Gas sensors based on stannic oxide: material, design, performance, and modeling aspects = Zinnoxid-Gassensoren
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Aachen
Shaker
1998
|
Ausgabe: | Als Ms. gedr. |
Schriftenreihe: | Berichte aus der Chemie
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Parallelsacht.: Zinndioxid-Gassensoren |
Beschreibung: | VI, 186 S. Ill., graph. Darst. |
ISBN: | 3826541820 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021944793 | ||
003 | DE-604 | ||
005 | 20110801 | ||
007 | t | ||
008 | 990210s1998 ad|| m||| 00||| eng d | ||
020 | |a 3826541820 |9 3-8265-4182-0 | ||
035 | |a (OCoLC)75933267 | ||
035 | |a (DE-599)BVBBV021944793 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-634 |a DE-703 | ||
084 | |a VG 6830 |0 (DE-625)147194:253 |2 rvk | ||
100 | 1 | |a Schweizer-Berberich, Markus |d 1965- |e Verfasser |0 (DE-588)120722526 |4 aut | |
245 | 1 | 0 | |a Gas sensors based on stannic oxide |b material, design, performance, and modeling aspects = Zinnoxid-Gassensoren |c Markus Schweizer-Berberich |
246 | 1 | 1 | |a Zinnoxid-Gassensoren |
250 | |a Als Ms. gedr. | ||
264 | 1 | |a Aachen |b Shaker |c 1998 | |
300 | |a VI, 186 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Berichte aus der Chemie | |
500 | |a Parallelsacht.: Zinndioxid-Gassensoren | ||
502 | |a Zugl.: Tübingen, Univ., Diss., 1998 | ||
650 | 0 | 7 | |a Gas |0 (DE-588)4019320-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemischer Sensor |0 (DE-588)4259288-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metalloxide |0 (DE-588)4169619-0 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Gas |0 (DE-588)4019320-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Metalloxide |0 (DE-588)4169619-0 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Chemischer Sensor |0 (DE-588)4259288-4 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015159943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015159943 |
Datensatz im Suchindex
_version_ | 1804135906936881152 |
---|---|
adam_text | Table of content
1
Introduction.
1.1
Gas-sensing, analytical chemistry, and electronic noses
__________________1
1.2
The prototype material
ЅпОг
______________________________________4
2
Literature survey on oxide-based sensors
_____________________7
2.1
General
_____________________________________________________7
2.2
Alternative metal oxides
__________________________________________9
2.3
Preparation techniques for single crystals, whiskers, and epitaxial films
______10
2.4
Preparation techniques for polycrystalline layers
_______________________11
2.4.1
Ceramic and thick film sensors
_______________________________11
2.4.2
Liquid/solid deposition
______________________________________12
2.4.3
Thin film sensors
__________________________________________13
2.4.4
Vapor Deposition
__________________________________________13
2.5
Geometry designs for substrates, heaters and electrodes
_________________17
2.6
Filters and membranes for gas selectivity
____________________________18
2.7
Multi
component analysis
________________________________________19
3
Electrical properties of oxide-based sensors
_________________21
3.1
Electrical characterization of semiconductive oxides
____________________21
3.1.1
Overview of voltage/current response signals
_____________________21
3.1.2
Ohmic response
___________________________________________23
3.1.3
Bulk and surface conductivity
________________________________23
3.1.4
Low voltage signals and complex impedances
____________________24
3.1.4.1
Equivalent circuit devices
________________________________24
3.1.4.2
Interfaces
____________________________________________25
3.1.4.3
Conductivity in polycrystalline samples
______________________25
3.1.5
High-Voltage Signals
_______________________________________26
3.2
Sensitivity and sensor response
__________________________________26
3.3
Conduction mechanism in metal oxides
______________________________27
3.3.1
General
______.__________________________________________27
3.3.2
Reactivity and temperature
__________________________________27
3.3.3
Bulk behavior of semiconductor material
_________________________30
3.3.4
Charge Transfer During Chemisorption and Catalysis
_______________32
3.3.5
Metal contacts, dopants, and catalysts
__________________________39
3.3.6
Diffusion and reaction models
________________________________41
3.3.7
Additional literature on the conduction mechanism
__________________42
Table of content
3.4
Survey on selected material properties of
ЅпОг
__________________________44
3.5
Survey on electrical measurement techniques
______________________ 45
4
Experimental
___________________________________________47
4.1
Technology and preparation of SnO2 sensors
____________________________47
4.1.1
Thick film sensors
______________________________________________47
4.1.1.1
Preparation of ceramic material by wet chemistry
_________________47
4.1.1.2
Deposition on the substrate
__________________________________47
4.1.2
Thin film sensors
_______________________________________________48
4.1.2.1
Е
-beam evaporation of
ЅпОг
_________________________________48
4.1.2.2
Sputtering of
Pt, Pd,
Au
_____________________________________49
4.1.2.3
Rheotaxial growth and thermal oxidation (RGTO)
_________________49
4.1.2.4
Industrial thin film process
___________________________________49
4.1.3
Used sensor layouts
____________________________________________51
4.2
Characterization by means of spectroscopy and microscopy
________________56
4.2.1
Methods of characterizing the morphology
__________________________56
4.2.2
Methods of characterizing the elemental ratios and the band scheme
____57
4.3
Electrical measurement techniques
____________________________________58
4.3.1
Gas mixing bench
______________________________________________58
4.3.2
Measurement chambers
_________________________________________59
4.3.3
DC measurements
______________________________________________60
4.3.4
Measurements with different mode of operation
______________________61
4.3.5
IV-measurements
_______________________________________________64
4.3.6
AC-impedance measurements
___________________________________65
4.3.6.1
The impedance analyzer
____________________________________65
4.3.6.2
The test chamber
___________________________________________65
5
Results and discussion
___________________________________71
5.1
Porous powder materials (thick films)
__________________________________72
5.1.1
Determination of morphology and grain size by means of
SEM
and
ТЕМ
__72
5.1.2
Electrical characterization
________________________________________73
5.1.3
Characterization of the doping introduced by impregnation
______________77
5.1.4
Electrode effects
_______________________________________________82
5.1.5
Alternative substrates
___________________________________________86
5.2
Compact thin films
__________________________________________________87
5.2.1
Е
-beam deposition I: laboratory type samples
________________________87
5.2.2
Е
-beam deposition II: industry type samples
_________________________92
5.3
Porous thin layers
__________________________________________________97
5.3.1
Characterization of sensitive layer
_________________________________98
5.3.2
Constant temperature mode
_____________________________________107
Table of content
5.3.3
Mode of operation
_____________________________________________111
5.3.4
Filter technologies for reduced cross sensitivity of CO gas sensor
______115
5.4
Impedance spectroscopy (AC)
________________________________________121
5.4.1
The bare substrate
_____________________________________________122
5.4.1.1
Heater characteristics
_______________________________________122
5.4.1.2
Open electrode capacity
_____________________________________123
5.4.1.3
Insulation capacity between electrode and heater
________________124
5.4.1.4
Overall description of the substrate
___________________________125
5.4.2
The real sensor
_______________________________________________126
5.4.2.1
Equivalent circuit of the sensor
_______________________________126
5.4.2.2
Comparison of doping levels
________________________________126
5.4.2.3
Dependence on temperature
_________________________________128
5.4.2.4
Dependence on gas atmosphere
_____________________________128
5.4.2.5
Dependence on the oscillator level
____________________________129
5.4.2.6
Dependence on DC bias voltage
_____________________________130
6
Modeling
______________________________________________131
6.1
Remarks on modeling of
ЅпОг
-f
¡Iter
combinations
_______________________131
6.1.1
Hierarchy of modeling
__________________________________________131
6.1.2
Phenomenological model of the complete sensor system
______________131
6.1.2.1
User model
______________________________________________131
6.1.2.2
Developer model
_________________________________________132
6.1.3
Atomistic understanding of chemical reactions on
ЅпОг
sensors
_______133
6.1.3.1
Thermodynamic model
______________________________________133
6.1.3.2
Kinetic model
_____________________________________________133
6.1.3.3
Complete model
___________________________________________134
6.2
Multi-component analysis with mode of operation data
___________________134
6.3
Model-based evaluation of sensor data
________________________________137
6.4
Network of impedances to describe polycrystalline sensors
________________139
6.4.1
Porous
multi
layer model: Taguchi-type
____________________________140
6.4.2
Compact layer model: IDC on sapphire (Euro-Chip)
__________________141
6.4.3
Porous monolayer model: RGTO on micromachined substrate
_________143
6.5
Chemical reactions of the sensitive surface
_____________________________144
6.6
Outlook on modeling of conduction mechanisms
_________________________144
/Conclusions
___________________________________________145
8
References
_____________________________________________149
iv
Table of content
9
Appendix
169
A) Commercial SnO? Sensors
169
Vendors of SnO? gas sensors
169
Developers of SnO2 sensors close to commercialization
169
B) SnO? sensors for specific target gases
170
Hydrogen
170
Oxygen
171
Carbon monoxide
171
Carbon dioxide
172
Methane
173
Butane
173
Aromatic compounds
173
Alcohols, especially
ethanol
174
Nitrous gases
174
Hydroqen
sulfide
and sulfur dioxide
175
Ammonia and amines
175
Arsine
and phosphine
175
Odors and exhaust gases
176
Haloaenated compounds
176
Miscellaneous target analytes
176
Humidity
177
C) Standards for pas detectors
178
Toxicity
of CO
178
The U.S. American standard UL2034
178
The British standard BS7860
179
Explosivitv of combustible qases
179
The U.S. American standard UL1484
180
The European standard
prEN50194:1996
180
D) Industrial production of SnO? sensors
181
Thin film process
181
Chemical aqents
184
E) Test bench
185
For CO and combustible qas sensors
185
|
adam_txt |
Table of content
1
Introduction.
1.1
Gas-sensing, analytical chemistry, and electronic noses
_1
1.2
The prototype material
ЅпОг
_4
2
Literature survey on oxide-based sensors
_7
2.1
General
_7
2.2
Alternative metal oxides
_9
2.3
Preparation techniques for single crystals, whiskers, and epitaxial films
_10
2.4
Preparation techniques for polycrystalline layers
_11
2.4.1
Ceramic and thick film sensors
_11
2.4.2
Liquid/solid deposition
_12
2.4.3
Thin film sensors
_13
2.4.4
Vapor Deposition
_13
2.5
Geometry designs for substrates, heaters and electrodes
_17
2.6
Filters and membranes for gas selectivity
_18
2.7
Multi
component analysis
_19
3
Electrical properties of oxide-based sensors
_21
3.1
Electrical characterization of semiconductive oxides
_21
3.1.1
Overview of voltage/current response signals
_21
3.1.2
Ohmic response
_23
3.1.3
Bulk and surface conductivity
_23
3.1.4
Low voltage signals and complex impedances
_24
3.1.4.1
Equivalent circuit devices
_24
3.1.4.2
Interfaces
_25
3.1.4.3
Conductivity in polycrystalline samples
_25
3.1.5
High-Voltage Signals
_26
3.2
Sensitivity and sensor response
_26
3.3
Conduction mechanism in metal oxides
_27
3.3.1
General
_._27
3.3.2
Reactivity and temperature
_27
3.3.3
Bulk behavior of semiconductor material
_30
3.3.4
Charge Transfer During Chemisorption and Catalysis
_32
3.3.5
Metal contacts, dopants, and catalysts
_39
3.3.6
Diffusion and reaction models
_41
3.3.7
Additional literature on the conduction mechanism
_42
Table of content
3.4
Survey on selected material properties of
ЅпОг
_44
3.5
Survey on electrical measurement techniques
_ 45
4
Experimental
_47
4.1
Technology and preparation of SnO2 sensors
_47
4.1.1
Thick film sensors
_47
4.1.1.1
Preparation of ceramic material by wet chemistry
_47
4.1.1.2
Deposition on the substrate
_47
4.1.2
Thin film sensors
_48
4.1.2.1
Е
-beam evaporation of
ЅпОг
_48
4.1.2.2
Sputtering of
Pt, Pd,
Au
_49
4.1.2.3
Rheotaxial growth and thermal oxidation (RGTO)
_49
4.1.2.4
Industrial thin film process
_49
4.1.3
Used sensor layouts
_51
4.2
Characterization by means of spectroscopy and microscopy
_56
4.2.1
Methods of characterizing the morphology
_56
4.2.2
Methods of characterizing the elemental ratios and the band scheme
_57
4.3
Electrical measurement techniques
_58
4.3.1
Gas mixing bench
_58
4.3.2
Measurement chambers
_59
4.3.3
DC measurements
_60
4.3.4
Measurements with different mode of operation
_61
4.3.5
IV-measurements
_64
4.3.6
AC-impedance measurements
_65
4.3.6.1
The impedance analyzer
_65
4.3.6.2
The test chamber
_65
5
Results and discussion
_71
5.1
Porous powder materials (thick films)
_72
5.1.1
Determination of morphology and grain size by means of
SEM
and
ТЕМ
_72
5.1.2
Electrical characterization
_73
5.1.3
Characterization of the doping introduced by impregnation
_77
5.1.4
Electrode effects
_82
5.1.5
Alternative substrates
_86
5.2
Compact thin films
_87
5.2.1
Е
-beam deposition I: laboratory type samples
_87
5.2.2
Е
-beam deposition II: industry type samples
_92
5.3
Porous thin layers
_97
5.3.1
Characterization of sensitive layer
_98
5.3.2
Constant temperature mode
_107
Table of content
5.3.3
Mode of operation
_111
5.3.4
Filter technologies for reduced cross sensitivity of CO gas sensor
_115
5.4
Impedance spectroscopy (AC)
_121
5.4.1
The bare substrate
_122
5.4.1.1
Heater characteristics
_122
5.4.1.2
Open electrode capacity
_123
5.4.1.3
Insulation capacity between electrode and heater
_124
5.4.1.4
Overall description of the substrate
_125
5.4.2
The real sensor
_126
5.4.2.1
Equivalent circuit of the sensor
_126
5.4.2.2
Comparison of doping levels
_126
5.4.2.3
Dependence on temperature
_128
5.4.2.4
Dependence on gas atmosphere
_128
5.4.2.5
Dependence on the oscillator level
_129
5.4.2.6
Dependence on DC bias voltage
_130
6
Modeling
_131
6.1
Remarks on modeling of
ЅпОг
-f
¡Iter
combinations
_131
6.1.1
Hierarchy of modeling
_131
6.1.2
Phenomenological model of the complete sensor system
_131
6.1.2.1
"User model"
_131
6.1.2.2
"Developer model"
_132
6.1.3
Atomistic understanding of chemical reactions on
ЅпОг
sensors
_133
6.1.3.1
Thermodynamic model
_133
6.1.3.2
Kinetic model
_133
6.1.3.3
Complete model
_134
6.2
Multi-component analysis with "mode of operation" data
_134
6.3
Model-based evaluation of sensor data
_137
6.4
Network of impedances to describe polycrystalline sensors
_139
6.4.1
Porous
multi
layer model: Taguchi-type
_140
6.4.2
Compact layer model: IDC on sapphire (Euro-Chip)
_141
6.4.3
Porous monolayer model: RGTO on micromachined substrate
_143
6.5
Chemical reactions of the sensitive surface
_144
6.6
Outlook on modeling of conduction mechanisms
_144
/Conclusions
_145
8
References
_149
iv
Table of content
9
Appendix
169
A) Commercial SnO? Sensors
169
Vendors of SnO? gas sensors
169
Developers of SnO2 sensors close to commercialization
169
B) SnO? sensors for specific target gases
170
Hydrogen
170
Oxygen
171
Carbon monoxide
171
Carbon dioxide
172
Methane
173
Butane
173
Aromatic compounds
173
Alcohols, especially
ethanol
174
Nitrous gases
174
Hydroqen
sulfide
and sulfur dioxide
175
Ammonia and amines
175
Arsine
and phosphine
175
Odors and exhaust gases
176
Haloaenated compounds
176
Miscellaneous target analytes
176
Humidity
177
C) Standards for pas detectors
178
Toxicity
of CO
178
The U.S. American standard UL2034
178
The British standard BS7860
179
Explosivitv of combustible qases
179
The U.S. American standard UL1484
180
The European standard
prEN50194:1996
180
D) Industrial production of SnO? sensors
181
Thin film process
181
Chemical aqents
184
E) Test bench
185
For CO and combustible qas sensors
185 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schweizer-Berberich, Markus 1965- |
author_GND | (DE-588)120722526 |
author_facet | Schweizer-Berberich, Markus 1965- |
author_role | aut |
author_sort | Schweizer-Berberich, Markus 1965- |
author_variant | m s b msb |
building | Verbundindex |
bvnumber | BV021944793 |
classification_rvk | VG 6830 |
ctrlnum | (OCoLC)75933267 (DE-599)BVBBV021944793 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
edition | Als Ms. gedr. |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01819nam a2200457zc 4500</leader><controlfield tag="001">BV021944793</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110801 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">990210s1998 ad|| m||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3826541820</subfield><subfield code="9">3-8265-4182-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)75933267</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021944793</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 6830</subfield><subfield code="0">(DE-625)147194:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schweizer-Berberich, Markus</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120722526</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gas sensors based on stannic oxide</subfield><subfield code="b">material, design, performance, and modeling aspects = Zinnoxid-Gassensoren</subfield><subfield code="c">Markus Schweizer-Berberich</subfield></datafield><datafield tag="246" ind1="1" ind2="1"><subfield code="a">Zinnoxid-Gassensoren</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Als Ms. gedr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Aachen</subfield><subfield code="b">Shaker</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VI, 186 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Berichte aus der Chemie</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Parallelsacht.: Zinndioxid-Gassensoren</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="a">Zugl.: Tübingen, Univ., Diss., 1998</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gas</subfield><subfield code="0">(DE-588)4019320-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemischer Sensor</subfield><subfield code="0">(DE-588)4259288-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metalloxide</subfield><subfield code="0">(DE-588)4169619-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gas</subfield><subfield code="0">(DE-588)4019320-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Metalloxide</subfield><subfield code="0">(DE-588)4169619-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Chemischer Sensor</subfield><subfield code="0">(DE-588)4259288-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015159943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015159943</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV021944793 |
illustrated | Illustrated |
index_date | 2024-07-02T16:07:14Z |
indexdate | 2024-07-09T20:47:57Z |
institution | BVB |
isbn | 3826541820 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015159943 |
oclc_num | 75933267 |
open_access_boolean | |
owner | DE-706 DE-634 DE-703 |
owner_facet | DE-706 DE-634 DE-703 |
physical | VI, 186 S. Ill., graph. Darst. |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Shaker |
record_format | marc |
series2 | Berichte aus der Chemie |
spelling | Schweizer-Berberich, Markus 1965- Verfasser (DE-588)120722526 aut Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren Markus Schweizer-Berberich Zinnoxid-Gassensoren Als Ms. gedr. Aachen Shaker 1998 VI, 186 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Berichte aus der Chemie Parallelsacht.: Zinndioxid-Gassensoren Zugl.: Tübingen, Univ., Diss., 1998 Gas (DE-588)4019320-2 gnd rswk-swf Chemischer Sensor (DE-588)4259288-4 gnd rswk-swf Metalloxide (DE-588)4169619-0 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Gas (DE-588)4019320-2 s DE-604 Metalloxide (DE-588)4169619-0 s Chemischer Sensor (DE-588)4259288-4 s Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015159943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schweizer-Berberich, Markus 1965- Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren Gas (DE-588)4019320-2 gnd Chemischer Sensor (DE-588)4259288-4 gnd Metalloxide (DE-588)4169619-0 gnd |
subject_GND | (DE-588)4019320-2 (DE-588)4259288-4 (DE-588)4169619-0 (DE-588)4113937-9 |
title | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren |
title_alt | Zinnoxid-Gassensoren |
title_auth | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren |
title_exact_search | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren |
title_exact_search_txtP | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren |
title_full | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren Markus Schweizer-Berberich |
title_fullStr | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren Markus Schweizer-Berberich |
title_full_unstemmed | Gas sensors based on stannic oxide material, design, performance, and modeling aspects = Zinnoxid-Gassensoren Markus Schweizer-Berberich |
title_short | Gas sensors based on stannic oxide |
title_sort | gas sensors based on stannic oxide material design performance and modeling aspects zinnoxid gassensoren |
title_sub | material, design, performance, and modeling aspects = Zinnoxid-Gassensoren |
topic | Gas (DE-588)4019320-2 gnd Chemischer Sensor (DE-588)4259288-4 gnd Metalloxide (DE-588)4169619-0 gnd |
topic_facet | Gas Chemischer Sensor Metalloxide Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015159943&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schweizerberberichmarkus gassensorsbasedonstannicoxidematerialdesignperformanceandmodelingaspectszinnoxidgassensoren AT schweizerberberichmarkus zinnoxidgassensoren |