Hyperbolic systems of conservation laws: the theory of classical and nonclassical shock waves
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2002
|
Schriftenreihe: | Lecture notes in mathematics : ETH Zürich
|
Schlagworte: | |
Beschreibung: | Literaturverz. S. [271] - 294 |
Beschreibung: | X, 294 S. graph. Darst. |
ISBN: | 3764366877 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021966062 | ||
003 | DE-604 | ||
005 | 20040302000000.0 | ||
007 | t | ||
008 | 020801s2002 d||| |||| 00||| eng d | ||
020 | |a 3764366877 |9 3-7643-6687-7 | ||
035 | |a (OCoLC)50004718 | ||
035 | |a (DE-599)BVBBV021966062 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a HN683 | |
050 | 0 | |a QA377 | |
082 | 0 | |a 515/.353 |2 21 | |
084 | |a SK 560 |0 (DE-625)143246: |2 rvk | ||
084 | |a SK 810 |0 (DE-625)143257: |2 rvk | ||
100 | 1 | |a Le Floch, Philippe G. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hyperbolic systems of conservation laws |b the theory of classical and nonclassical shock waves |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2002 | |
300 | |a X, 294 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lecture notes in mathematics : ETH Zürich | |
500 | |a Literaturverz. S. [271] - 294 | ||
650 | 7 | |a Cauchy, Problème de |2 ram | |
650 | 7 | |a Lois de conservation (mathématiques) |2 ram | |
650 | 7 | |a Ondes de choc |2 ram | |
650 | 4 | |a Conservation laws (Mathematics) | |
650 | 4 | |a Differential equations, Hyperbolic | |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 1 | 1 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-015181212 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135935418302464 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Le Floch, Philippe G. |
author_facet | Le Floch, Philippe G. |
author_role | aut |
author_sort | Le Floch, Philippe G. |
author_variant | f p g l fpg fpgl |
building | Verbundindex |
bvnumber | BV021966062 |
callnumber-first | H - Social Science |
callnumber-label | HN683 |
callnumber-raw | HN683 QA377 |
callnumber-search | HN683 QA377 |
callnumber-sort | HN 3683 |
callnumber-subject | HN - Social History and Conditions |
classification_rvk | SK 560 SK 810 |
ctrlnum | (OCoLC)50004718 (DE-599)BVBBV021966062 |
dewey-full | 515/.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.353 |
dewey-search | 515/.353 |
dewey-sort | 3515 3353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01824nam a2200505zc 4500</leader><controlfield tag="001">BV021966062</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040302000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">020801s2002 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764366877</subfield><subfield code="9">3-7643-6687-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)50004718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021966062</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">HN683</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA377</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.353</subfield><subfield code="2">21</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 560</subfield><subfield code="0">(DE-625)143246:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 810</subfield><subfield code="0">(DE-625)143257:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Le Floch, Philippe G.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic systems of conservation laws</subfield><subfield code="b">the theory of classical and nonclassical shock waves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 294 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture notes in mathematics : ETH Zürich</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [271] - 294</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cauchy, Problème de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lois de conservation (mathématiques)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ondes de choc</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conservation laws (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, Hyperbolic</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015181212</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021966062 |
illustrated | Illustrated |
index_date | 2024-07-02T16:08:55Z |
indexdate | 2024-07-09T20:48:24Z |
institution | BVB |
isbn | 3764366877 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015181212 |
oclc_num | 50004718 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | X, 294 S. graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Birkhäuser |
record_format | marc |
series2 | Lecture notes in mathematics : ETH Zürich |
spelling | Le Floch, Philippe G. Verfasser aut Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves Basel [u.a.] Birkhäuser 2002 X, 294 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics : ETH Zürich Literaturverz. S. [271] - 294 Cauchy, Problème de ram Lois de conservation (mathématiques) ram Ondes de choc ram Conservation laws (Mathematics) Differential equations, Hyperbolic Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Hyperbolische Differentialgleichung (DE-588)4131213-2 s DE-604 Erhaltungssatz (DE-588)4131214-4 s Nichtlineares hyperbolisches System (DE-588)4191896-4 s 1\p DE-604 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Le Floch, Philippe G. Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves Cauchy, Problème de ram Lois de conservation (mathématiques) ram Ondes de choc ram Conservation laws (Mathematics) Differential equations, Hyperbolic Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Erhaltungssatz (DE-588)4131214-4 gnd |
subject_GND | (DE-588)4131213-2 (DE-588)4191896-4 (DE-588)4131214-4 |
title | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_auth | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_exact_search | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_exact_search_txtP | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_full | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_fullStr | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_full_unstemmed | Hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_short | Hyperbolic systems of conservation laws |
title_sort | hyperbolic systems of conservation laws the theory of classical and nonclassical shock waves |
title_sub | the theory of classical and nonclassical shock waves |
topic | Cauchy, Problème de ram Lois de conservation (mathématiques) ram Ondes de choc ram Conservation laws (Mathematics) Differential equations, Hyperbolic Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Erhaltungssatz (DE-588)4131214-4 gnd |
topic_facet | Cauchy, Problème de Lois de conservation (mathématiques) Ondes de choc Conservation laws (Mathematics) Differential equations, Hyperbolic Hyperbolische Differentialgleichung Nichtlineares hyperbolisches System Erhaltungssatz |
work_keys_str_mv | AT leflochphilippeg hyperbolicsystemsofconservationlawsthetheoryofclassicalandnonclassicalshockwaves |