIN 79 4.1.1
TWO-BRANCH TRANSMIT DIVERSITY SCHEME WITH ONE RECEIVER 80 4.1.2 TWO
TRANSMITTERS AND M RECEIVERS 82 4.2 SPACE-TIME CODING 84 4.2.1 THE
SYSTEM MODEL 84 4.2.2 THE CASE OF INDEPENDENT FADE COEFFICIENTS 85 4.2.3
RAYLEIGH FADING 86 4.2.4 DESIGN CRITERIA FOR RAYLEIGH SPACE-TIME CODES
86 4.2.5 CODE CONSTRUCTION 87 4.2.6 RECONFIGURATION EFFICIENCY OF
SPACE-TIME CODING 91 4.2.7 DELAY DIVERSITY 94 4.3 SPACE-TIME BLOCK CODES
FROM ORTHOGONAL DESIGNS 96 4.3.1 THE CHANNEL MODEL AND THE DIVERSITY
CRITERION 96 4.3.2 REAL ORTHOGONAL DESIGNS 97 4.3.3 SPACE-TIME ENCODER
97 4.3.4 THE DIVERSITY ORDER 97 4.3.5 THE DECODING ALGORITHM 98 4.3.6
INEAR PROCESSING ORTHOGONAL DESIGNS 98 4.3.7 GENERALIZED REAL ORTHOGONAL
DESIGNS 99 4.3.8 ENCODING 99 4.3.9 THE ALAMOUTI SCHEME 100 4.3.10
COMPLEX ORTHOGONAL DESIGNS 100 4.3.11 GENERALIZED COMPLEX ORTHOGONAL
DESIGNS 100 4.3.12 SPECIAL CODES 101 4.3.13 PERFORMANCE RESULTS 102 4.4
CHANNEL ESTIMATION IMPERFECTIONS 102 4.4.1 CHANNEL ESTIMATOR 106 4.5
QUASI-ORTHOGONAL SPACE-TIME BLOCK CODES 107 4.5.1 DECODING 108 4.5.2
DECISION METRIC 108 4.6 SPACE-TIME CONVOLUTIONAL CODES 109 4.7 ALGEBRAIC
SPACE-TIME CODES 111 4.7.1 FUELL SPATIAL DIVERSITY 116 4.7.2 QPSK
MODULATION 116 CONTENTS IX 4.8 DIFFERENTIAL SPACE-TIME MODULATION 116
4.8.1 THE ENCODING ALGORITHM 122 4.8.2 DIFFERENTIAL DECODING 123 4.9
MULTIPLE TRANSMIT ANTENNA DIFFERENTIAL DETECTION FROM GENERALIZED
ORTHOGONAL DESIGNS 125 4.9.1 DIFFERENTIAL ENCODING 126 4.9.2 RECEIVED
SIGNAL 126 4.9.3 ORTHOGONALITY 127 4.9.4 ENCODING 127 4.9.5 DIFFERENTIAL
DECODING 128 4.9.6 RECEIVED SIGNAL 129 4.9.7 DEMODULATION 130 4.9.8
MULTIPLE RECEIVE ANTENNAS 130 4.9.9 THE NUMBER OF TRANSMIT ANTENNAS
LOWER THAN THE NUMBER OF SYMBOLS 130 4.9.10 FINAL RESULT 131 4.9.11 REAL
CONSTELLATION SET 131 4.10 LAYERED SPACE-TIME CODING 133 4.10.1 RECEIVER
COMPLEXITY 134 4.10.2 GROUP INTERFERENCE SUPPRESSION 134 4.10.3
SUPPRESSION METHOD 134 4.10.4 THE NULL SPACE 134 4.10.5 RECEIVER 135
4.10.6 DECISION METRIC 135 4.10.7 MULTILAYERED SPACE-TIME CODED
MODULATION 135 4.10.8 DIVERSITY GAIN 136 4.10.9 ADAPTIVE RECONFIGURABLE
TRANSMIT POWER ALLOCATION 136 4.11 CONCATENATED SPACE-TIME BLOCK CODING
140 4.11.1 SYSTEM MODEL 140 4.11.2 PRODUCT SUM DISTANCE 141 4.11.3 ERROR
RATE BOUND 141 4.11.4 THE CASE OF LOW SNR 142 4.11.5 CODE DESIGN 142
4.12 ESTIMATION OF MIMO CHANNEL 145 4.12.1 SYSTEM MODEL 146 4.12.2
TRAINING 148 4.12.3 PERFORMANCE MEASURE 148 4.12.4 DEFINITIONS 148
4.12.5 CHANNEL ESTIMATION ERROR 148 4.12.6 ERROR STATISTIC 149 4.12.7
RESULTS 149 4.13 SPACE-TIME CODES FOR FREQUENCY SELECTIVE CHANNELS 151
4.13.1 DIVERSITY GAIN PROPERTIES 153 4.13.2 CODING GAIN PROPERTIES 154
4.13.3 SPACE-TIME TRELLIS CODE DESIGN 155 4.14 OPTIMIZATION OF A MIMO
SYSTEM 157 4.14.1 THE CHANNEL MODEL 157 4.14.2 GAIN OPTIMIZATION BY
SINGULAR VALUE DECOMPOSITION (SVD) 158 CONTENTS 4.14.3 THE GENERAL (M,
AO CASE 159 4.14.4 GAIN OPTIMIZATION BY ITERATION FOR A RECIPROCAL
CHANNEL 161 4.14.5 SPECTRAL EFFICIENCY OF PARALLEL CHANNELS 162 4.14.6
CAPACITY OF THE (M, N) ARRAY 163 4.15 MIMO SYSTEMS WITH CONSTELLATION
ROTATION 163 4.15.1 SYSTEM MODEL 163 4.15.2 PERFORMANCE IN A RAYLEIGH
FADING CHANNEL 165 4.16 DIAGONAL ALGEBRAIC SPACE-TIME BLOCK CODES 167
4.16.1 SYSTEM MODEL 167 4.16.2 THE DAST CODING ALGORITHM 169 4.16.3 THE
DAST DECODING ALGORITHM 170 APPENDIX 4.1 QR FACTORIZATION 173 APPENDIX
4.2 LATTICE CODE DECODER FOR SPACE-TIME CODES 175 APPENDIX 4.3 MIMO
CHANNEL CAPACITY 176 REFERENCES 180 MULTIUSER COMMUNICATION 191 5.1
PSEUDORANDOM SEQUENCES 191 5.1.1 BINARY SHIFT REGISTER SEQUENCES 191
5.1.2 PROPERTIES OF BINARY MAXIMAL LENGTH SEQUENCES 193 5.1.3
CROSSCORRELATION SPECTRA 193 5.1.4 MAXIMAL CONNECTED SETS OF M-SEQUENCES
194 5.1.5 GOLD SEQUENCES 194 5.1.6 GOLD-LIKE AND DUAL-BCH SEQUENCES 195
5.1.7 KASAMI SEQUENCES 196 5.1.8 JPL SEQUENCES 197 5.1.9 KRONECKER
SEQUENCES 197 5.1.10 WALSH FUNCTIONS 198 5.1.11 OPTIMUM PN SEQUENCES 199
5.1.12 GOLAYCODE 199 5.2 MULTIUSER CDMA RECEIVERS 201 5.2.1 SYNCHRONOUS
CDMA CHANNELS 202 5.2.2 THE DECORRELATING DETECTOR 202 5.2.3 THE OPTIMUM
LINEAR MULTIUSER DETECTOR 202 5.2.4 MULTISTAGE DETECTION IN ASYNCHRONOUS
CDMA [43] 203 5.2.5 NON-COHERENT DETECTOR 205 5.2.6 NON-COHERENT
DETECTION IN ASYNCHRONOUS MULTIUSER CHANNELS [45] 205 5.2.7 MULTIUSER
DETECTION IN FREQUENCY NON-SELECTIVE RAYLEIGH FADING CHANNELS 207 5.2.8
MULTIUSER DETECTION IN FREQUENCY SELECTIVE RAYLEIGH FADING CHANNELS 210
5.3 MINIMUM MEAN SQUARE ERROR (MMSE) LINEAR MULTIUSER DETECTION 216
5.3.1 SYSTEM MODEL IN MULTIPATH FADING CHANNELS 217 5.3.2 MMSE DETECTOR
STRUCTURES 220 5.3.3 SPATIAL PROCESSING 221 CONTENTS XI 5.4 SINGLE USER
LMMSE RECEIVERS FOR FREQUENCY SELECTIVE FADING CHANNELS 225 5.4.1
ADAPTIVE PRECOMBINING LMMSE RECEIVERS 225 5.4.2 BLIND LEAST SQUARES
RECEIVERS 230 5.4.3 LEAST SQUARES (LS) RECEIVER 230 5.4.4 METHOD BASED
ON THE MATRIX INVERSION LEMMA 231 5.5 SIGNAL SUBSPACE-BASED CHANNEL
ESTIMATION FOR CDMA SYSTEMS 232 5.5.1 ESTIMATING THE SIGNAL SUBSPACE 234
5.5.2 CHANNEL ESTIMATION 235 5.6 ITERATIVE RECEIVERS FOR LAYERED
SPACE-TIME CODING 236 5.6.1 LST ARCHITECTURES 237 5.6.2 LST RECEIVERS
241 5.6.3 QR DECOMPOSITION/SIC DETECOR 242 5.6.4 MMSE/SIC DETECTOR 244
5.6.5 ITERATIVE LST RECEIVERS 246 APPENDIX 5.1 LINEAR AND MATRIX ALGEBRA
253 DEFINITIONS 253 SPECIAL MATRICES 254 MATRIX MANIPULATION AND
FORMULAS 255 THEOREMS 257 EIGENDECOMPOSTION OF MATRICES 257 CALCULATION
OF EIGENVALUES AND EIGENVECTORS 258 REFERENCES 259 CHANNEL ESTIMATION
AND EQUALIZATION 269 6.1 EQUALIZATION IN THE DIGITAL DATA TRANSMISSION
SYSTEM 269 6.1.1 ZERO-FORCING EQUALIZERS 269 6.2 LMS EQUALIZER 275 6.2.1
SIGNAL MODEL 275 6.2.2 ADAPTIVE WEIGHT ADJUSTMENT 276 6.2.3 AUTOMATIC
SYSTEMS 276 6.2.4 ITERATIVE ALGORITHM 277 6.2.5 THE LMS ALGORITHM 277
6.2.6 DECISION FEEDBACK EQUALIZER (DFE) 277 6.2.7 BLIND EQUALIZERS 278
6.3 DETECTION FOR A STATISTICALLY KNOWN, TIME VARYING CHANNEL 279 6.3.1
SIGNAL MODEL 279 6.3.2 CHANNEL MODEL 279 6.3.3 STATISTICAL DESCRIPTION
OF THE RECEIVED SEQUENCE 281 6.3.4 THE ML SEQUENCE (BLOCK) ESTIMATOR FOR
A STATISTICALLY KNOWN CHANNEL 281 6.4 LMS-ADAPTIVE MLSE EQUALIZATION ON
MULTIPATH FADING CHANNELS 284 6.4.1 SYSTEM AND CHANNEL MODEIS 284 6.4.2
ADAPTIVE CHANNEL ESTIMATOR AND LMS ESTIMATOR MODEL 285 6.4.3 THE CHANNEL
PREDICTION ALGORITHM 285 CONTENTS 6.5 ADAPTIVE CHANNEL IDENTIFICATION
AND DATA DEMODULATION 288 6.5.1 SYSTEM MODEL 288 6.5.2 JOINT CHANNEL AND
DATA ESTIMATION 288 6.5.3 DATA ESTIMATION AND TRACKING FOR A FADING
CHANNEL 292 6.5.4 THE STATIC CHANNEL ENVIRONMENT 293 6.5.5 THE TIME
VARYING CHANNEL ENVIRONMENT 296 6.6 TURBO EQUALIZATION 301 6.6.1 SIGNAL
FORMAT 301 6.6.2 EQUIVALENT DISCRETE TIME CHANNEL MODEL 302 6.6.3
EQUIVALENT SYSTEM STATE REPRESENTATIONS 302 6.6.4 TURBO EQUALIZATION 302
6.6.5 VITERBI ALGORITHM 303 6.6.6 ITERATIVE IMPLEMENTATION OF TURBO
EQUALIZATION 304 6.6.7 PERFORMANCE 304 6.7 KAIMAN FILTER BASED JOINT
CHANNEL ESTIMATION AND DATA DETECTION OVER FADING CHANNELS 305 6.7.1
CHANNEL MODEL 308 6.7.2 THE RECEIVED SIGNAL 308 6.7.3 CHANNEL ESTIMATION
ALTERNATIVES 308 6.7.4 IMPLEMENTING THE ESTIMATOR 309 6.7.5 THE KAIMAN
FILIER 310 6.7.6 IMPLEMENTATION ISSUES 310 6.8 EQUALIZATION USING HIGHER
ORDER SIGNAL STATISTICS 311 6.8.1 PROBLEM STATEMENT 311 6.8.2 SIGNAL
MODEL 313 6.8.3 DERIVATION OF ALGORITHMS FOR DFE 313 6.8.4 THE EQUALIZER
COEFFICIENTS 314 6.8.5 STOCHASTIC GRADIENT DFE ADAPTIVE ALGORITHMS 315
6.8.6 CONVERGENCE ANALYSIS 316 6.8.7 KURTOSIS-BASED ALGORITHM 318 6.8.8
PERFORMANCE RESULTS 321 REFERENCES 321 ORTHOGONAL FREQUENCY DIVISION
MULTIPLEXING*OFDM AND MULTICARRIER CDMA 329 7.1 TIMING AND FREQUENCY
OFFSET IN OFDM 329 7.1.1 ROBUST FREQUENCY AND TIMING SYNCHRONIZATION FOR
OFDM 331 7.2 FADING CHANNEL ESTIMATION FOR OFDM SYSTEMS 334 7.2.1
STATISTICS OF MOBILE RADIO CHANNELS 334 7.2.2 DIVERSITY RECEIVER 335
7.2.3 MMSE CHANNEL ESTIMATION 335 7.2.4 FIR CHANNEL ESTIMATOR 337 7.2.5
SYSTEM PERFORMANCE 338 7.2.6 REFERENCE GENERATION 339 7.3 64 DAPSK AND
64 QAM MODULATED OFDM SIGNALS 339 CONTENTS XIII 7.4 SPACE-TIME CODING
WITH OFDM SIGNALS 344 7.4.1 SIGNAL AND CHANNEL PARAMETERS 345 7.4.2 THE
WIRELESS ASYNCHRONOUS TRANSFER MODE SYSTEM 349 7.4.3 SPACE-TIME CODED
ADAPTIVE MODULATION FOR OFDM 349 7.4.4 TURBO AND SPACE-TIME CODED
ADAPTIVE OFDM 349 7.5 LAYERED SPACE-TIME CODING FOR MIMO OFDM 351 7.5.1
SYSTEM MODEL (TWO TIMES TWO TRANSMIT ANTENNAS) 352 7.5.2 INTERFERENCE
CANCELLATION 353 7.5.3 FOUR TRANSMIT ANTENNAS 353 7.6 SPACE-TIME CODED
TDMA/OFDM RECONFIGURATION EFFICIENCY 356 7.6.1 FREQUENCY SELECTIVE
CHANNEL MODEL 356 7.6.2 FRONT END PREFILTER 357 7.6.3 TIME-INVARIANT
CHANNEL 357 7.6.4 OPTIMIZATION PROBLEM 358 7.6.5 AVERAGE CHANNEL 358
7.6.6 PREFILTERED M-BCJR EQUALIZER 358 7.6.7 DECISION 359 7.6.8
PREFILTERED MLSE/DDFSE EQUALIZER COMPLEXITY 359 7.6.9 DELAYED DECISION
FEEDBACK SEQUENCE ESTIMATION (DDFSE) 360 7.6.10 EQUALIZATION SCHEMES FOR
STBC 360 7.6.11 SINGLE-CARRIER FREQUENCY DOMAIN EQUALIZED SPACE-TIME
BLOCK CODING SC FDE STBC 361 7.7 MULTICARRIER CDMA SYSTEM 369 7.7.1
DATADEMODULATION 370 7.7.2 PERFORMANCE EXAMPLES 371 7.8 MULTICARRIER
DS-CDMA BROADCAST SYSTEMS 371 7.9 FRAME BY FRAME ADAPTIVE RATE CODED
MULTICARRIER DS-CDMA SYSTEM 375 7.9.1 TRANSMITTER 377 7.9.2 RECEIVER 378
7.9.3 RATE-COMPATIBLE PUNCTURED CONVOLUTIONAL (RCPC) CODES 379 7.9.4
RATE ADAPTATION 380 7.10 INTERMODULATION INTERFERENCE SUPPRESSION IN
MULTICARRIER CDMA SYSTEMS 382 7.10.1 TRANSMITTER 382 7.10.2 NON-LINEAR
POWER AMPLIFIER MODEL 383 7.10.3 MMSE RECEIVER 383 7.11 SUCCESSIVE
INTERFERENCE CANCELLATION IN MULTICARRIER DS-CDMA SYSTEMS 386 7.11.1
SYSTEM AND CHANNEL MODEL 386 7.12 MMSE DETECTION OF MULTICARRIER CDMA
387 7.12.1 TRACKING THE FADING PROCESSES 390 7.13 APPROXIMATION OF
OPTIMUM MULTIUSER RECEIVER FOR SPACE-TIME CODED MULTICARRIER CDMA
SYSTEMS 393 7.13.1 FREQUENCY SELECTIVE FADING CHANNELS 397 7.13.2
RECEIVER SIGNAL MODEL OF STBC MC CDMA SYSTEMS 398 7.13.3 BLIND APPROACH
399 CONTENTS 7.13.4 BAYESIAN OPTIMAL BLIND RECEIVER 400 7.13.5 BLIND
BAYESIAN MONTE CARLO MULTIUSER RECEIVER APPROXIMATION 400 7.13.6 GIBBS
SAMPLER 400 7.13.7 PRIOR DISTRIBUTIONS 401 7.13.8 CONDITIONAL POSTERIOR
DISTRIBUTIONS 401 7.13.9 GIBBS MULTIUSER DETECTION 402 7.13.10 SAMPLING
SPACE OF DATA 403 7.13.11 THE ORTHOGONALITY PROPERTY 403 7.13.12 BLIND
TURBO MULTIUSER RECEIVER 403 7.13.13 DECODER-ASSISTED CONVERGENCE
ASSESSMENT 404 7.13.14 PERFORMANCE EXAMPLE 404 7.14 PARALLEL
INTERFERENCE CANCELLATION IN OFDM SYSTEMS IN TIME-VARYING MULTIPATH
FADING CHANNELS 405 7.15 ZERO FORCING OFDM EQUALIZER IN TIME-VARYING
MULTIPATH FADING CHANNELS 411 7.16 CHANNEL ESTIMATION FOR OFDM SYSTEMS
415 7.17 TURBO PROCESSING FOR AN OFDM-BASED MIMO SYSTEM 418 7.18 PAPR
REDUCTION OF OFDM SIGNALS 420 APPENDIX 424 REFERENCES 425 ULTRA WIDE
BAND RADIO 433 8.1 UWB MULTIPLE ACCESS IN A GAUSSIAN CHANNEL 433 8.1.1
THE MULTIPLE ACCESS CHANNEL 433 8.1.2 RECEIVER 434 8.2 THE UWB CHANNEL
436 8.2.1 ENERGY CAPTURE 436 8.2.2 THE RECEIVED SIGNAL MODEL 436 8.2.3
THE UWB SIGNAL PROPAGATION EXPERIMENT 1 436 8.2.4 UWB PROPAGATION
EXPERIMENT 2 437 8.2.5 CLUSTERING MODEIS FOR THE INDOOR MULTIPATH
PROPAGATION CHANNEL 438 8.2.6 PATH LOSS MODELING 440 8.3 UWB SYSTEM WITH
M-ARY MODULATION 442 8.3.1 PERFORMANCE IN A GAUSSIAN CHANNEL 442 8.3.2
PERFORMANCE IN A DENSE MULTIPATH CHANNEL 446 8.3.3 RECEIVER AND BER
PERFORMANCE 447 8.3.4 TIME VARIATIONS 447 8.3.5 PERFORMANCE EXAMPLE 448
8.4 M-ARY PPM UWB MULTIPLE ACCESS 448 8.4.1 M-ARY PPM SIGNAL SETS 451
8.4.2 PERFORMANCE RESULTS 453 8.5 CODED UWB SCHEMES 453 8.5.1
PERFORMANCE 457 8.5.2 THE UNCODED SYSTEM AS A CODED SYSTEM WITH
REPETITION 457 8.6 MULTIUSER DETECTION IN UWB RADIO 458 CONTENTS XV 8.7
UWB WITH SPACE-TIME PROCESSING 460 8.7.1 SIGNAL MODEL 460 8.7.2 THE
MONOPULSE TRACKING SYSTEM 464 8.8 BEAMFORMING FOR UWB RADIO 467 8.8.1
CIRCULAR ARRAY 467 REFERENCES 492 9 LINEAR PRECODING FOR MIMO CHANNELS
497 9.1 SPACE-TIME PRECODERS AND EQUALIZERS FOR MIMO CHANNELS 497 9.1.1
ISI MODELLING IN MIMO CHANNELS 497 9.1.2 MIMO SYSTEM PRECODING AND
EQUALIZATION 499 9.1.3 PRECODER AND EQUALIZER DESIGN FOR STBC SYSTEMS
502 9.2 LINEAR PRECODING BASED ON CONVEX OPTIMIZATION THEORY 504 9.2.1
GENERALIZED MIMO SYSTEMS 505 9.2.2 CONVEX OPTIMIZATION 506 9.2.3
PRECODING FOR POWER OPTIMIZATION 507 9.2.4 PRECODER FOR SINR
OPTIMIZATION 510 9.2.5 PERFORMANCE EXAMPLE 512 9.3 CONVEX
OPTIMIZATION-THEORY-BASED BEAMFORMING 513 9.3.1 MULTICARRIER MIMO SIGNAL
MODEL 514 9.3.2 CHANNEL DIAGONALIZATION 516 9.3.3 CONVEX
OPTIMIZATION-BASED BEAMFORMING 520 9.3.4 CONSTRAINTS IN MULTICARRIER
SYSTEMS 526 9.3.5 PERFORMANCE EXAMPLES 527 REFERENCES 533 10 COGNITIVE
RADIO 537 10.1 ENERGY-EFFICIENT COGNITIVE RADIO 537 10.1.1 FRAME LENGTH
ADAPTATION 537 10.1.2 FRAME LENGTH ADAPTATION IN FLAT FADING CHANNELS
539 10.1.3 THE ADAPTATION ALGORITHM 542 10.1.4 ENERGY-EFFICIENT ADAPTIVE
ERROR CONTROL 542 10.1.5 PROCESSING GAIN ADAPTATION 545 10.1.6
TRELLIS-BASED PROCESSING/ADAPTIVE MAXIMUM LIKELIHOOD SEQUENCE EQUALIZER
547 10.1.7 HIDDEN MARKOV CHANNEL MODEL 548 10.1.8 LINK LAYER PERFORMANCE
WITH INADEQUATE EQUALIZATION 549 10.1.9 LINK LAYER PERFORMANCE WITH
ADEQUATE EQUALIZATION 551 10.2 A COGNITIVE RADIO ARCHITECTURE FOR LINEAR
MULTIUSER DETECTION 556 10.2.1 A UNIFIED ARCHITECTURE FOR LINEAR
MULTIUSER DETECTION AND DYNAMIC RECONFIGURABILITY 556 10.2.2
EXPERIMENTAL RESULTS 563 10.2.3 THE EFFECTS OF QUANTIZATION 564 10.2.4
THE EFFECT ON THE 'NEAR-FAR' RESISTANCE 565 10.3 RECONFIGURABLE ASIC
ARCHITECTURE 567 XVI CONTENTS 10.3.1 10.3.2 10.3.3 10.3.4 10.3.5 10.3.6
10.3.7 10.3.8 10.3.9 10.3.10 10.3.11 10.3.12 10.3.13 10.3.14 MOTIVATION
AND PRESENT ART 569 ALTERNATIVE IMPLEMENTATIONS 570 EXAMPLE ARCHITECTURE
VERSUS AN FPGA 570 DSP AGAINST THE EXAMPLE ARCHITECTURE 571 COMPUTATION
OF A COMPLEX 16-POINT DFT - THE GOERTZEL FFTMODE 571 FIXED COEFFICIENT
ALTERS 573 REAL FIR/CORRELATOR 574 REAL IIR/CORRELATOR 574 CASCADING
FIXED COEFFICIENT ALTERS 574 ADAPTIVE FILTERING 574 DIRECT DIGITAL
FREQUENCY SYNTHESIS 576 CORDIC ALGORITHM [83] 577 DISCRETE FOURIER
TRANSFORM 578 GOERTZEL ALGORITHM 578 REFERENCES 580 11 COOPERATIVE
DIVERSITY IN COGNITIVE WIRELESS NETWORKS 587 11.1 SYSTEM MODELING 587
11.1.1 SYSTEM CAPACITY 588 11.1.2 PROBABILITY OF OUTAGE 591 11.1.3
CELLULAR COVERAGE 592 11.2 COOPERATIVE DIVERSITY PROTOCOLS 593 11.2.1
SYSTEM AND CHANNEL MODEIS 593 11.2.2 COPERATIVE DIVERSITY PROTOCOLS 594
11.2.3 OUTAGE PROBABILITIES 595 11.2.4 PERFORMANCE BOUNDS FOR
COOPERATIVE DIVERSITY 598 11.3 DISTRIBUTED SPACE-TIME CODING 600 11.3.1
SYSTEM DESCRIPTION 600 11.3.2 BER ANALYSIS IN DSTC 603 11.4
GENERALIZATION OF DISTRIBUTED SPACE-TIME-CODING BASED ON COOPERATIVE
DIVERSITY 605 11.4.1 SYSTEM AND CHANNEL MODEL 605 11.4.2 COOPERATIVE
DIVERSITY BASED ON REPETITION 608 11.4.3 COOPERATIVE DIVERSITY USING
SPACE-TIME CODING 612 APPENDIX 11.1 ASYMPTOTIC CDF APPROXIMATIONS 614
APPENDIX 11.2 AMPLIFY-AND-FORWARD MUTUAL INFORMATION 619 APPENDIX 11.3
INPUT DISTRIBUTIONS FOR TRANSMIT DIVERSITY BOUND 620 REFERENCES 621 12
COGNITIVE UWB COMMUNICATIONS 625 12.1 INTRODUCTION 625 12.2 SIGNAL AND
INTERFERENCE MODEIS 627 12.3 RECEIVER STRUCTURE AND PERFORMANCE 628
12.3.1 INTERFERENCE REJECTION CIRCUIT MODEL 629 12.4 PERFORMANCE
EXAMPLES 635 REFERENCES 641 CONTENTS XVII 13 POSITIONING IN WIRELESS
NETWORKS 645 13.1 MOBILE STATION LOCATION IN CELLULAR NETWORKS 645
13.1.1 INTRODUCTION 645 13.1.2 MS LOCATION ESTIMATION USING AD AND RD
MEASUREMENTS 646 13.1.3 THE CIRCULAR, HYPERBOLIC, AND MIXED
MULTILATERATION 646 13.1.4 WLS SOLUTION OFTHE LOCATION PROBLEM 648
13.1.5 ACCURACY MEASURE 649 13.1.6 CIRCULAR MULTILATERATION 650 13.1.7
HYPERBOLIC MULTILATERATION 651 13.1.8 MIXED MULTILATERATION 652 13.1.9
PERFORMANCE RESULTS FOR THREE STATIONS 652 13.1.10 PERFORMANCE RESULTS
FOR N STATIONS 654 13.2 RELATIVE POSITIONING IN WIRELESS SENSOR NETWORKS
655 13.2.1 PERFORMANCE BOUNDS 656 13.2.2 RELATIVE LOCATION ESTIMATION
659 13.3 AVERAGE PERFORMANCE OF CIRCULAR AND HYPERBOLIC GEOLOCATION 664
13.3.1 SIGNAL MODEIS AND PERFORMANCE LIMITS 664 13.3.2 PERFORMANCE OF
LOCATION TECHNIQUES 666 13.3.3 AVERAGE PERFORMANCE OF LOCATION
TECHNIQUES 667 REFERENCES 671 14 CHANNEL MODELING AND MEASUREMENTS FOR
4G 675 14.1 MACROCELLULAR ENVIRONMENTS (1.8 GHZ) 675 14.1.1 PDF OF
SHADOW FADING 677 14.2 URBAN SPATIAL RADIO CHANNELS IN MACRO/MICROCELL
(2.154 GHZ) 681 14.2.1 DESCRIPTION OF ENVIRONMENT 682 14.2.2 RESULTS 682
14.3 MIMO CHANNELS IN MICROCELL AND PICOCELL ENVIRONMENTS (1.71/2.05
GHZ) 688 14.3.1 SIMULATION OF CHANNEL COEFFICIENTS 690 14.3.2
MEASUREMENT SETUPS 690 14.3.3 VALIDATION OF THE STOCHASTIC MIMO CHANNEL
MODEL ASSUMPTIONS 690 14.3.4 INPUT PARAMETERS TO THE VALIDATION OF THE
MIMO MODEL 692 14.3.5 THE EIGENANALYSIS METHOD 693 14.4 OUTDOOR MOBILE
CHANNEL (5.3 GHZ) 696 14.4.1 PATH LOSS MODEIS 700 14.4.2 WINDOW LENGTH
FOR AVERAGING FAST FADING COMPONENTS AT 5 GHZ 702 14.4.3 SPATIAL AND
FREQUENCY CORRELATIONS 702 14.4.4 PATH NUMBER DISTRIBUTION 705 14.4.5
ROTATION MEASUREMENTS IN AN URBAN ENVIRONMENT 706 14.5 MICROCELL CHANNEL
(8.45 GHZ) 708 14.5.1 AZIMUTH PROFILE 709 14.5.2 DELAY PROFILE FOR THE
FORWARD ARRIVAL WAVES 710 14.5.3 SHORT-TERM AZIMUTH SPREAD (AS) FOR
FORWARD ARRIVAL WAVES 712 XVIII CONTENTS 14.6 WIRELESS MIMO LAN
ENVIRONMENTS (5.2 GHZ) 714 14.6.1 DATA EVALUATION 715 14.6.2 CAPACITY
COMPUTATION 716 14.6.3 MEASUREMENT ENVIRONMENTS 717 14.7 INDOOR WLAN
CHANNEL (17 GHZ) 718 14.8 INDOOR WLAN CHANNEL (60 GHZ) 727 14.8.1
DEFINITION OF THE STATISTICAL PARAMETERS 728 14.9 UWB CHANNEL MODEL 732
14.9.1 THE LARGE-SCALE STATISTICS 736 14.9.2 THE SMALL-SCALE STATISTICS
739 14.9.3 CORRELATION OF MPCS AMONG DIFFERENT DELAY BINS 741 14.9.4 THE
STATISTICAL MODEL 741 14.9.5 SIMULATION STEPS 742 REFERENCES 745 15
ADAPTIVE 4G NETWORKS 753 15.1 ADAPTIVE MAC LAYER 753 15.1.1 SIGNAL
VARIATIONS AND THE POWER CONTROL PROBLEM 755 15.1.2 SPECTRAL EFFICIENCY
AND EFFECTIVE LOAD FACTOR OF THE MULTIRATE DS-CDMA PRN 755 15.1.3
CLSP/DS-CDMA PACKET ACCESS AND TRAFFIC MODEL 756 15.1.4 BIT RATE
ADAPTATION 756 15.1.5 THE CORRELATED FADING MODEL AND OPTIMAL PACKET
SIZE 758 15.1.6 PERFORMANCE 760 15.2 MINIMUM ENERGY PEER-TO-PEER MOBILE
WIRELESS NETWORKS 770 15.2.1 NETWORK LAYER REQUIREMENTS 770 15.2.2 THE
POWER CONSUMPTION MODEL 771 15.2.3 MINIMUM POWER NETWORKS 772 15.2.4
DISTRIBUTED NETWORK ROUTING PROTOCOL 773 15.2.5 DISTRIBUTED MOBILE
NETWORKS 775 15.3 LEAST RESISTANCE ROUTING IN WIRELESS NETWORKS 778
15.3.1 LEAST RESISTANCE ROUTING (LRR) 778 15.3.2 MULTIMEDIA LEAST
RESISTANCE ROUTING (MLRR) 779 15.3.3 NETWORK PERFORMANCE EXAMPLES: LRR
VERSUS MLRR 780 15.3.4 SENSITIVITY TO THE NUMBER OF ALLOWABLE WORD
ERASURES 783 15.4 POWER OPTIMAL ROUTING IN WIRELESS NETWORKS FOR
GUARANTEED TCP LAYER QOS 786 15.4.1 CONSTANT END-TO-END ERROR RATE 786
15.4.2 OPTIMIZATION PROBLEM 788 15.4.3 ERROR RATE MODEIS 789 15.4.4
PROPERTIES OF POWER OPTIMAL PATHS 790 REFERENCES 791 16 COGNITIVE
NETWORKS AND GAME THEORY 797 16.1 COGNITIVE POWER CONTROL 797 16.1.1
NONCOOPERATIVE POWER CONTROL GAME 797 16.1.2 NASH EQUILIBRIUM 799
CONTENTS XIX 16.1.3 PARETO OPTIMALITY 800 16.1.4 SUPERMODULAR GAMES AND
SOCIAL OPTIMALITY 801 16.2 POWER CONTROL GAME WITH QOS GUARANTEE 805
16.3 POWER CONTROL GAME AND MULTIUSER DETECTION 809 16.4 POWER CONTROL
GAME IN MIMO SYSTEMS 811 16.5 GAME THEORY BASED MAC FOR AD HOC NETWORKS
813 16.6 TIT-FOR-TAT (TFT) GAME THEORY BASED PACKET FORWARDING
STRATEGIES IN AD HOC NETWORKS 815 16.6.1 STRATEGY MODEIS 815 16.6.2
NETWORK NODES DEPENDENCY GRAPH AND SYSTEM METAMODEL 817 16.6.3 THE
PAYOFF OF ITERATIVE GAME 819 16.7 TFT GAME THEORY BASED MODELING OF NODE
COOPERATION WITH ENERGY CONSTRAINT 823 16.7.1 ACCEPTANCE RATE 823 16.7.2
PARETO OPTIMUM 823 16.7.3 PRISONER'S DILEMMA AND TFT GAME 825 16.8
PACKET FORWARDING MODEL BASED ON DYNAMIC BAYESIAN GAMES 828 16.9 GAME
THEORETIC MODEIS FOR ROUTING IN WIRELESS SENSOR NETWORKS 830 16.9.1
COGNITIVE WIRELESS SENSOR NETWORK MODEL 830 16.9.2 OPTIMAL ROUT
COMPUTATION 832 16.10 PROFIT DRIVEN ROUTING IN COGNITIVE NETWORKS 832
16.10.1 ALGORITHMIC MECHANISM DESIGN 832 16.10.2 PROFIT DRIVEN PRICING
MECHANISM 833 16.10.3 TRUTHFUL BEHAVIOR IN COGNITIVE NETWORKS 835
16.10.4 COLLUSION OF NODES IN COGNITIVE NETWORKS 836 16.11 GAME
THEORETICAL MODEL OF FLEXIBLE SPECTRA SHARING IN COGNITIVE NETWORKS WITH
SOCIAL AWARENESS 838 16.12 A GAME THEORETICAL MODELLING OF SLOTTED ALOHA
PROTOCOL 839 16.13 GAME-THEORY-BASED MODELING OF ADMISSION IN
COMPETITIVE WIRELESS NETWORKS 842 16.13.1 SYSTEM MODEL 842 16.13.2
EQUILIBRIUM SOLUTIONS 845 16.14 MODELLING ACCESS POINT PRICING AS A
DYNAMIC GAME 846 16.14.1 THE SYSTEM MODEL 846 16.14.2 MODELLING SERVICE
RESELLING 848 16.14.3 FILE TRANSFER MODEL 848 16.14.4 BAYESIAN MODEL FOR
UNKNOWN TRAFFIC 849 REFERENCES 851 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Glisic, Savo G. |
author_facet | Glisic, Savo G. |
author_role | aut |
author_sort | Glisic, Savo G. |
author_variant | s g g sg sgg |
building | Verbundindex |
bvnumber | BV023048038 |
callnumber-first | T - Technology |
callnumber-label | TK5103 |
callnumber-raw | TK5103.2 |
callnumber-search | TK5103.2 |
callnumber-sort | TK 45103.2 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ST 273 ZN 6400 |
ctrlnum | (OCoLC)85692935 (DE-599)BVBBV023048038 |
dewey-full | 621.384 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.384 |
dewey-search | 621.384 |
dewey-sort | 3621.384 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Informatik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01757nam a2200457zc 4500</leader><controlfield tag="001">BV023048038</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071212s2007 xxkd||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA4-Z3364</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470059777</subfield><subfield code="9">978-0-470-05977-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">047005977X</subfield><subfield code="9">0-470-05977-X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)85692935</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV023048038</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1102</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5103.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.384</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 273</subfield><subfield code="0">(DE-625)143640:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6400</subfield><subfield code="0">(DE-625)157560:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glisic, Savo G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advanced wireless communications</subfield><subfield code="b">4G cognitive and cooperative broadband technology</subfield><subfield code="c">Savo G. Glisic</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 865 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless communication systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funknetz</subfield><subfield code="0">(DE-588)4216130-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Telekommunikation</subfield><subfield code="0">(DE-588)4059360-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funknetz</subfield><subfield code="0">(DE-588)4216130-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Telekommunikation</subfield><subfield code="0">(DE-588)4059360-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/description/wiley042/2004274972.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/wiley041/2004274972.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016251464&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016251464</subfield></datafield></record></collection> |
id | DE-604.BV023048038 |
illustrated | Illustrated |
index_date | 2024-07-02T19:23:26Z |
indexdate | 2024-07-09T21:09:46Z |
institution | BVB |
isbn | 9780470059777 047005977X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016251464 |
oclc_num | 85692935 |
open_access_boolean | |
owner | DE-1102 |
owner_facet | DE-1102 |
physical | XXII, 865 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley |
record_format | marc |
spelling | Glisic, Savo G. Verfasser aut Advanced wireless communications 4G cognitive and cooperative broadband technology Savo G. Glisic 2. ed. Chichester Wiley 2007 XXII, 865 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Wireless communication systems Funknetz (DE-588)4216130-7 gnd rswk-swf Telekommunikation (DE-588)4059360-5 gnd rswk-swf Funknetz (DE-588)4216130-7 s Telekommunikation (DE-588)4059360-5 s DE-604 http://www.loc.gov/catdir/description/wiley042/2004274972.html Publisher description http://www.loc.gov/catdir/toc/wiley041/2004274972.html Table of contents GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016251464&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Glisic, Savo G. Advanced wireless communications 4G cognitive and cooperative broadband technology Wireless communication systems Funknetz (DE-588)4216130-7 gnd Telekommunikation (DE-588)4059360-5 gnd |
subject_GND | (DE-588)4216130-7 (DE-588)4059360-5 |
title | Advanced wireless communications 4G cognitive and cooperative broadband technology |
title_auth | Advanced wireless communications 4G cognitive and cooperative broadband technology |
title_exact_search | Advanced wireless communications 4G cognitive and cooperative broadband technology |
title_exact_search_txtP | Advanced wireless communications 4G cognitive and cooperative broadband technology |
title_full | Advanced wireless communications 4G cognitive and cooperative broadband technology Savo G. Glisic |
title_fullStr | Advanced wireless communications 4G cognitive and cooperative broadband technology Savo G. Glisic |
title_full_unstemmed | Advanced wireless communications 4G cognitive and cooperative broadband technology Savo G. Glisic |
title_short | Advanced wireless communications |
title_sort | advanced wireless communications 4g cognitive and cooperative broadband technology |
title_sub | 4G cognitive and cooperative broadband technology |
topic | Wireless communication systems Funknetz (DE-588)4216130-7 gnd Telekommunikation (DE-588)4059360-5 gnd |
topic_facet | Wireless communication systems Funknetz Telekommunikation |
url | http://www.loc.gov/catdir/description/wiley042/2004274972.html http://www.loc.gov/catdir/toc/wiley041/2004274972.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016251464&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT glisicsavog advancedwirelesscommunications4gcognitiveandcooperativebroadbandtechnology |