Multicriteria scheduling: theory, models and algorithms
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 335 - 356 |
Beschreibung: | XVI, 359 S. graph. Darst. |
ISBN: | 9783540282303 3540282300 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021693901 | ||
003 | DE-604 | ||
005 | 20061017 | ||
007 | t | ||
008 | 060811s2006 gw d||| |||| 00||| eng d | ||
015 | |a 05,N44,0488 |2 dnb | ||
015 | |a 06,A25,0920 |2 dnb | ||
016 | 7 | |a 976633442 |2 DE-101 | |
020 | |a 9783540282303 |c Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.) |9 978-3-540-28230-3 | ||
020 | |a 3540282300 |c Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.) |9 3-540-28230-0 | ||
024 | 3 | |a 9783540282303 | |
028 | 5 | 2 | |a 11538080 |
035 | |a (OCoLC)63127401 | ||
035 | |a (DE-599)BVBBV021693901 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h fre | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-11 | ||
050 | 0 | |a TS157.5 | |
082 | 0 | |a 658.53 |2 22 | |
084 | |a QH 234 |0 (DE-625)141549: |2 rvk | ||
084 | |a 330 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a T'kindt, Vincent |e Verfasser |4 aut | |
245 | 1 | 0 | |a Multicriteria scheduling |b theory, models and algorithms |c Vincent T'kindt ; Jean-Charles Billaut. Transl. from French by Henry Scott |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
300 | |a XVI, 359 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. 335 - 356 | ||
650 | 4 | |a Billaut, Jean-Charles | |
650 | 4 | |a Décision multicritère | |
650 | 4 | |a Ordonnancement (Gestion) | |
650 | 7 | |a Wachttijdproblemen |2 gtt | |
650 | 4 | |a Multiple criteria decision making | |
650 | 4 | |a Production scheduling | |
650 | 0 | 7 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reihenfolgeproblem |0 (DE-588)4242167-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Reihenfolgeproblem |0 (DE-588)4242167-6 |D s |
689 | 0 | 1 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Billaut, Jean-Charles |e Verfasser |4 aut | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2687114&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014907928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014907928 |
Datensatz im Suchindex
_version_ | 1804135521599881216 |
---|---|
adam_text | VINCENT T KINDT JEAN-CHARLES BILLAUT MULTICRITERIA SCHEDULING THEORY,
MODELS AND ALGORITHMS TRANSLATED FROM FRENCH BY HENRY SCOTT SECOND
EDITION WITH 138 FIGURES AND 15 TABLES ^J SPRINGER CONTENTS 1.
INTRODUCTION TO SCHEDULING 5 1.1 DEFINITION 5 1.2 SOME AREAS OF
APPLICATION 6 1.2.1 PROBLEMS RELATED TO PRODUCTION 6 1.2.2 OTHER
PROBLEMS 7 1.3 SHOP ENVIRONMENTS 7 1.3.1 SCHEDULING PROBLEMS WITHOUT
ASSIGNMENT 8 1.3.2 SCHEDULING AND ASSIGNMENT PROBLEMS WITH STAGES 8
1.3.3 GENERAL SCHEDULING AND ASSIGNMENT PROBLEMS 9 1.4 CONSTRAINTS 9 1.5
OPTIMALITY CRITERIA 12 1.5.1 MINIMISATION OF A MAXIMUM FUNCTION:
MINIMAX CRI- TERIA 13 1.5.2 MINIMISATION OF A SUM FUNCTION: MINISUM
CRITERIA ... 13 1.6 TYPOLOGIES AND NOTATION OF PROBLEMS 14 1.6.1
TYPOLOGIES OF PROBLEMS 14 1.6.2 NOTATION OF PROBLEMS 16 1.7 PROJECT
SCHEDULING PROBLEMS 17 1.8 SOME FUNDAMENTAL NOTIONS 18 1.9 BASIC
SCHEDULING ALGORITHMS 21 1.9.1 SCHEDULING RULES 21 1.9.2 SOME CLASSICAL
SCHEDULING ALGORITHMS 22 2. COMPLEXITY OF PROBLEMS AND ALGORITHMS 29 2.1
COMPLEXITY OF ALGORITHMS 29 2.2 COMPLEXITY OF PROBLEMS 32 2.2.1 THE
COMPLEXITY OF DECISION PROBLEMS 33 2.2.2 THE COMPLEXITY OF OPTIMISATION
PROBLEMS 38 2.2.3 THE COMPLEXITY OF COUNTING AND ENUMERATION PROBLEMS 40
2.3 APPLICATION TO SCHEDULING 48 3. MULTICRITERIA OPTIMISATION THEORY 53
3.1 MCDA AND MCDM: THE CONTEXT 53 3.1.1 MULTICRITERIA DECISION MAKING 54
X CONTENTS 3.1.2 MULTICRITERIA DECISION AM 54 3.2 PRESENTATION OF
MULTICRITERIA OPTIMISATION THEORY 55 3.3 DEFINITION OF OPTIMALITY 57 3.4
GEOMETRIC INTERPRETATION USING DOMINANCE CONES 60 3.5 CLASSES OF
RESOLUTION METHODS 62 3.6 DETERMINATION OF PARETO OPTIMA 64 3.6.1
DETERMINATION BY CONVEX COMBINATION OF CRITERIA 64 3.6.2 DETERMINATION
BY PARAMETRIC ANALYSIS 70 3.6.3 DETERMINATION BY MEANS OF THE
E-CONSTRAINT APPROACH . 72 3.6.4 USE OF THE TCHEBYCHEFF METRIC 76 3.6.5
USE OF THE WEIGHTED TCHEBYCHEFF METRIC 79 3.6.6 USE OF THE AUGMENTED
WEIGHTED TCHEBYCHEFF METRIC ... 81 3.6.7 DETERMINATION BY THE
GOAL-ATTAINMENT APPROACH 86 3.6.8 OTHER METHODS FOR DETERMINING PARETO
OPTIMA 91 3.7 MULTICRITERIA LINEAR PROGRAMMING (MLP) 92 3.7.1 INITIAL
RESULTS 93 3.7.2 APPLICATION OF THE PREVIOUS RESULTS 93 3.8
MULTICRITERIA MIXED INTEGER PROGRAMMING (MMIP) 94 3.8.1 INITIAL RESULTS
94 3.8.2 APPLICATION OF THE PREVIOUS RESULTS 95 3.8.3 SOME CLASSICAL
ALGORITHMS 97 3.9 THE COMPLEXITY OF MULTICRITERIA PROBLEMS 100 3.9.1
COMPLEXITY RESULTS RELATED TO THE SOLUTIONS 100 3.9.2 COMPLEXITY RESULTS
RELATED TO OBJECTIVE FUNCTIONS 101 3.9.3 SUMMARY 106 3.10 INTERACTIVE
METHODS 107 3.11 GOAL PROGRAMMING 108 3.11.1 ARCHIMEDIAN GOAL
PROGRAMMING ILL 3.11.2 LEXICOGRAPHICAL GOAL PROGRAMMING ILL 3.11.3
INTERACTIVE GOAL PROGRAMMING ILL 3.11.4 REFERENCE GOAL PROGRAMMING 112
3.11.5 MULTICRITERIA GOAL PROGRAMMING 112 4. AN APPROACH TO
MULTICRITERIA SCHEDULING PROBLEMS 113 4.1 JUSTIFICATION OF THE STUDY 113
4.1.1 MOTIVATIONS 113 4.1.2 SOME EXAMPLES 114 4.2 PRESENTATION OF THE
APPROACH 118 4.2.1 DEFINITIONS 118 4.2.2 NOTATION OF MULTICRITERIA
SCHEDULING PROBLEMS 121 4.3 CLASSES OF RESOLUTION METHODS 122 4.4
APPLICATION OF THE PROCESS - AN EXAMPLE 123 4.5 SOME COMPLEXITY RESULTS
FOR MULTICRITERIA SCHEDULING PROBLEMS 124 CONTENTS XI 5. JUST-IN-TIME
SCHEDULING PROBLEMS 135 5.1 PRESENTATION OF JUST-IN-TIME (JIT)
SCHEDULING PROBLEMS 135 5.2 TYPOLOGY OF JIT SCHEDULING PROBLEMS 136
5.2.1 DEFINITION OF THE DUE DATES 136 5.2.2 DEFINITION OF THE JIT
CRITERIA 137 5.3 A NEW APPROACH FOR JIT SCHEDULING 139 5.3.1 MODELLING
OF PRODUCTION COSTS IN JIT SCHEDULING FOR SHOP PROBLEMS 141 5.3.2 LINKS
WITH OBJECTIVE FUNCTIONS OF CLASSIC JIT SCHEDULING 145 5.4 OPTIMAL
TIMING PROBLEMS 147 5.4.1 THE L DI,SEQ F E (F A ,E 13 ) PROBLEM 147
5.4.2 THE POO PREC, FC CONVEX] ]T^ FA PROBLEM 149 5.4.3 THE L|/J
PIECEWISE LINEAR FE(J2I FI, YJJ J J) PROBLEM ... 153 5.5 POLYNOMIALLY
SOLVABLE PROBLEMS 153 5.5.1 THE L DI = D Y,PI FE(E,F) PROBLEM 153 5.5.2
THE LJDJ = D UNKNOWN, NMIT F E (E,T,D) PROBLEM_. *.. 155 5.5.3 THE 1 P
T C [P I; P { } N N, D, = D NON RESTRICTIVE F E (E, T, CCT) PROBLEM ^ *
157 5.5.4 THE P DI = D NON RESTRICTIVE, NMIT FE(E,T) PROBLEM . 157 5.5.5
THE P DI = D UNKNOWN,NMIT F E (E,T) PROBLEM * 159 5.5.6 THE P D T = D
UNKNOWN,PI = P,NMIT FE(E, T,D) PROBLEM ._ L .. 165 5.5.7 THE R P ITJ *
GI,J;P ITJ ],DI = D UNKNOWN FT(T,E~, CCT) PROBLEM 169 5.5.8 OTHER
PROBLEMS 170 5.6 AFP-HARD PROBLEMS 173 5.6.1 THE L DI,NMIT FI(E?,T 0 )
PROBLEM 173 5.6.2 THE F PRMU,D I ,NMIT FI(E U ,1^) PROBLEM 176 5.6.3
THE P DI = D NON RESTRICTIVE, NMIT F MAX {E , T ) PROBLEM 178 5.6.4
OTHER PROBLEMS 182 5.7 OPEN PROBLEMS 188 5.7.1 THE Q DI = D UNKNOWN,
NMIT F T (E,T) PROBLEM 188 5.7.2 OTHER PROBLEMS 189 6. ROBUSTNESS
CONSIDERATIONS 193 6.1 INTRODUCTION TO FLEXIBILITY AND ROBUSTNESS IN
SCHEDULING 193 6.2 APPROACHES THAT INTRODUCE SEQUENTIAL FLEXIBILITY 195
6.2.1 GROUPS OF PERMUTABLE OPERATIONS 195 6.2.2 PARTIAL ORDER BETWEEN
OPERATIONS 197 6.2.3 INTERVAL STRUCTURES 199 6.3 SINGLE MACHINE PROBLEMS
201 6.3.1 STABILITY VS MAKESPAN 201 6.3.2 ROBUST EVALUATION VS DISTANCE
TO A BASELINE SOLUTION... 202 XII CONTENTS 6.4 FLOWSHOP AND JOBSHOP
PROBLEMS*. 203 6.4.1 AVERAGE MAKESPAN OF A NEIGHBOURHOOD 203 6.4.2
SENSITIVITY OF OPERATIONS VS MAKESPAN 203 6.5 RESOURCE CONSTRAINED
PROJECT SCHEDULING PROBLEMS (RCPSP) 204 6.5.1 QUALITY IN PROJECT
SCHEDULING VS MAKESPAN 204 6.5.2 STABILITY VS MAKESPAN 205 7. SINGLE
MACHINE PROBLEMS 207 7.1 POLYNOMIALLY SOLVABLE PROBLEMS 207 7.1.1 SOME
L|DI|C, / MAX PROBLEMS 207 7.1.2 THE L SI,PMTN,NMIT FE(C,P MAX ) PROBLEM
215 7.1.3 THE L PI E [VI;P I ],D I F E (TR NAX ,CC W ) PROBLEM 216
7.1.4 THE L PI G [P I ;P I },D I F E (C,CC W ) PROBLEM 219 7.1.5 OTHER
PROBLEMS 219 7.2 TVP-HARD PROBLEMS^ 222 7.2.1 THE L DI T, C PROBLEM 222
7.2.2 THE L R U PI E [P,;^] N N FE(C MAX ,CC W ) PROBLEM 223 7.2.3 THE
RUPI G [P,;^] N N^TT , (XT ) PROBLEM 225 7.2.4 OTHER PROBLEMS 226 7.3
OPEN PROBLEMS 230 7.3.1 THE L DI U,T MAX PROBLEM 230 7.3.2 OTHER
PROBLEMS 234 8. SHOP PROBLEMS 235 8.1 TWO-MACHINE FLOWSHOP PROBLEMS 235
8.1.1 THE F2 PRMU LEX{C MAXJ P) PROBLEM 235 8.1.2 THE F2 PRMU FT(C MAX
,C) PROBLEM 250 8.1.3 THE F2 PRMU,RI FI{CMAX,C) PROBLEM 256 8.1.4 THE
F2 PRMU E(C/C M AX) PROBLEM 256 8.1.5 THE F2 PRMU,D I #(C MAX ,TR NAX )
PROBLEM 262 8.1.6 THE F2 PRMU,DI #{C MAX ,U) PROBLEM 265 8.1.7 THE
F2 PRMU,DI #(C MAX ,T) PROBLEM 267 8.2 M-MACHINE FLOWSHOP PROBLEMS 270
8.2.1 THE F PRMU LEX(C MA X,C) PROBLEM 270 8.2.2 THE F PRMU #(C MAX ,C)
PROBLE M 272 8.2.3 THE F PRMU,DI E(C MAX /T MAX ) PROBLEM 277 8.2.4 THE
F PIJ E [P I , J ;P IIJ },PRMU F E (C MA X,CC W ) PROBLEM. 280 8.2.5
THE F PIJ = PI * |JFC;P I ],PRMU|#(C FTOAXI C C ) PROBLEM281 8.3
JOBSHOP AND OPENSHOP PROBLEMS 284 8.3.1 JOBSHOP PROBLEMS 284 8.3.2 THE
O2 LEX{C MAX ,C) PROBLEM 284 8.3.3 THE O3 LEX(C MA X,C) PROBLEM 286
CONTENTS XIII 9. PARALLEL MACHINES PROBLEMS 287 9.1 PROBLEMS WITH
IDENTICAL PARALLEL MACHINES 287 9.1.1 THE P2 PMTN,DI E(L MAX /CMAX)
PROBLEM 287 9.1.2 THE P3 PMTN,DI ELLMAX/C M AX) PROBLEM 290 9.1.3 THE
P2 DI LEX(T MAX , U) PROBLEM 293 9.1.4 THE P DI #(C, F/)_PROBLEM 295
9.1.5 THE P PMTN LEX{C, C MAX ) PROBLEM 296 9.2 PROBLEMS WITH UNIFORM
PARALLEL MACHINES 297 9.2.1 THE Q PI = P E(F MA X/9MAX) PROBLEM 297
9.2.2 THE Q P T = P E(J[/F MAX ) PROBLEM 302 9.2.3 THE Q PMTN E(C/C MAX
) PROBLEM 303 9.3 PROBLEMS WITH UNRELATED PARALLEL MACHINES 310 9.3.1
THE R P ITJ * [P I , J ,P IJ ] FE(C,CC W ) PROBLEM 310 9.3.2 THE
R PMTN E(FE{IMAX,~M)/C MA X) PROBLEM 311 10. SHOP PROBLEMS WITH
ASSIGNMENT 315 10.1 A HYBRID FLOWSHOP PROBLEM WITH THREE STAGES 315 10.2
HYBRID FLOWSHOP PROBLEMS WITH K STAGES 316 10.2.1 THE HFK,(PM^) KE==1
FI{C MAX ,C) PROBLEM 316 10.2.2 THE HFK, (PM^)^ E(C/C MA X) PROBLEM
318 10.2.3 THE HFK, {PMW{T)) KTSNL R? 4 K) MAX /T MTUC ) PROB- LEM
318 A. NOTATIONS 323 A.I NOTATION OF DATA AND VARIABLES 323 A.2 USUAL
NOTATION OF SINGLE CRITERION SCHEDULING PROBLEMS 323 B. SYNTHESIS ON
MULTICRITERIA SCHEDULING PROBLEMS 329 B.I SINGLE MACHINE JUST-IN-TIME
SCHEDULING PROBLEMS 329 B.2 SINGLE MACHINE PROBLEMS 330 B.3 SHOP
PROBLEMS 333 B.4 PARALLEL MACHINES SCHEDULING PROBLEMS 333 B.5 SHOP
SCHEDULING PROBLEMS WITH ASSIGNMENT 334 REFERENCES 335 INDEX 357
|
adam_txt |
VINCENT T'KINDT JEAN-CHARLES BILLAUT MULTICRITERIA SCHEDULING THEORY,
MODELS AND ALGORITHMS TRANSLATED FROM FRENCH BY HENRY SCOTT SECOND
EDITION WITH 138 FIGURES AND 15 TABLES ^J SPRINGER CONTENTS 1.
INTRODUCTION TO SCHEDULING 5 1.1 DEFINITION 5 1.2 SOME AREAS OF
APPLICATION 6 1.2.1 PROBLEMS RELATED TO PRODUCTION 6 1.2.2 OTHER
PROBLEMS 7 1.3 SHOP ENVIRONMENTS 7 1.3.1 SCHEDULING PROBLEMS WITHOUT
ASSIGNMENT 8 1.3.2 SCHEDULING AND ASSIGNMENT PROBLEMS WITH STAGES 8
1.3.3 GENERAL SCHEDULING AND ASSIGNMENT PROBLEMS 9 1.4 CONSTRAINTS 9 1.5
OPTIMALITY CRITERIA 12 1.5.1 MINIMISATION OF A MAXIMUM FUNCTION:
"MINIMAX" CRI- TERIA 13 1.5.2 MINIMISATION OF A SUM FUNCTION: "MINISUM"
CRITERIA . 13 1.6 TYPOLOGIES AND NOTATION OF PROBLEMS 14 1.6.1
TYPOLOGIES OF PROBLEMS 14 1.6.2 NOTATION OF PROBLEMS 16 1.7 PROJECT
SCHEDULING PROBLEMS 17 1.8 SOME FUNDAMENTAL NOTIONS 18 1.9 BASIC
SCHEDULING ALGORITHMS 21 1.9.1 SCHEDULING RULES 21 1.9.2 SOME CLASSICAL
SCHEDULING ALGORITHMS 22 2. COMPLEXITY OF PROBLEMS AND ALGORITHMS 29 2.1
COMPLEXITY OF ALGORITHMS 29 2.2 COMPLEXITY OF PROBLEMS 32 2.2.1 THE
COMPLEXITY OF DECISION PROBLEMS 33 2.2.2 THE COMPLEXITY OF OPTIMISATION
PROBLEMS 38 2.2.3 THE COMPLEXITY OF COUNTING AND ENUMERATION PROBLEMS 40
2.3 APPLICATION TO SCHEDULING 48 3. MULTICRITERIA OPTIMISATION THEORY 53
3.1 MCDA AND MCDM: THE CONTEXT 53 3.1.1 MULTICRITERIA DECISION MAKING 54
X CONTENTS 3.1.2 MULTICRITERIA DECISION AM 54 3.2 PRESENTATION OF
MULTICRITERIA OPTIMISATION THEORY 55 3.3 DEFINITION OF OPTIMALITY 57 3.4
GEOMETRIC INTERPRETATION USING DOMINANCE CONES 60 3.5 CLASSES OF
RESOLUTION METHODS 62 3.6 DETERMINATION OF PARETO OPTIMA 64 3.6.1
DETERMINATION BY CONVEX COMBINATION OF CRITERIA 64 3.6.2 DETERMINATION
BY PARAMETRIC ANALYSIS 70 3.6.3 DETERMINATION BY MEANS OF THE
E-CONSTRAINT APPROACH . 72 3.6.4 USE OF THE TCHEBYCHEFF METRIC 76 3.6.5
USE OF THE WEIGHTED TCHEBYCHEFF METRIC 79 3.6.6 USE OF THE AUGMENTED
WEIGHTED TCHEBYCHEFF METRIC . 81 3.6.7 DETERMINATION BY THE
GOAL-ATTAINMENT APPROACH 86 3.6.8 OTHER METHODS FOR DETERMINING PARETO
OPTIMA 91 3.7 MULTICRITERIA LINEAR PROGRAMMING (MLP) 92 3.7.1 INITIAL
RESULTS 93 3.7.2 APPLICATION OF THE PREVIOUS RESULTS 93 3.8
MULTICRITERIA MIXED INTEGER PROGRAMMING (MMIP) 94 3.8.1 INITIAL RESULTS
94 3.8.2 APPLICATION OF THE PREVIOUS RESULTS 95 3.8.3 SOME CLASSICAL
ALGORITHMS 97 3.9 THE COMPLEXITY OF MULTICRITERIA PROBLEMS 100 3.9.1
COMPLEXITY RESULTS RELATED TO THE SOLUTIONS 100 3.9.2 COMPLEXITY RESULTS
RELATED TO OBJECTIVE FUNCTIONS 101 3.9.3 SUMMARY 106 3.10 INTERACTIVE
METHODS 107 3.11 GOAL PROGRAMMING 108 3.11.1 ARCHIMEDIAN GOAL
PROGRAMMING ILL 3.11.2 LEXICOGRAPHICAL GOAL PROGRAMMING ILL 3.11.3
INTERACTIVE GOAL PROGRAMMING ILL 3.11.4 REFERENCE GOAL PROGRAMMING 112
3.11.5 MULTICRITERIA GOAL PROGRAMMING 112 4. AN APPROACH TO
MULTICRITERIA SCHEDULING PROBLEMS 113 4.1 JUSTIFICATION OF THE STUDY 113
4.1.1 MOTIVATIONS 113 4.1.2 SOME EXAMPLES 114 4.2 PRESENTATION OF THE
APPROACH 118 4.2.1 DEFINITIONS 118 4.2.2 NOTATION OF MULTICRITERIA
SCHEDULING PROBLEMS 121 4.3 CLASSES OF RESOLUTION METHODS 122 4.4
APPLICATION OF THE PROCESS - AN EXAMPLE 123 4.5 SOME COMPLEXITY RESULTS
FOR MULTICRITERIA SCHEDULING PROBLEMS 124 CONTENTS XI 5. JUST-IN-TIME
SCHEDULING PROBLEMS 135 5.1 PRESENTATION OF JUST-IN-TIME (JIT)
SCHEDULING PROBLEMS 135 5.2 TYPOLOGY OF JIT SCHEDULING PROBLEMS 136
5.2.1 DEFINITION OF THE DUE DATES 136 5.2.2 DEFINITION OF THE JIT
CRITERIA 137 5.3 A NEW APPROACH FOR JIT SCHEDULING 139 5.3.1 MODELLING
OF PRODUCTION COSTS IN JIT SCHEDULING FOR SHOP PROBLEMS 141 5.3.2 LINKS
WITH OBJECTIVE FUNCTIONS OF CLASSIC JIT SCHEDULING 145 5.4 OPTIMAL
TIMING PROBLEMS 147 5.4.1 THE L\DI,SEQ\F E (F A ,E 13 ) PROBLEM 147
5.4.2 THE POO\PREC, FC CONVEX] ]T^ FA PROBLEM 149 5.4.3 THE L|/J
PIECEWISE LINEAR\FE(J2I FI, YJJ J J) PROBLEM . 153 5.5 POLYNOMIALLY
SOLVABLE PROBLEMS 153 5.5.1 THE L\DI = D Y,PI\FE(E,F) PROBLEM 153 5.5.2
THE LJDJ = D UNKNOWN, NMIT\F E (E,T,D) PROBLEM_. *. 155 5.5.3 THE 1 \P
T C [P I; P { } N N, D, = D NON RESTRICTIVE\F E (E, T, CCT) PROBLEM ^ *
157 5.5.4 THE P\DI = D NON RESTRICTIVE, NMIT\FE(E,T) PROBLEM . 157 5.5.5
THE P\DI = D UNKNOWN,NMIT\F E (E,T) PROBLEM * 159 5.5.6 THE P\D T = D
UNKNOWN,PI = P,NMIT\FE(E, T,D) PROBLEM ._ L . 165 5.5.7 THE R\P ITJ *
\GI,J;P ITJ ],DI = D UNKNOWN\FT(T,E~, CCT) PROBLEM 169 5.5.8 OTHER
PROBLEMS 170 5.6 AFP-HARD PROBLEMS 173 5.6.1 THE L\DI,NMIT\FI(E?,T 0 )
PROBLEM 173 5.6.2 THE F\PRMU,D I ,NMIT\FI(E U ,1^) PROBLEM 176 5.6.3
THE P\DI = D NON RESTRICTIVE, NMIT\F MAX {E , T ) PROBLEM 178 5.6.4
OTHER PROBLEMS 182 5.7 OPEN PROBLEMS 188 5.7.1 THE Q\DI = D UNKNOWN,
NMIT\F T (E,T) PROBLEM 188 5.7.2 OTHER PROBLEMS 189 6. ROBUSTNESS
CONSIDERATIONS 193 6.1 INTRODUCTION TO FLEXIBILITY AND ROBUSTNESS IN
SCHEDULING 193 6.2 APPROACHES THAT INTRODUCE SEQUENTIAL FLEXIBILITY 195
6.2.1 GROUPS OF PERMUTABLE OPERATIONS 195 6.2.2 PARTIAL ORDER BETWEEN
OPERATIONS 197 6.2.3 INTERVAL STRUCTURES 199 6.3 SINGLE MACHINE PROBLEMS
201 6.3.1 STABILITY VS MAKESPAN 201 6.3.2 ROBUST EVALUATION VS DISTANCE
TO A BASELINE SOLUTION. 202 XII CONTENTS 6.4 FLOWSHOP AND JOBSHOP
PROBLEMS*. 203 6.4.1 AVERAGE MAKESPAN OF A NEIGHBOURHOOD 203 6.4.2
SENSITIVITY OF OPERATIONS VS MAKESPAN 203 6.5 RESOURCE CONSTRAINED
PROJECT SCHEDULING PROBLEMS (RCPSP) 204 6.5.1 QUALITY IN PROJECT
SCHEDULING VS MAKESPAN 204 6.5.2 STABILITY VS MAKESPAN 205 7. SINGLE
MACHINE PROBLEMS 207 7.1 POLYNOMIALLY SOLVABLE PROBLEMS 207 7.1.1 SOME
L|DI|C, / MAX PROBLEMS 207 7.1.2 THE L\SI,PMTN,NMIT\FE(C,P MAX ) PROBLEM
215 7.1.3 THE L\ PI E [VI;P I ],D I \F E (TR NAX ,CC W ) PROBLEM 216
7.1.4 THE L\ PI G [P I ;P I },D I \F E (C,CC W ) PROBLEM 219 7.1.5 OTHER
PROBLEMS 219 7.2 TVP-HARD PROBLEMS^ 222 7.2.1 THE L\DI\T, C PROBLEM 222
7.2.2 THE L\R U PI E [P,;^] N N\FE(C MAX ,CC W ) PROBLEM 223 7.2.3 THE
\\RUPI G [P,;^] N N^TT", (XT") PROBLEM 225 7.2.4 OTHER PROBLEMS 226 7.3
OPEN PROBLEMS 230 7.3.1 THE L\DI\U,T MAX PROBLEM 230 7.3.2 OTHER
PROBLEMS 234 8. SHOP PROBLEMS 235 8.1 TWO-MACHINE FLOWSHOP PROBLEMS 235
8.1.1 THE F2\PRMU\LEX{C MAXJ P) PROBLEM 235 8.1.2 THE F2\PRMU\FT(C MAX
,C) PROBLEM 250 8.1.3 THE F2\PRMU,RI\FI{CMAX,C) PROBLEM 256 8.1.4 THE
F2\PRMU\E(C/C M AX) PROBLEM 256 8.1.5 THE F2\PRMU,D I \#(C MAX ,TR NAX )
PROBLEM 262 8.1.6 THE F2\PRMU,DI\#{C MAX ,U) PROBLEM 265 8.1.7 THE
F2\PRMU,DI\#(C MAX ,T) PROBLEM 267 8.2 M-MACHINE FLOWSHOP PROBLEMS 270
8.2.1 THE F\PRMU\LEX(C MA X,C) PROBLEM 270 8.2.2 THE F\PRMU\#(C MAX ,C)
PROBLE M 272 8.2.3 THE F\PRMU,DI\E(C MAX /T MAX ) PROBLEM 277 8.2.4 THE
F\ PIJ E [P I , J ;P IIJ },PRMU\F E (C MA X,CC W ) PROBLEM. 280 8.2.5
THE F\ PIJ = PI * |JFC;P I ],PRMU|#(C FTOAXI C'C ) PROBLEM281 8.3
JOBSHOP AND OPENSHOP PROBLEMS 284 8.3.1 JOBSHOP PROBLEMS 284 8.3.2 THE
O2\\LEX{C MAX ,C) PROBLEM 284 8.3.3 THE O3\\LEX(C MA X,C) PROBLEM 286
CONTENTS XIII 9. PARALLEL MACHINES PROBLEMS 287 9.1 PROBLEMS WITH
IDENTICAL PARALLEL MACHINES 287 9.1.1 THE P2\PMTN,DI\E(L MAX /CMAX)
PROBLEM 287 9.1.2 THE P3\PMTN,DI\ELLMAX/C M AX) PROBLEM 290 9.1.3 THE
P2\DI\LEX(T MAX , U) PROBLEM 293 9.1.4 THE P\DI\#(C, F/)_PROBLEM 295
9.1.5 THE P\PMTN\LEX{C, C MAX ) PROBLEM 296 9.2 PROBLEMS WITH UNIFORM
PARALLEL MACHINES 297 9.2.1 THE Q\PI = P\E(F MA X/9MAX) PROBLEM 297
9.2.2 THE Q\P T = P\E(J[/F MAX ) PROBLEM 302 9.2.3 THE Q\PMTN\E(C/C MAX
) PROBLEM 303 9.3 PROBLEMS WITH UNRELATED PARALLEL MACHINES 310 9.3.1
THE R\P ITJ * [P I , J ,P IJ ]\FE(C,CC W ) PROBLEM 310 9.3.2 THE
R\PMTN\E(FE{IMAX,~M)/C MA X) PROBLEM 311 10. SHOP PROBLEMS WITH
ASSIGNMENT 315 10.1 A HYBRID FLOWSHOP PROBLEM WITH THREE STAGES 315 10.2
HYBRID FLOWSHOP PROBLEMS WITH K STAGES 316 10.2.1 THE HFK,(PM^) KE==1
\\FI{C MAX ,C) PROBLEM 316 10.2.2 THE HFK, (PM^)^\\E(C/C MA X) PROBLEM
318 10.2.3 THE HFK, {PMW{T)) KTSNL \R?\4 K) \ MAX /T MTUC ) PROB- LEM
318 A. NOTATIONS 323 A.I NOTATION OF DATA AND VARIABLES 323 A.2 USUAL
NOTATION OF SINGLE CRITERION SCHEDULING PROBLEMS 323 B. SYNTHESIS ON
MULTICRITERIA SCHEDULING PROBLEMS 329 B.I SINGLE MACHINE JUST-IN-TIME
SCHEDULING PROBLEMS 329 B.2 SINGLE MACHINE PROBLEMS 330 B.3 SHOP
PROBLEMS 333 B.4 PARALLEL MACHINES SCHEDULING PROBLEMS 333 B.5 SHOP
SCHEDULING PROBLEMS WITH ASSIGNMENT 334 REFERENCES 335 INDEX 357 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | T'kindt, Vincent Billaut, Jean-Charles |
author_facet | T'kindt, Vincent Billaut, Jean-Charles |
author_role | aut aut |
author_sort | T'kindt, Vincent |
author_variant | v t vt j c b jcb |
building | Verbundindex |
bvnumber | BV021693901 |
callnumber-first | T - Technology |
callnumber-label | TS157 |
callnumber-raw | TS157.5 |
callnumber-search | TS157.5 |
callnumber-sort | TS 3157.5 |
callnumber-subject | TS - Manufactures |
classification_rvk | QH 234 |
ctrlnum | (OCoLC)63127401 (DE-599)BVBBV021693901 |
dewey-full | 658.53 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 658 - General management |
dewey-raw | 658.53 |
dewey-search | 658.53 |
dewey-sort | 3658.53 |
dewey-tens | 650 - Management and auxiliary services |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02326nam a2200589 c 4500</leader><controlfield tag="001">BV021693901</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061017 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060811s2006 gw d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N44,0488</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A25,0920</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">976633442</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540282303</subfield><subfield code="c">Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.)</subfield><subfield code="9">978-3-540-28230-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540282300</subfield><subfield code="c">Pp. : EUR 96.25 (freier Pr.), sfr 152.50 (freier Pr.)</subfield><subfield code="9">3-540-28230-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540282303</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11538080</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)63127401</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021693901</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TS157.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">658.53</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 234</subfield><subfield code="0">(DE-625)141549:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">T'kindt, Vincent</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multicriteria scheduling</subfield><subfield code="b">theory, models and algorithms</subfield><subfield code="c">Vincent T'kindt ; Jean-Charles Billaut. Transl. from French by Henry Scott</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 359 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 335 - 356</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Billaut, Jean-Charles</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Décision multicritère</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordonnancement (Gestion)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Wachttijdproblemen</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multiple criteria decision making</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Production scheduling</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reihenfolgeproblem</subfield><subfield code="0">(DE-588)4242167-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Reihenfolgeproblem</subfield><subfield code="0">(DE-588)4242167-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Billaut, Jean-Charles</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2687114&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014907928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014907928</subfield></datafield></record></collection> |
id | DE-604.BV021693901 |
illustrated | Illustrated |
index_date | 2024-07-02T15:15:20Z |
indexdate | 2024-07-09T20:41:50Z |
institution | BVB |
isbn | 9783540282303 3540282300 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014907928 |
oclc_num | 63127401 |
open_access_boolean | |
owner | DE-703 DE-11 |
owner_facet | DE-703 DE-11 |
physical | XVI, 359 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
spelling | T'kindt, Vincent Verfasser aut Multicriteria scheduling theory, models and algorithms Vincent T'kindt ; Jean-Charles Billaut. Transl. from French by Henry Scott 2. ed. Berlin [u.a.] Springer 2006 XVI, 359 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. 335 - 356 Billaut, Jean-Charles Décision multicritère Ordonnancement (Gestion) Wachttijdproblemen gtt Multiple criteria decision making Production scheduling Mehrkriterielle Optimierung (DE-588)4610682-0 gnd rswk-swf Reihenfolgeproblem (DE-588)4242167-6 gnd rswk-swf Reihenfolgeproblem (DE-588)4242167-6 s Mehrkriterielle Optimierung (DE-588)4610682-0 s DE-604 Billaut, Jean-Charles Verfasser aut text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2687114&prov=M&dok_var=1&dok_ext=htm Inhaltstext HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014907928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | T'kindt, Vincent Billaut, Jean-Charles Multicriteria scheduling theory, models and algorithms Billaut, Jean-Charles Décision multicritère Ordonnancement (Gestion) Wachttijdproblemen gtt Multiple criteria decision making Production scheduling Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Reihenfolgeproblem (DE-588)4242167-6 gnd |
subject_GND | (DE-588)4610682-0 (DE-588)4242167-6 |
title | Multicriteria scheduling theory, models and algorithms |
title_auth | Multicriteria scheduling theory, models and algorithms |
title_exact_search | Multicriteria scheduling theory, models and algorithms |
title_exact_search_txtP | Multicriteria scheduling theory, models and algorithms |
title_full | Multicriteria scheduling theory, models and algorithms Vincent T'kindt ; Jean-Charles Billaut. Transl. from French by Henry Scott |
title_fullStr | Multicriteria scheduling theory, models and algorithms Vincent T'kindt ; Jean-Charles Billaut. Transl. from French by Henry Scott |
title_full_unstemmed | Multicriteria scheduling theory, models and algorithms Vincent T'kindt ; Jean-Charles Billaut. Transl. from French by Henry Scott |
title_short | Multicriteria scheduling |
title_sort | multicriteria scheduling theory models and algorithms |
title_sub | theory, models and algorithms |
topic | Billaut, Jean-Charles Décision multicritère Ordonnancement (Gestion) Wachttijdproblemen gtt Multiple criteria decision making Production scheduling Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Reihenfolgeproblem (DE-588)4242167-6 gnd |
topic_facet | Billaut, Jean-Charles Décision multicritère Ordonnancement (Gestion) Wachttijdproblemen Multiple criteria decision making Production scheduling Mehrkriterielle Optimierung Reihenfolgeproblem |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2687114&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014907928&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT tkindtvincent multicriteriaschedulingtheorymodelsandalgorithms AT billautjeancharles multicriteriaschedulingtheorymodelsandalgorithms |