Cascade aerodynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Pergamon Pr.
1984
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Thermodynamics and fluid mechanics series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 270 S. Ill., graph. Darst. |
ISBN: | 0080204287 0080204279 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV021869691 | ||
003 | DE-604 | ||
005 | 20040229000000.0 | ||
007 | t | ||
008 | 870421s1984 ad|| |||| 00||| eng d | ||
020 | |a 0080204287 |9 0-08-020428-7 | ||
020 | |a 0080204279 |9 0-08-020427-9 | ||
035 | |a (OCoLC)10147176 | ||
035 | |a (DE-599)BVBBV021869691 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-706 | ||
050 | 0 | |a TJ267.5.B5 | |
082 | 0 | |a 621.8/11 |2 19 | |
082 | 0 | |a 621.406 |2 19 | |
100 | 1 | |a Gostelow, Jonathan P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cascade aerodynamics |c J. P. Gostelow |
250 | |a 1. ed. | ||
264 | 1 | |a Oxford [u.a.] |b Pergamon Pr. |c 1984 | |
300 | |a XVI, 270 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Thermodynamics and fluid mechanics series | |
650 | 4 | |a Aerodynamics | |
650 | 4 | |a Cascades (Fluid dynamics) | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Schaufelgitter |0 (DE-588)4052124-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Aerodynamik |0 (DE-588)4000589-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Aerodynamik |0 (DE-588)4000589-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Schaufelgitter |0 (DE-588)4052124-2 |D s |
689 | 1 | 1 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015085692&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015085692 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135807856934912 |
---|---|
adam_text | Calculation techniques have advanced in a relatively systematic
progress is also made by the accumulation of experimental evidence,
experience is presented in Chapter 11 and conclusions are drawn
areas end likely advances
{ have placed strong emphasis on the historical development of the
this will provide useful perspective Not only is the field of Cascade
whose progress has been inadequately documented, it is also a field
at the present time When the literature survey closed,
~ eras much exciting activity; the field is barely mature and certainly
At some time in the future the cascade model will probably be
three-dimensional flow field investigations That time has not yet
that further progress, especially for high speed flows, will require
ical and experimental studies in the cascade plane
that most of the book should provide a balanced account of the
dpy consider that undue emphasis is placed on the test case solutions
the attendant theory This has provided a necessary basis for
in the field Considerable research attention has been devoted to the
e calibration results for use by designers An important aim of the
;(fds book has been to establish confidence in good design procedures
ons and language difficulties make it impossible to do justice to
field as the aerodynamics of cascades ; Some aspects, such as work
t and cascade testing in water, have not been covered I
t contributions have been neglected or injustices have been
af this work has been a lengthy project and has involved the willing
ration of a number of people Where a reference source is cited
constitutes my acknowledgement of the source and of my gratitude
material In particular I am indebted to the following organisations
of photographs:- Amalgamated Power Engineering, GEC Turbine
( General Electric, Mitsubishi Heavy Industries Ltd , ONERA, VKIFD,
y and Oxford University Prof J H Horlock was especially helpful
ive years and Prof R I Lewis, Dr S L Dixon and Dr G J Walker
helpfully on various aspects of the work Good work was performed
hy C E- Evans and C Kiriklidis and good photography by J F Pickering
Jackman, has provided invaluable support in the office and in typing
tables
t acknowledgement goes to my family who have given ungrudging
• e, Valerie, willingly took on the typing and preparation of camera-
the manuscript I dedicate this book to my family
Aerodynamics
1983 J P Gostelow
Contents
LIST OF SYMBOLS xiv
1 THE CASCADE MODEL 1
1 1 The Meridional and Cascade Planes 3
111 The meridional plane 3
112 The cascade plane 5
1 2 Cascade Notation and Definitions 6
1 3 The Equations of Motion 8
131 The continuity equation 8
132 The First Law of Thermodynamics 9
133 Newton s Second Law of Motion 10
134 The Second Law of Thermodynamics 10
1 4 Definitions of Loss and Efficiency H
1 5 Cascade Force Analysis 13
1 6 Degree of Reaction 15
1 7 Compressible Flows 16
171 One dimensional isentropic flow 17
172 Shock waves 17
2 LOW SPEED CASCADE TESTING 20
2 1 Early Cascade Experiments 20
2 2 Production of British Compressor Design Data 23
2 3 American Work on Low Speed Cascades 24
2 4 Axial Velocity Variation through Cascades 26
2 5 Influence of Reynolds Number 27
2 6 Effect of Free Stream Turbulence 28
2 7 Some Design Features of Low Speed Cascade Tunnels 31
2 8 Some Contemporary Low Speed Tunnels 34
281 The Cambridge University No 1 Cascade Tunnel 36
2 9 Future Low Speed Cascade Tunnels 37
3 THREE-DIMENSIONAL FLOWS AND NON-RECTI LI NEAR CASCADES 40
3 1 Pseudo Three-Dimensional and Axial-Velocity-Ratio Effects 40
311 Axial velocity ratio effects on deviation angle 41
312 Axial velocity ratio effects on loss coefficient 43
313 Axial velocity ratio effects on pressure distribution 43
3 2 Aspect-Ratio Effects 44
3 3 Application of Cascades to Mixed and Radial Flows 44
331 Radial flow machines 46
332 Mixed flow machines 47
3 4 Secondary Flows and Losses 48
341 Qualitative explanation 48
342 Prediction of passage vorticity and angle variation 50
343 Secondary flow losses 51
3 5 End-Wall Boundary Layers 53
351 Research on end wall boundary layers in cascades 53
352 Multi-stage machines and tip clearance 56
3 6 Incorporation into Axisymmetric Scheme and Design Process 58
361 Simple radial equilibrium 58
362 Free-vortex design 59
363 Actuator disc approach 59
364 Streamline curvature 59
365 Matrix through-flow 60
3 7 Annular Cascades 60
371 Theoretical considerations 60
372 Annular cascade rigs 61
x Cascade Aerodynamics
523 Th*
524E
53 Use of
533 70*
534 II
535 Df
5 4 Solutions
543I
Appendix A
for
Appendix B
6 COMPRESSIBLE
6 1 Subsonic
1611C
i612
-613 The
r614S
615I
616F
617 Fi
r618S
62 Supersonic
621C
*623 Tu
4 HIGH SPEED CASCADE TESTING
4 1 Subsonic and Transonic Tunnels
4 2 Testing of High Speed Compressor Cascades
4 3 Testing of High Speed Turbine Cascades
4 4 Instrumentation and Observation Techniques
5 THEORIES FOR INCOMPRESSIBLE POTENTIAL FLOW
5 1 Solutions to the Direct Problem for Incompressible Potential Flow
511 Historical development
512 Conformal transformation methods
513 Singularity methods
514 The Marten sen method
5 2 An Exact Solution for Cascades
521 The exact solution to the flow through a derived cascade
6 3 Transonic
631F
632T
633S
634 Sfll
7 VISCOUS FLOWS
7 1 Boundary
711E
72 Transition
7 3 Separation
7 4 Zero Nett
7 5 First and
Design Features of Low Speed Cascade Tunnels 31
Contemporary Low Speed Tunnels 34
t The Cambridge University No 1 Cascade Tunnel 36
Low Speed Cascade Tunnels 37
SIONAL FLOWS AND NON-RECTILINEAR CASCADES 40
Three-Dimensional and Axial-Velocity-Ratio Effects 40
Axial velocity ratio effects on deviation angle 41
i Axial velocity ratio effects on loss coefficient 43
3 Axial velocity ratio effects on pressure distribution 43
-Ratio Effects 44
tlon of Cascades to Mixed and Radial Flows 44
1 Radial flow machines 46
2 Mixed flow machines 47
ry Flows and Losses 48
1 Qualitative explanation 48
2 Prediction of passage vorticity and angle variation 50
3 Secondary flow losses 51
Wall Boundary Layers 53
1 Research on end wall boundary layers -in cascades 53
2 Multi-stage machines and tip clearance , 56
ration into Axisymmetric Scheme and Design Process 58
1 Simple radial equilibrium 58
2 Free-vortex design 59
3 Actuator disc approach 59
* Streamline curvature 59
5 Matrix through-flow GO
r Cascades 60
t Theoretical considerations GO
2 Annular cascade rigs 61
de Aerodynamics
CASCADE TESTING
and Transonic Tunnels
of High Speed Compressor Cascades
ng of High Speed Turbine Cascades
rumentation and Observation Techniques
FOR INCOMPRESSIBLE POTENTIAL FLOW
ions to the Direct Problem for Incompressible Potential Flow
1 Historical development
2 Conformal transformation methods
3 Singularity methods
4 The Marten sen method
xact Solution for Cascades
1 The exact solution to the flow through a derived cascade
t
Contents xi
522 Derivation of aerofoils 99
523 The flow around the aerofoils 102
524 Extension to blades with rounded trailing edges 104
525 Potential flow near the rear stagnation point 106
5 3 Use of Exact Theory to Assess Accuracy of Existing Methods 109
531 Comparisons for cusped blade 109
532 Blading having rounded trailing edges 110
533 70° camber profile 112
534 112° camber profile 113
535 Discussion on the accuracy of different methods 113
5 4 Solutions to the Indirect Problem for Incompressible Potential Flow 115
541 Development of the problem 115
542 Solutions using the hodograph plane 116
543 Indirect use of the Martensen method 119
Appendix A Parameters, co-ordinates and pressure distribution
for cusped blade 123
Appendix B Co-ordinates and pressure distribution for 112°
camber blade 124
COMPRESSIBLE FLOW THEORIES 125
6 1 Subsonic Flow Calculations 125
611 Closely-spaced cascades 125
612 Widely-spaced cascades 127
613 The general case 129
614 Series solutions 129
615 Iterative solutions 130
616 Finite difference solutions 131
617 Finite-element solutions 132
618 Streamline curvature solutions 133
6 2 Supersonic Flow Calculations 134
621 Compressor cascades 137
622 Impulse cascades 137
623 Turbine cascades 138
6 3 Transonic Flow Calculations 139
631 Flow patterns and equation types 139
632 Test cases for shock-free flow 140
633 Solutions to the potential equation 142
634 Solutions to the Euler equations 143
635 Shock boundary layer interactions 145
VISCOUS FLOWS 150
7 1 Boundary Layer Concepts and Applicability 151
711 Experimental techniques 152
712 Calculation methods 153
72T ransition 156
7 3 Separation and Wakes 160
7 4 Zero Nett Vorticity Theorem 163
7 5 First and Second Viscous Approximations 165
8 STALLED AND UNSTEADY FLOWS 170
8 1 Vortex Shedding 171
8 2 Base Pressure 172
821 Subsonic base flows 172
822 Supersonic base flows 174
8 3 Separation and Stall 176
8 4 Stall Propagation 178
8 5 Blade Flutter and Vibrations 180
851 UnstalJed flutter 181
852 Subsonic stall flutter 182
853 Turbine blade flutter 183
8 6 Blade Response to Potential Flow and Wake Interaction 185
8 7 Unsteady Flow Simulation and Measurement 188
9 SPECIAL APPLICATIONS 196
9 1 Boundary Layer and Circulation Control 196
911 Tandem cascades 197
912 Effect of relative spacings for tandem cascade 199
913 Theoretical work on tandem cascades 200
914 Slotted blades 201
915 Tandem cascades for high-speed flows 201
916 Blown cascades and jet flaps 202
9 2 Turbine Blade Cooling 204
921 Blade cooling techniques 205
922 Design for film cooling 208
9 3 Blading Having Sweep and Dihedral 211
931 Analysis and design procedures 211
932 Use to reduce effective Mach Number 214
933 Use for acoustic reasons 216
934 Sloping flowpaths and effects on meridional flow
distribution 216
10 EVALUATIONS OF PREDICTION ACCURACY 223
10 1 Incompressible Flows 223
10 1 1 Accuracy of numerical solutions 223
10 1 2 Cascade theory and experiment 224
10 1 3 Comparison with machine tests 227
10 2 High Speed Flows 229
10 2 1 Accuracy of numerical solutions for transonic flow 229
10 2 2 High speed cascade theory and experiment 230
10 2 3 Comparison with high speed rig tests 233
10 3 Discussion on Validity of Theory and Experiment 235
11 DESIGN APPLICATION OF CASCADE INFORMATION 238
11 1 The Effects of Geometric Parameters 238
11 1 1 Thickness/chord ratio 238
xii Cascade Aerodynamics
NO UNSTEADY FLOWS 170
Shedding 171
Pressure 172
Subsonic base flows 172
Supersonic base flows 174
ration and Stall 176
Propagation 178
Flutter and Vibrations 180
Uns tailed flutter 181
Subsonic stall flutter 182
Turbine blade flutter 183
Response to Potential Flow and Wake Interaction 185
Flow Simulation and Measurement 188
t CATIONS 196
Layer and Circulation Control 196
Tandem cascades 197
Effect of relative spacings for tandem cascade 199
Theoretical work on tandem cascades 200
Slotted blades 201
Tandem cascades for high-speed flows , 201
Blown cascades and jet flaps 202
Blade Cooling 204
Blade cooling techniques 205
Design for film cooling 208
Having Sweep and Dihedral 211
Analysis and design procedures 211
Use to reduce effective Mach Number 214
■Use for acoustic reasons 216
Sloping fiowpaths and effects on meridional flow
distribution 216
S OF PREDICTION ACCURACY 223
ssible Flows 223
Accuracy of numerical solutions 223
Cascade theory and experiment 224
Comparison with machine tests 227
Flows 229
Accuracy of numerical solutions for transonic flow 229
High speed cascade theory and experiment 230
Comparison with high speed rig tests 233
tilon on Validity of Theory and Experiment 235
CATION OF CASCADE INFORMATION 238
of Geometric Parameters 238
Thickness/chord ratio 238
Aerodynamics
?
*
i
i
#
l
T ,
I
? ■
A
•
•
*
*
•
’
’
*
Contents
11 1 2 Leading edge thickness
11 1 3 Trailing edge thickness
11 1 4 Camber and stagger angles
11 1 5 Space/chord ratio
11 1 6 Shape of camber line
11 1 7 Thickness distribution
11 2 The Effects of Aerodynamic Parameters
11 2 1 Incidence angle
11 2 2 Reynolds1 Number
11 2 3 Free-stream turbulence level
11 2 4 Surface roughness
11 3 interactive Parameters
11 3 1 Tip clearance effects
11 3 2 Axial spacing between blade rows
11 4 Conclusions on the Design Application of Cascade Information
xi ii
INDEX 265
|
adam_txt |
Calculation techniques have advanced in a relatively systematic
progress is also made by the accumulation of experimental evidence,
experience is presented in Chapter 11 and conclusions are drawn
areas end likely advances
{ have placed strong emphasis on the historical development of the
' this will provide useful perspective Not only is the field of Cascade
whose progress has been inadequately documented, it is also a field
at the present time When the literature survey closed,
~ eras much exciting activity; the field is barely mature and certainly
At some time in the future the cascade model will probably be
three-dimensional flow field investigations That time has not yet
that further progress, especially for high speed flows, will require
ical and experimental studies in the cascade plane
that most of the book should provide a balanced account of the
dpy consider that undue emphasis is placed on the test case solutions
the attendant theory This has provided a necessary basis for
in the field Considerable research attention has been devoted to the
e calibration results for use by designers An important aim of the
;(fds book has been to establish confidence in good design procedures
ons and language difficulties make it impossible to do justice to
field as the aerodynamics of cascades ; Some aspects, such as work
t and cascade testing in water,\ have not been covered I
t contributions have been neglected or injustices have been
af this work has been a lengthy project and has involved the willing
ration of a number of people Where a reference source is cited
constitutes my acknowledgement of the source and of my gratitude
material In particular I am indebted to the following organisations
of photographs:- Amalgamated Power Engineering, GEC Turbine
( General Electric, Mitsubishi Heavy Industries Ltd , ONERA, VKIFD,
' y and Oxford University Prof J H Horlock was especially helpful
ive years and Prof R I Lewis, Dr S L Dixon and Dr G J Walker
helpfully on various aspects of the work Good work was performed
hy C E- Evans and C Kiriklidis and good photography by J F Pickering
Jackman, has provided invaluable support in the office and in typing
tables
t acknowledgement goes to my family who have given ungrudging
• e, Valerie, willingly took on the typing and preparation of camera-
the manuscript I dedicate this book to my family
Aerodynamics
1983 J P Gostelow
Contents
LIST OF SYMBOLS xiv
1 THE CASCADE MODEL 1
1 1 The Meridional and Cascade Planes 3
111 The meridional plane 3
112 The cascade plane 5
1 2 Cascade Notation and Definitions 6
1 3 The Equations of Motion 8
131 The continuity equation 8
132 The First Law of Thermodynamics 9
133 Newton's Second Law of Motion 10
134 The Second Law of Thermodynamics 10
1 4 Definitions of Loss and Efficiency H
1 5 Cascade Force Analysis 13
1 6 Degree of Reaction 15
1 7 Compressible Flows 16
171 One dimensional isentropic flow 17
172 Shock waves 17
2 LOW SPEED CASCADE TESTING 20
2 1 Early Cascade Experiments 20
2 2 Production of British Compressor Design Data 23
2 3 American Work on Low Speed Cascades 24
2 4 Axial Velocity Variation through Cascades 26
2 5 Influence of Reynolds' Number 27
2 6 Effect of Free Stream Turbulence 28
2 7 Some Design Features of Low Speed Cascade Tunnels 31
2 8 Some Contemporary Low Speed Tunnels 34
281 The Cambridge University No 1 Cascade Tunnel 36
2 9 Future Low Speed Cascade Tunnels 37
3 THREE-DIMENSIONAL FLOWS AND NON-RECTI LI NEAR CASCADES 40
3 1 Pseudo Three-Dimensional and Axial-Velocity-Ratio Effects 40
311 Axial velocity ratio effects on deviation angle 41
312 Axial velocity ratio effects on loss coefficient 43
313 Axial velocity ratio effects on pressure distribution 43
3 2 Aspect-Ratio Effects 44
3 3 Application of Cascades to Mixed and Radial Flows 44
331 Radial flow machines 46
332 Mixed flow machines 47
3 4 Secondary Flows and Losses 48
341 Qualitative explanation 48
342 Prediction of passage vorticity and angle variation 50
343 Secondary flow losses 51
3 5 End-Wall Boundary Layers 53
351 Research on end wall boundary layers in cascades 53
352 Multi-stage machines and tip clearance 56
3 6 Incorporation into Axisymmetric Scheme and Design Process 58
361 Simple radial equilibrium 58
362 Free-vortex design 59
363 Actuator disc approach 59
364 Streamline curvature 59
365 Matrix through-flow 60
3 7 Annular Cascades 60
371 Theoretical considerations 60
372 Annular cascade rigs 61
x Cascade Aerodynamics
523 Th*
524E
53 Use of
533 70*
534 II
535 Df
5 4 Solutions
543I
Appendix A
for
Appendix B
6 COMPRESSIBLE
6 1 Subsonic
1611C
i612
-613 The
r614S
615I
616F
617 Fi
r618S
62 Supersonic
621C
*623 Tu
4 HIGH SPEED CASCADE TESTING
4 1 Subsonic and Transonic Tunnels
4 2 Testing of High Speed Compressor Cascades
4 3 Testing of High Speed Turbine Cascades
4 4 Instrumentation and Observation Techniques
5 THEORIES FOR INCOMPRESSIBLE POTENTIAL FLOW
5 1 Solutions to the Direct Problem for Incompressible Potential Flow
511 Historical development
512 Conformal transformation methods
513 Singularity methods
514 The Marten sen method
5 2 An Exact Solution for Cascades
521 The exact solution to the flow through a derived cascade
6 3 Transonic
631F
632T
633S
634 Sfll
7 VISCOUS FLOWS
7 1 Boundary
711E
72 Transition
7 3 Separation
7 4 Zero Nett
7 5 First and
Design Features of Low Speed Cascade Tunnels 31
Contemporary Low Speed Tunnels 34
t The Cambridge University No 1 Cascade Tunnel 36
Low Speed Cascade Tunnels 37
SIONAL FLOWS AND NON-RECTILINEAR CASCADES 40
Three-Dimensional and Axial-Velocity-Ratio Effects 40
Axial velocity ratio effects on deviation angle 41
i Axial velocity ratio effects on loss coefficient 43
3 Axial velocity ratio effects on pressure distribution 43
' -Ratio Effects 44
tlon of Cascades to Mixed and Radial Flows 44
1 Radial flow machines 46
2 Mixed flow machines 47
ry Flows and Losses 48
1 Qualitative explanation 48
2 Prediction of passage vorticity and angle variation 50
3 Secondary flow losses 51
Wall Boundary Layers 53
1 Research on end wall boundary layers -in cascades 53
2 Multi-stage machines and tip clearance , 56
ration into Axisymmetric Scheme and Design Process 58
1 Simple radial equilibrium 58
2 Free-vortex design 59
3 Actuator disc approach 59
* Streamline curvature 59
5 Matrix through-flow GO
r Cascades 60
t Theoretical considerations GO
2 Annular cascade rigs 61
de Aerodynamics
CASCADE TESTING
and Transonic Tunnels
of High Speed Compressor Cascades
ng of High Speed Turbine Cascades
rumentation and Observation Techniques
FOR INCOMPRESSIBLE POTENTIAL FLOW
ions to the Direct Problem for Incompressible Potential Flow
1 Historical development
2 Conformal transformation methods
3 Singularity methods
4 The Marten sen method
xact Solution for Cascades
1 The exact solution to the flow through a derived cascade
t
Contents xi
522 Derivation of aerofoils 99
523 The flow around the aerofoils 102
524 Extension to blades with rounded trailing edges 104
525 Potential flow near the rear stagnation point 106
5 3 Use of Exact Theory to Assess Accuracy of Existing Methods 109
531 Comparisons for cusped blade 109
532 Blading having rounded trailing edges 110
533 70° camber profile 112
534 112° camber profile 113
535 Discussion on the accuracy of different methods 113
5 4 Solutions to the Indirect Problem for Incompressible Potential Flow 115
541 Development of the problem 115
542 Solutions using the hodograph plane 116
543 Indirect use of the Martensen method 119
Appendix A Parameters, co-ordinates and pressure distribution
for cusped blade 123
Appendix B Co-ordinates and pressure distribution for 112°
camber blade 124
COMPRESSIBLE FLOW THEORIES 125
6 1 Subsonic Flow Calculations 125
611 Closely-spaced cascades 125
612 Widely-spaced cascades 127
613 The general case 129
614 Series solutions 129
615 Iterative solutions 130
616 Finite difference solutions 131
617 Finite-element solutions 132
618 Streamline curvature solutions 133
6 2 Supersonic Flow Calculations 134
621 Compressor cascades 137
622 Impulse cascades 137
623 Turbine cascades 138
6 3 Transonic Flow Calculations 139
631 Flow patterns and equation types 139
632 Test cases for shock-free flow 140
633 Solutions to the potential equation 142
634 Solutions to the Euler equations 143
635 Shock boundary layer interactions 145
VISCOUS FLOWS 150
7 1 Boundary Layer Concepts and Applicability 151
711 Experimental techniques 152
712 Calculation methods 153
72T ransition 156
7 3 Separation and Wakes 160
7 4 Zero Nett Vorticity Theorem 163
7 5 First and Second Viscous Approximations 165
8 STALLED AND UNSTEADY FLOWS 170
8 1 Vortex Shedding 171
8 2 Base Pressure 172
821 Subsonic base flows 172
822 Supersonic base flows 174
8 3 Separation and Stall 176
8 4 Stall Propagation 178
8 5 Blade Flutter and Vibrations 180
851 UnstalJed flutter 181
852 Subsonic stall flutter 182
853 Turbine blade flutter 183
8 6 Blade Response to Potential Flow and Wake Interaction 185
8 7 Unsteady Flow Simulation and Measurement 188
9 SPECIAL APPLICATIONS 196
9 1 Boundary Layer and Circulation Control 196
911 Tandem cascades 197
912 Effect of relative spacings for tandem cascade 199
913 Theoretical work on tandem cascades 200
914 Slotted blades 201
915 Tandem cascades for high-speed flows 201
916 Blown cascades and jet flaps 202
9 2 Turbine Blade Cooling 204
921 Blade cooling techniques 205
922 Design for film cooling 208
9 3 Blading Having Sweep and Dihedral 211
931 Analysis and design procedures 211
932 Use to reduce effective Mach Number 214
933 Use for acoustic reasons 216
934 Sloping flowpaths and effects on meridional flow
distribution 216
10 EVALUATIONS OF PREDICTION ACCURACY 223
10 1 Incompressible Flows 223
10 1 1 Accuracy of numerical solutions 223
10 1 2 Cascade theory and experiment 224
10 1 3 Comparison with machine tests 227
10 2 High Speed Flows 229
10 2 1 Accuracy of numerical solutions for transonic flow 229
10 2 2 High speed cascade theory and experiment 230
10 2 3 Comparison with high speed rig tests 233
10 3 Discussion on Validity of Theory and Experiment 235
11 DESIGN APPLICATION OF CASCADE INFORMATION 238
11 1 The Effects of Geometric Parameters 238
11 1 1 Thickness/chord ratio 238
xii Cascade Aerodynamics
NO UNSTEADY FLOWS 170
Shedding 171
Pressure 172
Subsonic base flows 172
Supersonic base flows 174
ration and Stall 176
Propagation 178
Flutter and Vibrations 180
Uns tailed flutter 181
Subsonic stall flutter 182
Turbine blade flutter 183
Response to Potential Flow and Wake Interaction 185
Flow Simulation and Measurement 188
t CATIONS 196
Layer and Circulation Control 196
Tandem cascades 197
Effect of relative spacings for tandem cascade 199
Theoretical work on tandem cascades 200
Slotted blades 201
Tandem cascades for high-speed flows , 201
Blown cascades and jet flaps 202
Blade Cooling 204
Blade cooling techniques 205
Design for film cooling 208
Having Sweep and Dihedral 211
Analysis and design procedures 211
Use to reduce effective Mach Number 214
■Use for acoustic reasons 216
Sloping fiowpaths and effects on meridional flow
distribution 216
S OF PREDICTION ACCURACY 223
ssible Flows 223
Accuracy of numerical solutions 223
Cascade theory and experiment 224
Comparison with machine tests 227
Flows 229
Accuracy of numerical solutions for transonic flow 229
High speed cascade theory and experiment 230
Comparison with high speed rig tests 233
tilon on Validity of Theory and Experiment 235
CATION OF CASCADE INFORMATION 238
of Geometric Parameters 238
Thickness/chord ratio 238
Aerodynamics
?
*
i
i
#
l
T ,
I
'? ■
'
A
'
•
'
•
*
*
'
•
’
’
*
'
Contents
11 1 2 Leading edge thickness
11 1 3 Trailing edge thickness
11 1 4 Camber and stagger angles
11 1 5 Space/chord ratio
11 1 6 Shape of camber line
11 1 7 Thickness distribution
11 2 The Effects of Aerodynamic Parameters
11 2 1 Incidence angle
11 2 2 Reynolds1 Number
11 2 3 Free-stream turbulence level
11 2 4 Surface roughness
11 3 interactive Parameters
11 3 1 Tip clearance effects
11 3 2 Axial spacing between blade rows
11 4 Conclusions on the Design Application of Cascade Information
xi ii
INDEX 265 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gostelow, Jonathan P. |
author_facet | Gostelow, Jonathan P. |
author_role | aut |
author_sort | Gostelow, Jonathan P. |
author_variant | j p g jp jpg |
building | Verbundindex |
bvnumber | BV021869691 |
callnumber-first | T - Technology |
callnumber-label | TJ267 |
callnumber-raw | TJ267.5.B5 |
callnumber-search | TJ267.5.B5 |
callnumber-sort | TJ 3267.5 B5 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
ctrlnum | (OCoLC)10147176 (DE-599)BVBBV021869691 |
dewey-full | 621.8/11 621.406 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.8/11 621.406 |
dewey-search | 621.8/11 621.406 |
dewey-sort | 3621.8 211 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Maschinenbau / Maschinenwesen |
discipline_str_mv | Maschinenbau / Maschinenwesen |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01717nam a2200469zc 4500</leader><controlfield tag="001">BV021869691</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20040229000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">870421s1984 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080204287</subfield><subfield code="9">0-08-020428-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080204279</subfield><subfield code="9">0-08-020427-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)10147176</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021869691</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ267.5.B5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.8/11</subfield><subfield code="2">19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.406</subfield><subfield code="2">19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gostelow, Jonathan P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cascade aerodynamics</subfield><subfield code="c">J. P. Gostelow</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Pergamon Pr.</subfield><subfield code="c">1984</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 270 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Thermodynamics and fluid mechanics series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cascades (Fluid dynamics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schaufelgitter</subfield><subfield code="0">(DE-588)4052124-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Aerodynamik</subfield><subfield code="0">(DE-588)4000589-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schaufelgitter</subfield><subfield code="0">(DE-588)4052124-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015085692&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015085692</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021869691 |
illustrated | Illustrated |
index_date | 2024-07-02T16:03:21Z |
indexdate | 2024-07-09T20:46:23Z |
institution | BVB |
isbn | 0080204287 0080204279 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015085692 |
oclc_num | 10147176 |
open_access_boolean | |
owner | DE-706 |
owner_facet | DE-706 |
physical | XVI, 270 S. Ill., graph. Darst. |
publishDate | 1984 |
publishDateSearch | 1984 |
publishDateSort | 1984 |
publisher | Pergamon Pr. |
record_format | marc |
series2 | Thermodynamics and fluid mechanics series |
spelling | Gostelow, Jonathan P. Verfasser aut Cascade aerodynamics J. P. Gostelow 1. ed. Oxford [u.a.] Pergamon Pr. 1984 XVI, 270 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Thermodynamics and fluid mechanics series Aerodynamics Cascades (Fluid dynamics) Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Schaufelgitter (DE-588)4052124-2 gnd rswk-swf Aerodynamik (DE-588)4000589-6 gnd rswk-swf Aerodynamik (DE-588)4000589-6 s DE-604 Schaufelgitter (DE-588)4052124-2 s Strömungsmechanik (DE-588)4077970-1 s 1\p DE-604 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015085692&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gostelow, Jonathan P. Cascade aerodynamics Aerodynamics Cascades (Fluid dynamics) Strömungsmechanik (DE-588)4077970-1 gnd Schaufelgitter (DE-588)4052124-2 gnd Aerodynamik (DE-588)4000589-6 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4052124-2 (DE-588)4000589-6 |
title | Cascade aerodynamics |
title_auth | Cascade aerodynamics |
title_exact_search | Cascade aerodynamics |
title_exact_search_txtP | Cascade aerodynamics |
title_full | Cascade aerodynamics J. P. Gostelow |
title_fullStr | Cascade aerodynamics J. P. Gostelow |
title_full_unstemmed | Cascade aerodynamics J. P. Gostelow |
title_short | Cascade aerodynamics |
title_sort | cascade aerodynamics |
topic | Aerodynamics Cascades (Fluid dynamics) Strömungsmechanik (DE-588)4077970-1 gnd Schaufelgitter (DE-588)4052124-2 gnd Aerodynamik (DE-588)4000589-6 gnd |
topic_facet | Aerodynamics Cascades (Fluid dynamics) Strömungsmechanik Schaufelgitter Aerodynamik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015085692&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT gostelowjonathanp cascadeaerodynamics |