Hydraulic analysis of unsteady flow in pipe networks:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Macmillan
1979
|
Ausgabe: | Repr. with corr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 216 S. |
ISBN: | 0333191420 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021928418 | ||
003 | DE-604 | ||
005 | 20040301000000.0 | ||
007 | t | ||
008 | 960212s1979 |||| 00||| eng d | ||
020 | |a 0333191420 |9 0-333-19142-0 | ||
035 | |a (OCoLC)21127972 | ||
035 | |a (DE-599)BVBBV021928418 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a TJ935 | |
100 | 1 | |a Fox, J. A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hydraulic analysis of unsteady flow in pipe networks |c J. A. Fox |
250 | |a Repr. with corr. | ||
264 | 1 | |a London [u.a.] |b Macmillan |c 1979 | |
300 | |a 216 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Pipe |x Fluid dynamics | |
650 | 4 | |a Unsteady flow (Fluid dynamics) | |
650 | 0 | 7 | |a Rohrströmung |0 (DE-588)4050412-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Instationäre Strömung |0 (DE-588)4132734-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Rohrströmung |0 (DE-588)4050412-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Instationäre Strömung |0 (DE-588)4132734-2 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015143575&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015143575 |
Datensatz im Suchindex
_version_ | 1804135884485820416 |
---|---|
adam_text | ontents
Preface ix
Notation xi
1 Simple waterhammer theory l
1 1 Introduction 1
1 2 Rigid pipe—incompressible fluid theory 2
1 3 Sudden valve opening at the downstream end of a
pipeline 4
1 4 Slow valve closure 6
1 5 Distensible pipe—elastic fluid theory 9
1 6 Instantaneous valve closure 10
1 7 Separation 16
1 8 The calculation of the magnitude of the transient
caused by complete instantaneous valve closure at the
end of a simple pipeline 17
1 9 Pressure rise caused by instantaneous valve closure 21
1 10 Sudden valve closure 21
2 Analytic and graphical methods 23
2 1 Introduction 23
2 2 Analytic methods of solution 23
2 3 Stepwise valve closures at pipe period intervals 23
2 4 The Allievi interlocking equations 25
2 5 The Schnyder-Bergeron graphical method 36
3 Boundary conditions for use with graphical
methods 55
3 1 Introduction 55
3 2 Pumps 55
3 3 Four quadrant pump operation 60
3 4 Surge tanks 62
3 5 Types of surge tanks 63
3 6 Transient analysis of surge tanks 65
3 7 Mass oscillation of surge tanks 66
3 8 Pressurised surge tanks or air vessels 68
3 9 Methods of integrating the surge tank equations 70
v
vi Contents
4 The method of characteristics 72
4 1 Introduction 72
4 2 Method of deriving the characteristic forms of the water-
hammer equations 74
4 3 The characteristic forms of the waterhammer equations 77
4 4 The zone of influence and the domain of dependency 78
4 5 The zone of quiet 79
4 6 The integration of the characteristic equations 79
4 7 Boundary conditions 81
4 8 The method of the regular rectangular grid 82
4 9 Other finite difference methods 85
5 Variable parameters in unsteady flow 87
5 1 Variation of wavespeed 87
5 2 Gas evolution 88
5 3 The magnitude of variable wavespeed and the inclusion
of gas release 90
5 4 The use of the variable wavespeed equation 94
5 5 Vaporous cavitation 94
5 6 Calculation of friction 95
5 7 The use of variable / values 96
5 8 Interpolation 97
5 9 The calculation of the free bubble content 98
5 10 Evaluation of velocities and potential heads at internal
points in a pipe length 99
6 Boundary conditions: pumps 100
6 1 Introduction 100
6 2 Pumps equipped with a nonreturn valve 100
6 3 The derivation of the pump’s characteristic equation 101
6 4 Dynamometer/turbine operation of a pump with
forward flow 102
6 5 Pump efficiency 105
6 6 Pump power 105
6 7 Pump start up 106
6 8 Pump run down 107
6 9 The in-line pump boundary condition 108
6 10 Suction well pumps 110
6 11 Four quadrant pump operation 111
6 12 The use of the Suter curves 118
6 13 Pump run up to steady speed of pumping 120
6 14 Pumps with by-pass valves 120
6 15 Pumpstations 121
6 16 Surge suppression of transients generated by pump trip 124
6 17 Line pack and attenuation 127
6 18 Lock in 128
Contents vii
7 Other boundary conditions 130
7 1 Junctions 130
7 2 Joints 132
7 3 Air vessels 134
7 4 The motorised valve 136
7 5 Servocontrolled valves 142
7 6 Reservoirs 144
7 7 Bends 146
8 Unsteady flow in gas networks 147
8 1 Introduction 147
8 2 Basic equations 147
8 3 Characteristic equations 149
8 4 The value of 7 150
8 5 Boundary conditions 154
9 Impedance methods of pipeline analysis 155
9 1 Introduction 155
9 2 The analogy between electrical and hydraulic impedance 156
9 3 The linearisation of the waterhammer equations 157
9 4 The solution of the linearised waterhammer equations 160
9 5 The evaluation of 7 162
9 6 The impedance concept 164
9 7 Receiving and sending ends 165
9 8 The equation of impedance 165
9 9 Boundary conditions 167
9 10 The impedance of a network 170
9 11 Harmonic analysis 172
9 12 The forcing oscillation 173
9 13 The oscillating valve 174
9 14 A network in which resonance can be excited by forcing
oscillations located at different points in the network 176
10 Unsteady flow in open channels 177
10 1 Introduction 177
10 2 The equations of unsteady flow in open channels 178
10 3 The characteristic forms of the open channel equations 181
10 4 The travelling surge 192
10 5 The profile of a free surface flow when a travelling
surge is present 195
10 6 The method of analysis of an unsteady free surface
flow in which travelling surges are present 195
10 7 Other methods of analysis 199
Contents
viii
Global programming 201
11 1 Introduction 201
11 2 The route or link method of global programming 201
11 3 Pipe description 203
11 4 Longitudinal profiles 203
11 5 Upstream reservoirs 204
11 6 Downstream reservoirs 204
11 7 Pump description 204
11 8 Pipe longitudinal profiles at Ax intervals 205
11 9 Calls of procedures 205
11 10 Time level scanning 206
References 207
Bibliography 209
Index
|
adam_txt |
ontents
Preface ix
Notation xi
1 Simple waterhammer theory l
1 1 Introduction 1
1 2 Rigid pipe—incompressible fluid theory 2
1 3 Sudden valve opening at the downstream end of a
pipeline 4
1 4 Slow valve closure 6
1 5 Distensible pipe—elastic fluid theory 9
1 6 Instantaneous valve closure 10
1 7 Separation 16
1 8 The calculation of the magnitude of the transient
caused by complete instantaneous valve closure at the
end of a simple pipeline 17
1 9 Pressure rise caused by instantaneous valve closure 21
1 10 Sudden valve closure 21
2 Analytic and graphical methods 23
2 1 Introduction 23
2 2 Analytic methods of solution 23
2 3 Stepwise valve closures at pipe period intervals 23
2 4 The Allievi interlocking equations 25
2 5 The Schnyder-Bergeron graphical method 36
3 Boundary conditions for use with graphical
methods 55
3 1 Introduction 55
3 2 Pumps 55
3 3 Four quadrant pump operation 60
3 4 Surge tanks 62
3 5 Types of surge tanks 63
3 6 Transient analysis of surge tanks 65
3 7 Mass oscillation of surge tanks 66
3 8 Pressurised surge tanks or air vessels 68
3 9 Methods of integrating the surge tank equations 70
v
vi Contents
4 The method of characteristics 72
4 1 Introduction 72
4 2 Method of deriving the characteristic forms of the water-
hammer equations 74
4 3 The characteristic forms of the waterhammer equations 77
4 4 The zone of influence and the domain of dependency 78
4 5 The zone of quiet 79
4 6 The integration of the characteristic equations 79
4 7 Boundary conditions 81
4 8 The method of the regular rectangular grid 82
4 9 Other finite difference methods 85
5 Variable parameters in unsteady flow 87
5 1 Variation of wavespeed 87
5 2 Gas evolution 88
5 3 The magnitude of variable wavespeed and the inclusion
of gas release 90
5 4 The use of the variable wavespeed equation 94
5 5 Vaporous cavitation 94
5 6 Calculation of friction 95
5 7 The use of variable / values 96
5 8 Interpolation 97
5 9 The calculation of the free bubble content 98
5 10 Evaluation of velocities and potential heads at internal
points in a pipe length 99
6 Boundary conditions: pumps 100
6 1 Introduction 100
6 2 Pumps equipped with a nonreturn valve 100
6 3 The derivation of the pump’s characteristic equation 101
6 4 Dynamometer/turbine operation of a pump with
forward flow 102
6 5 Pump efficiency 105
6 6 Pump power 105
6 7 Pump start up 106
6 8 Pump run down 107
6 9 The in-line pump boundary condition 108
6 10 Suction well pumps 110
6 11 Four quadrant pump operation 111
6 12 The use of the Suter curves 118
6 13 Pump run up to steady speed of pumping 120
6 14 Pumps with by-pass valves 120
6 15 Pumpstations 121
6 16 Surge suppression of transients generated by pump trip 124
6 17 Line pack and attenuation 127
6 18 Lock in 128
Contents vii
7 Other boundary conditions 130
7 1 Junctions 130
7 2 Joints 132
7 3 Air vessels 134
7 4 The motorised valve 136
7 5 Servocontrolled valves 142
7 6 Reservoirs 144
7 7 Bends 146
8 Unsteady flow in gas networks 147
8 1 Introduction 147
8 2 Basic equations 147
8 3 Characteristic equations 149
8 4 The value of 7 150
8 5 Boundary conditions 154
9 Impedance methods of pipeline analysis 155
9 1 Introduction 155
9 2 The analogy between electrical and hydraulic impedance 156
9 3 The linearisation of the waterhammer equations 157
9 4 The solution of the linearised waterhammer equations 160
9 5 The evaluation of 7 162
9 6 The impedance concept 164
9 7 Receiving and sending ends 165
9 8 The equation of impedance 165
9 9 Boundary conditions 167
9 10 The impedance of a network 170
9 11 Harmonic analysis 172
9 12 The forcing oscillation 173
9 13 The oscillating valve 174
9 14 A network in which resonance can be excited by forcing
oscillations located at different points in the network 176
10 Unsteady flow in open channels 177
10 1 Introduction 177
10 2 The equations of unsteady flow in open channels 178
10 3 The characteristic forms of the open channel equations 181
10 4 The travelling surge 192
10 5 The profile of a free surface flow when a travelling
surge is present 195
10 6 The method of analysis of an unsteady free surface
flow in which travelling surges are present 195
10 7 Other methods of analysis 199
Contents
viii
Global programming 201
11 1 Introduction 201
11 2 The route or link method of global programming 201
11 3 Pipe description 203
11 4 Longitudinal profiles 203
11 5 Upstream reservoirs 204
11 6 Downstream reservoirs 204
11 7 Pump description 204
11 8 Pipe longitudinal profiles at Ax intervals 205
11 9 Calls of procedures 205
11 10 Time level scanning 206
References 207
Bibliography 209
Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Fox, J. A. |
author_facet | Fox, J. A. |
author_role | aut |
author_sort | Fox, J. A. |
author_variant | j a f ja jaf |
building | Verbundindex |
bvnumber | BV021928418 |
callnumber-first | T - Technology |
callnumber-label | TJ935 |
callnumber-raw | TJ935 |
callnumber-search | TJ935 |
callnumber-sort | TJ 3935 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
ctrlnum | (OCoLC)21127972 (DE-599)BVBBV021928418 |
edition | Repr. with corr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01370nam a2200385zc 4500</leader><controlfield tag="001">BV021928418</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040301000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">960212s1979 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0333191420</subfield><subfield code="9">0-333-19142-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)21127972</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021928418</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ935</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fox, J. A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydraulic analysis of unsteady flow in pipe networks</subfield><subfield code="c">J. A. Fox</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Repr. with corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Macmillan</subfield><subfield code="c">1979</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">216 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pipe</subfield><subfield code="x">Fluid dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unsteady flow (Fluid dynamics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rohrströmung</subfield><subfield code="0">(DE-588)4050412-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Instationäre Strömung</subfield><subfield code="0">(DE-588)4132734-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Rohrströmung</subfield><subfield code="0">(DE-588)4050412-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Instationäre Strömung</subfield><subfield code="0">(DE-588)4132734-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015143575&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015143575</subfield></datafield></record></collection> |
id | DE-604.BV021928418 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:06:08Z |
indexdate | 2024-07-09T20:47:36Z |
institution | BVB |
isbn | 0333191420 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015143575 |
oclc_num | 21127972 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | 216 S. |
publishDate | 1979 |
publishDateSearch | 1979 |
publishDateSort | 1979 |
publisher | Macmillan |
record_format | marc |
spelling | Fox, J. A. Verfasser aut Hydraulic analysis of unsteady flow in pipe networks J. A. Fox Repr. with corr. London [u.a.] Macmillan 1979 216 S. txt rdacontent n rdamedia nc rdacarrier Pipe Fluid dynamics Unsteady flow (Fluid dynamics) Rohrströmung (DE-588)4050412-8 gnd rswk-swf Instationäre Strömung (DE-588)4132734-2 gnd rswk-swf Rohrströmung (DE-588)4050412-8 s DE-604 Instationäre Strömung (DE-588)4132734-2 s HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015143575&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Fox, J. A. Hydraulic analysis of unsteady flow in pipe networks Pipe Fluid dynamics Unsteady flow (Fluid dynamics) Rohrströmung (DE-588)4050412-8 gnd Instationäre Strömung (DE-588)4132734-2 gnd |
subject_GND | (DE-588)4050412-8 (DE-588)4132734-2 |
title | Hydraulic analysis of unsteady flow in pipe networks |
title_auth | Hydraulic analysis of unsteady flow in pipe networks |
title_exact_search | Hydraulic analysis of unsteady flow in pipe networks |
title_exact_search_txtP | Hydraulic analysis of unsteady flow in pipe networks |
title_full | Hydraulic analysis of unsteady flow in pipe networks J. A. Fox |
title_fullStr | Hydraulic analysis of unsteady flow in pipe networks J. A. Fox |
title_full_unstemmed | Hydraulic analysis of unsteady flow in pipe networks J. A. Fox |
title_short | Hydraulic analysis of unsteady flow in pipe networks |
title_sort | hydraulic analysis of unsteady flow in pipe networks |
topic | Pipe Fluid dynamics Unsteady flow (Fluid dynamics) Rohrströmung (DE-588)4050412-8 gnd Instationäre Strömung (DE-588)4132734-2 gnd |
topic_facet | Pipe Fluid dynamics Unsteady flow (Fluid dynamics) Rohrströmung Instationäre Strömung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015143575&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT foxja hydraulicanalysisofunsteadyflowinpipenetworks |