Learning theory: 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings
Gespeichert in:
Format: | Tagungsbericht Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Schriftenreihe: | Lecture Notes in Computer Science
4539 : Lecture notes in artificial intelligence |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 634 S. graph. Darst. |
ISBN: | 9783540729259 3540729259 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022485135 | ||
003 | DE-604 | ||
005 | 20170222 | ||
007 | t| | ||
008 | 070628s2007 gw d||| |||| 10||| eng d | ||
015 | |a 07,N22,0053 |2 dnb | ||
016 | 7 | |a 984068619 |2 DE-101 | |
020 | |a 9783540729259 |c : ca. EUR 77.04 (freier Pr.), ca. sfr 118.00 (freier Pr.) |9 978-3-540-72925-9 | ||
020 | |a 3540729259 |c : ca. EUR 77.04 (freier Pr.), ca. sfr 118.00 (freier Pr.) |9 3-540-72925-9 | ||
024 | 3 | |a 9783540729259 | |
028 | 5 | 2 | |a 12073375 |
035 | |a (OCoLC)634398031 | ||
035 | |a (DE-599)DNB984068619 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-706 |a DE-355 |a DE-83 |a DE-11 | ||
082 | 0 | |a 006.31 |2 22/ger | |
084 | |a DAT 708f |2 stub | ||
084 | |a 004 |2 sdnb | ||
245 | 1 | 0 | |a Learning theory |b 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings |c Nader H. Bshouty ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XII, 634 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Computer Science |v 4539 : Lecture notes in artificial intelligence | |
650 | 0 | 7 | |a Algorithmische Lerntheorie |0 (DE-588)4701014-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |y 2007 |z San Diego Calif. |2 gnd-content | |
689 | 0 | 0 | |a Algorithmische Lerntheorie |0 (DE-588)4701014-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Bshouty, Nader H. |e Sonstige |4 oth | |
711 | 2 | |a Conference on Learning Theory |n 20 |d 2007 |c San Diego, Calif. |j Sonstige |0 (DE-588)6516166-X |4 oth | |
830 | 0 | |a Lecture Notes in Computer Science |v 4539 : Lecture notes in artificial intelligence |w (DE-604)BV000000607 |9 4539 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015692433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015692433 |
Datensatz im Suchindex
_version_ | 1820875013760221184 |
---|---|
adam_text |
Table
Invited Presentations
Property Testing: A Learning Theory Perspective
Dana Ron
Spectral Algorithms for Learning and Clustering
Santosh S. Vempala
Unsupervised, Semisupervised and Active Learning I
Minimax Bounds for Active Learning
Rui
Stability of fc-Means Clustering
Shai Ben-David,
Margin Based Active Learning
Maria-Fiorina
Unsupervised, Semisupervised and Active Learning II
Learning Large-Alphabet and Analog Circuits with Value Injection
Queries
Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin
Teaching Dimension and the Complexity of Active Learning
Steve Hanneke
Multi-
Sham M.
Statistical Learning Theory
Aggregation by Exponential Weighting and Sharp Oracle Inequalities
Arnak S.
Occam's Hammer
Gilles
Resampling-Based Confidence Regions and Multiple Tests for a
Correlated Random Vector
Sylvain Arlot, Gilles Blanchard,
X Table of Contents
Suboptimality of Penalized Empirical Risk Minimization in
Classification
Guillaume Lecué
Transductive
Ran El- Yaniv and Dmitry
Inductive Inference
U-Shaped, Iterative, and Iterative-with-Counter Learning
John Case and Samuel E. Moelius III
Mind Change Optimal Learning of
Oliver
Learning Correction Grammars
Lorenzo Carlucci, John Case, and Sanjay Jain
Mitotic Classes
Sanjay Jain and Frank
Online and Reinforcement Learning I
Regret to the Best vs. Regret to the Average
Eyal Even-Dar, Michael Kearns, Yishay Mansour, and
Jennifer Wortman
Strategies for Prediction Under Imperfect Monitoring
Gábor Lugosi,
Bounded Parameter Markov Decision Processes with Average Reward
Criterion
Ambuj Tewari and Peter L. Bartlett
Online and Reinforcement Learning II
On-Line Estimation with the Multivariate Gaussian Distribution
Sanjoy Dasgupta and Daniel Hsu
Generalised Entropy and Asymptotic Complexities of Languages
Yuri Kalnishkan, Vladimir Vovk, and Michael V. Vyugin
Q- Learning with Linear Function Approximation
Francisco S.
Regularized Learning, Kernel Methods, SVM
How Good Is a Kernel When Used as a Similarity Measure?
Nathan
Table
Gaps in Support Vector Optimization
Nikolas List, Don Hush, Clint Scovel, and
Learning Languages with Rational Kernels
Corinna
Generalized SMO-Style Decomposition Algorithms
Nikolas List
Learning Algorithms and Limitations on Learning
Learning Nested
Adam Tauman Kalai
An Efficient Re-scaled Perception Algorithm for Conic Systems
Alexandre
A Lower Bound for Agnostically Learning Disjunctions
Adam R. Klivans and Alexander A. Sherstov
Sketching Information Divergences
Sudipto Guha,
Online and Reinforcement Learning III
Competing with Stationary Prediction Strategies
Vladimir Vovk
Improved Rates for the Stochastic Continuum-Armed Bandit
Problem
Peter Auer, Ronald Ortner, and
Learning Permutations with Exponential Weights
David P.
Online and Reinforcement Learning IV
Multitask Learning with Expert Advice
Jacob Abernethy, Peter Bartlett, and Alexander Rakhlin
Online Learning with Prior Knowledge
Elad Hazán
Dimensionality Reduction
Nonlinear Estimators and Tail Bounds for Dimension Reduction in l\
Using Cauchy Random Projections
Ping Li, Trevor J.
XII Table of
Sparse
Florentina Bunea, Alexandre
l\ Regularization in Infinite Dimensional Feature Spaces
Saharon
Prediction by Categorical Features: Generalization Properties and
Application to Feature Ranking
Sivan
Other Approaches
Observational Learning in Random Networks
Julian
The Loss Rank Principle for Model Selection
Marcus Hutter
Robust Reductions from Ranking to Classification
Maria-Fiorina
Don Coppersmith, John
Open Problems
Rademacher Margin Complexity
Liwei Wang and Jufu Feng
Open Problems in Efficient Semi-supervised
Avrim Blum and Maria-Fiorina
Resource-Bounded Information Gathering for Correlation Clustering
Pallika Kanani and Andrew McCallum
Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian
Mixture Estimation?
Nathan
When Is There a Free Matrix Lunch?
Manfred K. Warmuth
Author Index |
adam_txt |
Table
Invited Presentations
Property Testing: A Learning Theory Perspective
Dana Ron
Spectral Algorithms for Learning and Clustering
Santosh S. Vempala
Unsupervised, Semisupervised and Active Learning I
Minimax Bounds for Active Learning
Rui
Stability of fc-Means Clustering
Shai Ben-David,
Margin Based Active Learning
Maria-Fiorina
Unsupervised, Semisupervised and Active Learning II
Learning Large-Alphabet and Analog Circuits with Value Injection
Queries
Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin
Teaching Dimension and the Complexity of Active Learning
Steve Hanneke
Multi-
Sham M.
Statistical Learning Theory
Aggregation by Exponential Weighting and Sharp Oracle Inequalities
Arnak S.
Occam's Hammer
Gilles
Resampling-Based Confidence Regions and Multiple Tests for a
Correlated Random Vector
Sylvain Arlot, Gilles Blanchard,
X Table of Contents
Suboptimality of Penalized Empirical Risk Minimization in
Classification
Guillaume Lecué
Transductive
Ran El- Yaniv and Dmitry
Inductive Inference
U-Shaped, Iterative, and Iterative-with-Counter Learning
John Case and Samuel E. Moelius III
Mind Change Optimal Learning of
Oliver
Learning Correction Grammars
Lorenzo Carlucci, John Case, and Sanjay Jain
Mitotic Classes
Sanjay Jain and Frank
Online and Reinforcement Learning I
Regret to the Best vs. Regret to the Average
Eyal Even-Dar, Michael Kearns, Yishay Mansour, and
Jennifer Wortman
Strategies for Prediction Under Imperfect Monitoring
Gábor Lugosi,
Bounded Parameter Markov Decision Processes with Average Reward
Criterion
Ambuj Tewari and Peter L. Bartlett
Online and Reinforcement Learning II
On-Line Estimation with the Multivariate Gaussian Distribution
Sanjoy Dasgupta and Daniel Hsu
Generalised Entropy and Asymptotic Complexities of Languages
Yuri Kalnishkan, Vladimir Vovk, and Michael V. Vyugin
Q- Learning with Linear Function Approximation
Francisco S.
Regularized Learning, Kernel Methods, SVM
How Good Is a Kernel When Used as a Similarity Measure?
Nathan
Table
Gaps in Support Vector Optimization
Nikolas List, Don Hush, Clint Scovel, and
Learning Languages with Rational Kernels
Corinna
Generalized SMO-Style Decomposition Algorithms
Nikolas List
Learning Algorithms and Limitations on Learning
Learning Nested
Adam Tauman Kalai
An Efficient Re-scaled Perception Algorithm for Conic Systems
Alexandre
A Lower Bound for Agnostically Learning Disjunctions
Adam R. Klivans and Alexander A. Sherstov
Sketching Information Divergences
Sudipto Guha,
Online and Reinforcement Learning III
Competing with Stationary Prediction Strategies
Vladimir Vovk
Improved Rates for the Stochastic Continuum-Armed Bandit
Problem
Peter Auer, Ronald Ortner, and
Learning Permutations with Exponential Weights
David P.
Online and Reinforcement Learning IV
Multitask Learning with Expert Advice
Jacob Abernethy, Peter Bartlett, and Alexander Rakhlin
Online Learning with Prior Knowledge
Elad Hazán
Dimensionality Reduction
Nonlinear Estimators and Tail Bounds for Dimension Reduction in l\
Using Cauchy Random Projections
Ping Li, Trevor J.
XII Table of
Sparse
Florentina Bunea, Alexandre
l\ Regularization in Infinite Dimensional Feature Spaces
Saharon
Prediction by Categorical Features: Generalization Properties and
Application to Feature Ranking
Sivan
Other Approaches
Observational Learning in Random Networks
Julian
The Loss Rank Principle for Model Selection
Marcus Hutter
Robust Reductions from Ranking to Classification
Maria-Fiorina
Don Coppersmith, John
Open Problems
Rademacher Margin Complexity
Liwei Wang and Jufu Feng
Open Problems in Efficient Semi-supervised
Avrim Blum and Maria-Fiorina
Resource-Bounded Information Gathering for Correlation Clustering
Pallika Kanani and Andrew McCallum
Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian
Mixture Estimation?
Nathan
When Is There a Free Matrix Lunch?
Manfred K. Warmuth
Author Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022485135 |
classification_rvk | SS 4800 |
classification_tum | DAT 708f |
ctrlnum | (OCoLC)634398031 (DE-599)DNB984068619 |
dewey-full | 006.31 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.31 |
dewey-search | 006.31 |
dewey-sort | 16.31 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
format | Conference Proceeding Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV022485135</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170222</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">070628s2007 gw d||| |||| 10||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N22,0053</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984068619</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540729259</subfield><subfield code="c">: ca. EUR 77.04 (freier Pr.), ca. sfr 118.00 (freier Pr.)</subfield><subfield code="9">978-3-540-72925-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540729259</subfield><subfield code="c">: ca. EUR 77.04 (freier Pr.), ca. sfr 118.00 (freier Pr.)</subfield><subfield code="9">3-540-72925-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540729259</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12073375</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634398031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984068619</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.31</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Learning theory</subfield><subfield code="b">20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings</subfield><subfield code="c">Nader H. Bshouty ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 634 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Computer Science</subfield><subfield code="v">4539 : Lecture notes in artificial intelligence</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algorithmische Lerntheorie</subfield><subfield code="0">(DE-588)4701014-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">2007</subfield><subfield code="z">San Diego Calif.</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algorithmische Lerntheorie</subfield><subfield code="0">(DE-588)4701014-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bshouty, Nader H.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="711" ind1="2" ind2=" "><subfield code="a">Conference on Learning Theory</subfield><subfield code="n">20</subfield><subfield code="d">2007</subfield><subfield code="c">San Diego, Calif.</subfield><subfield code="j">Sonstige</subfield><subfield code="0">(DE-588)6516166-X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Computer Science</subfield><subfield code="v">4539 : Lecture notes in artificial intelligence</subfield><subfield code="w">(DE-604)BV000000607</subfield><subfield code="9">4539</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015692433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015692433</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift 2007 San Diego Calif. gnd-content |
genre_facet | Konferenzschrift 2007 San Diego Calif. |
id | DE-604.BV022485135 |
illustrated | Illustrated |
index_date | 2024-07-02T17:49:44Z |
indexdate | 2025-01-10T15:08:53Z |
institution | BVB |
institution_GND | (DE-588)6516166-X |
isbn | 9783540729259 3540729259 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015692433 |
oclc_num | 634398031 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-706 DE-355 DE-BY-UBR DE-83 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-706 DE-355 DE-BY-UBR DE-83 DE-11 |
physical | XII, 634 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series | Lecture Notes in Computer Science |
series2 | Lecture Notes in Computer Science |
spelling | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings Nader H. Bshouty ... (eds.) Berlin [u.a.] Springer 2007 XII, 634 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture Notes in Computer Science 4539 : Lecture notes in artificial intelligence Algorithmische Lerntheorie (DE-588)4701014-9 gnd rswk-swf (DE-588)1071861417 Konferenzschrift 2007 San Diego Calif. gnd-content Algorithmische Lerntheorie (DE-588)4701014-9 s DE-604 Bshouty, Nader H. Sonstige oth Conference on Learning Theory 20 2007 San Diego, Calif. Sonstige (DE-588)6516166-X oth Lecture Notes in Computer Science 4539 : Lecture notes in artificial intelligence (DE-604)BV000000607 4539 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015692433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings Lecture Notes in Computer Science Algorithmische Lerntheorie (DE-588)4701014-9 gnd |
subject_GND | (DE-588)4701014-9 (DE-588)1071861417 |
title | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings |
title_auth | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings |
title_exact_search | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings |
title_exact_search_txtP | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings |
title_full | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings Nader H. Bshouty ... (eds.) |
title_fullStr | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings Nader H. Bshouty ... (eds.) |
title_full_unstemmed | Learning theory 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings Nader H. Bshouty ... (eds.) |
title_short | Learning theory |
title_sort | learning theory 20th annual conference on learning theory colt 2007 san diego ca usa june 13 15 2007 proceedings |
title_sub | 20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007 ; proceedings |
topic | Algorithmische Lerntheorie (DE-588)4701014-9 gnd |
topic_facet | Algorithmische Lerntheorie Konferenzschrift 2007 San Diego Calif. |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015692433&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000607 |
work_keys_str_mv | AT bshoutynaderh learningtheory20thannualconferenceonlearningtheorycolt2007sandiegocausajune13152007proceedings AT conferenceonlearningtheorysandiegocalif learningtheory20thannualconferenceonlearningtheorycolt2007sandiegocausajune13152007proceedings |