Making transcendence transparent: an intuitive approach to classical transcendental number theory
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2004
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | VIII, 263 S. graph. Darst. |
ISBN: | 0387214445 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021568975 | ||
003 | DE-604 | ||
005 | 20061020 | ||
007 | t | ||
008 | 060504s2004 d||| |||| 00||| eng d | ||
015 | |a 04,N29,0675 |2 dnb | ||
016 | 7 | |a 971595070 |2 DE-101 | |
020 | |a 0387214445 |9 0-387-21444-5 | ||
024 | 3 | |a 9780387214443 | |
035 | |a (OCoLC)265562428 | ||
035 | |a (DE-599)BVBBV021568975 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-384 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA247.5 | |
082 | 0 | |a 512.7/3 |2 22 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Burger, Edward B. |d 1963- |e Verfasser |0 (DE-588)129091081 |4 aut | |
245 | 1 | 0 | |a Making transcendence transparent |b an intuitive approach to classical transcendental number theory |c Edward B. Burger ; Robert Tubbs |
264 | 1 | |a New York, NY |b Springer |c 2004 | |
300 | |a VIII, 263 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Transzendente Zahl |0 (DE-588)4225034-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Transzendente Zahl |0 (DE-588)4225034-1 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Tubbs, Robert |e Verfasser |4 aut | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014784815&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014784815 |
Datensatz im Suchindex
_version_ | 1804135334310576128 |
---|---|
adam_text | ENDENCE INTUITIVE APPROAC TRANSCENDENTAL NUMBER TK K TO CLADDICAL EORU A
EDWARD B. BURGER ROBERT TUBBS ^J SPRINGER CONTENTS PREFACE: THE JOURNEY
AHEAD IX NUMBER 0. 1.4142135623730950488016887242... A PREQUEL TO
TRANSCENDENCE: THE NATURE OF NUMBERS AND THE IRRATIONALITY OF /2 1 0.1
A NATURAL BEGINNING 1 0.2 THE PROBLEM OF ADDITION 1 0.3 THE PROBLEM OF
MULTIPLICATION 2 0.4 A SEARCH FOR MISSING NUMBERS 4 0.5 IS I A NUMBER? 5
0.6 TRANSCENDING THE ALGEBRAIC NUMBERS 6 POSTSCRIPT: TOOLS OF THE
TRANSCENDENCE TRADE 1 NUMBER 1. 0.1100010000000000000000010000 ...
INCREDIBLE NUMBERS INCREDIBLY CLOSE TO MODEST RATIONALS: LIOUVILLE S
THEOREM AND THE TRANSCENDENCE OF X^L 10 1.1 TURNING A MOUNTAIN OF
TRANSCENDENCE INTO A MOLEHILL 9 1.2 ONE SMALL RATIONAL FOR LIOUVILLE,
ONE GIANT STEP FOR TRANSCENDENCE 10 1.3 OUR FIRST TRANSCENDENTAL NUMBER
11 1.4 THE PROOF OF LIOUVILLE S THEOREM 13 ALGEBRAIC EXCURSION:
IRREDUCIBLE POLYNOMIALS EVALUATED AT RATIONAL VALUES 14 1.5 LIOUVILLE
NUMBERS 18 1.6 THE NUMBER 0.12345678910111213141516... 20 1.7 ROTH S
THEOREM: THE ULTIMATE LIOUVILLE RESULT 24 1.8 LIFE AFTER LIOUVILLE 25 VI
CONTENTS NUMBER 2. 2.7182818284590452353602874713... THE POWERFUL POWER
SERIES FOR E: POLYNOMIAL VANISHING AND THE TRANSCENDENCE OF E 27 2.1
FOURIER S PROOF OF EULER S SLICK RESULT 27 2.2 A FIRST ATTEMPT AT A
PROOF 29 2.3 THE CLASSIC VANISHING POLYNOMIAL TRICK 32 2.4 THE FIRST
PART OF THE PROOF OF THEOREM 2.2*THE ELUSIVE ESTIMATE 34 2.5 THE
DRAMATIC CONCLUSION OF THE PROOF THEOREM 2.2*ARITHMETIC CONQUERS ALL 36
2.6 THE TRANSCENDENCE OF E 37 2.7 FORESHADOWING ALGEBRAIC EXPONENTS*THE
IRRATIONALITY ND;R 40 NUMBER 3. 4.1132503787829275171735818151...
CONJUGATION AND SYMMETRY AS A MEANS TOWARDS TRANSCENDENCE: THE
LINDEMANN-WEIERSTRASS THEOREM AND THE TRANSCENDENCE OF E^ 2 43 3.1
ALGEBRAIC EXPONENTS THROUGH THE LOOKING GLASS*A WONDERLAND OF
TRANSCENDENCE 43 3.2 HEADING TOWARDS HERMITE*A PARTIAL RESULT CASTS SOME
FORESHADOWING 45 3.3 A SURPRISINGLY NON-SPECIAL, SPECIAL CASE OF THE
LINDEMANN-WEIERSTRASS THEOREM 52 ALGEBRAIC EXCURSION: SYMMETRIC
FUNCTIONS AND CONJUGATES 52 3.4 A CONJUGATE APPETIZER*THE DELICATE BUT
SURPRISINGLY NON-SPECIAL, SPECIAL CASE 58 3.5 THE MAIN DISH*SERVING UP A
SPAGHETTI OF SYMMETRY 62 3.6 ALGEBRAIC INDEPENDENCE*FREEING OURSELVES OF
UNHEALTHY DEPENDENCIES 70 NUMBER 4. 23.140692632779269005729086367...
THE ANALYTIC ADVENTURES OF E Z : SIEGEL S LEMMA AND THE TRANSCENDENCE OF
E 71 77 4.1 GIVING E Z A COMPLEX BY TAKING AWAY ITS POWER SERIES 77 4.2
THROWING IN OUR TWO BITS AS A WARM-UP TO THE IRRATIONALITY OF E N 78 4.3
OUR FIRST ILL-FATED ATTEMPT AT A PROOF*A STAR-CROSSED RELATIONSHIP
BETWEEN THE ORDER OF VANISHING AND THE DEGREE 83 4.4 POLYNOMIALS IN TWO
VARIABLES AND THE POWER OF I 87 4.5 THE EVER-POPULAR POLYNOMIAL
CONSTRUCTION 88 ALGEBRAIC EXCURSION: SOLVING A SYSTEM OF LINEAR
EQUATIONS IN INTEGERS 92 4.6 AT LONG LAST, A PROOF THAT E 71 IS
IRRATIONAL 96 CONTENTS VII 4.7 A FIRST GLANCE AT THE TRANSCENDENCE OF E
N *SOME ALGEBRAIC OBSTACLES 101 ALGEBRAIC EXCURSION: RE-EXPRESSING THE
POWERS OF AN ALGEBRAIC NUMBER 102 4.8 THE TRANSCENDENCE OF E N 104
NUMBER 5. 2.6651441426902251886502972498... DEBUNKING CONSPIRACY
THEORIES FOR INDEPENDENT FUNCTIONS: THE GELFOND-SCHNEIDER THEOREM AND
THE TRANSCENDENCE OF 2^ 113 5.1 ALGEBRAIC EXPONENTS AND BASES*MOVING
BEYOND E BY FOCUSING ONE 113 5.2 SOME SKETCHY THOUGHTS ON THE PROOF OF
THEOREM 5.2 115 5.3 DISTILLING THREE ALGEBRAIC NUMBERS DOWN TO ONE
PRIMITIVE ELEMENT 118 ALGEBRAIC EXCURSION: NUMBER FIELDS AND PRIMITIVE
ELEMENTS 119 5.4 BEATING THE (LINEAR) SYSTEM*CONSTRUCTING A POLYNOMIAL
VIA LINEAR EQUATIONS 122 5.5 THE PROOF OF A REAL SPECIAL CASE 127 5.6
MOVING OUT TO THE VAST COMPLEX PLANE 133 5.7 WIDENING OUR PERSPECTIVE
AND EXTENDING OUR RESULTS 136 5.8 ALGEBRAIC VALUES OF ALGEBRAICALLY
INDEPENDENT FUNCTIONS 140 NUMBER 6. 2.718281828459... + 0.11000100000...
CLASS DISTINCTIONS AMONG COMPLEX NUMBERS: MAHLER S CLASSIFICATION AND
THE TRANSCENDENCE OF E+ J2^LI 10~ N! 147 6.1 THE POWER OF MAKING
POLYNOMIALS NEARLY VANISH 147 6.2 A RATIONAL APPROACH TO IRRATIONALITY
149 6.3 AN ALGEBRAIC APPROACH TO TRANSCENDENCE 152 6.4 DETECTING SUBTLE
DISTINCTIONS AMONG THE TRANSCENDENT 158 6.5 A CRITICAL CONSEQUENCE OF
THE CLASSIFICATION 163 6.6 WHICH IS THE MOST POPULAR CLASS? GRANTING
MOST FAVORED NUMBER STATUS 167 6.7 THE PROOFS OF LEMMAS 6.14 AND 6.15
174 ALGEBRAIC EXCURSION: ALGEBRAIC APPROXIMATIONS AND POLYNOMIALS WITH
SMALL MODULI 175 6.8 DECLASSIFIED QUANTITIES: E, N, AND THE ELUSIVE
T-NUMBERS 181 NUMBER 7. 7.4162987092054876737354013887... EXTENDING OUR
REACH THROUGH PERIODIC FUNCTIONS: THE WEIERSTRASS P-FUNCTION AND THE
TRANSCENDENCE OF R(1 ^ 183 7.1 TRANSCENDING OUR BELOVED E Z AND
CHALLENGING ITS CENTRALITY 183 7.2 A CIRCLE OF IDEAS BEHIND ELLIPTIC
CURVES 184 7.3 ENTIRE PERIODIC FUNCTIONS 191 7.4 PINNING DOWN P (Z) AND
UNCOVERING A GROUP HOMOMORPHISM 194 I CONTENTS 7.5 A NEW TRANSCENDENCE
RESULT 200 7.6 EXPLORING THE GAMMA FUNCTION AND INFINITE PRODUCTS 203
7.7 THE PROOF OF THEOREM 7.3 208 7.8 THE TRANSCENDENCE OF GAMMA VALUES
AND THE SCHNEIDER-LANG THEOREM REVISITED 216 ALGEBRAIC EXCURSION: AN
INTRODUCTION TO THE THEORY OF COMPLEX MULTIPLICATION 21 6 O. 1 + JTZF (T
4 *T)(T 2 *T) 2 (T%*T)(T 4 *T) 2 (T 2 *T) 4 TRANSCENDING NUMBERS
AND DISCOVERING A MORE FORMAL E: FUNCTION FIELDS AND THE TRANSCENDENCE
OF EC (1) 223 8.1 MOVING BEYOND NUMBERS 223 8.2 AN INTIMATE
INTERLUDE*HOW TO GET CLOSE IN FUNCTION FIELDS 225 8.3 A FORMAL SEARCH
FOR E 228 8.4 FINDING THE FACTORIAL IN F Q [T] 229 ALGEBRAIC EXCURSION:
IRREDUCIBLE POLYNOMIALS OVER F Q 232 8.5 THE TRANSCENDENCE OF EC(L) 234
8.6 A REPEATED LOOK AT ECIZ) THROUGH PERIODICITY 240 8.7 THE
TRANSCENDENCE OF TZQ 249 8.8 REVISITING P(Z) AND MOVING BEYOND CARLITZ
250 APPENDIX: SELECTED HIGHLIGHTS FROM COMPLEX ANALYSIS 255 A. 1
ANALYTIC AND ENTIRE FUNCTIONS 255 A.2 CONTOUR INTEGRALS 256 A.3 CAUCHY S
INTEGRAL FORMULA 256 A.4 THE MAXIMUM MODULUS PRINCIPLE 257
ACKNOWLEDGMENTS 259 INDEX 261
|
adam_txt |
ENDENCE INTUITIVE APPROAC TRANSCENDENTAL NUMBER TK K TO CLADDICAL EORU A
EDWARD B. BURGER ROBERT TUBBS ^J SPRINGER CONTENTS PREFACE: THE JOURNEY
AHEAD IX NUMBER 0. 1.4142135623730950488016887242. A PREQUEL TO
TRANSCENDENCE: THE NATURE OF NUMBERS AND THE IRRATIONALITY OF \/2 1 0.1
A NATURAL BEGINNING 1 0.2 THE PROBLEM OF ADDITION 1 0.3 THE PROBLEM OF
MULTIPLICATION 2 0.4 A SEARCH FOR MISSING NUMBERS 4 0.5 IS I A NUMBER? 5
0.6 TRANSCENDING THE ALGEBRAIC NUMBERS 6 POSTSCRIPT: TOOLS OF THE
TRANSCENDENCE TRADE 1 NUMBER 1. 0.1100010000000000000000010000 .
INCREDIBLE NUMBERS INCREDIBLY CLOSE TO MODEST RATIONALS: LIOUVILLE'S
THEOREM AND THE TRANSCENDENCE OF X^L 10" 1.1 TURNING A MOUNTAIN OF
TRANSCENDENCE INTO A MOLEHILL 9 1.2 ONE SMALL RATIONAL FOR LIOUVILLE,
ONE GIANT STEP FOR TRANSCENDENCE 10 1.3 OUR FIRST TRANSCENDENTAL NUMBER
11 1.4 THE PROOF OF LIOUVILLE'S THEOREM 13 ALGEBRAIC EXCURSION:
IRREDUCIBLE POLYNOMIALS EVALUATED AT RATIONAL VALUES 14 1.5 LIOUVILLE
NUMBERS 18 1.6 THE NUMBER 0.12345678910111213141516. 20 1.7 ROTH'S
THEOREM: THE ULTIMATE LIOUVILLE RESULT 24 1.8 LIFE AFTER LIOUVILLE 25 VI
CONTENTS NUMBER 2. 2.7182818284590452353602874713. THE POWERFUL POWER
SERIES FOR E: POLYNOMIAL VANISHING AND THE TRANSCENDENCE OF E 27 2.1
FOURIER'S PROOF OF EULER'S SLICK RESULT 27 2.2 A FIRST ATTEMPT AT A
PROOF 29 2.3 THE CLASSIC VANISHING POLYNOMIAL TRICK 32 2.4 THE FIRST
PART OF THE PROOF OF THEOREM 2.2*THE ELUSIVE ESTIMATE 34 2.5 THE
DRAMATIC CONCLUSION OF THE PROOF THEOREM 2.2*ARITHMETIC CONQUERS ALL 36
2.6 THE TRANSCENDENCE OF E 37 2.7 FORESHADOWING ALGEBRAIC EXPONENTS*THE
IRRATIONALITY ND;R 40 NUMBER 3. 4.1132503787829275171735818151.
CONJUGATION AND SYMMETRY AS A MEANS TOWARDS TRANSCENDENCE: THE
LINDEMANN-WEIERSTRASS THEOREM AND THE TRANSCENDENCE OF E^ 2 43 3.1
ALGEBRAIC EXPONENTS THROUGH THE LOOKING GLASS*A WONDERLAND OF
TRANSCENDENCE 43 3.2 HEADING TOWARDS HERMITE*A PARTIAL RESULT CASTS SOME
FORESHADOWING 45 3.3 A SURPRISINGLY NON-SPECIAL, SPECIAL CASE OF THE
LINDEMANN-WEIERSTRASS THEOREM 52 ALGEBRAIC EXCURSION: SYMMETRIC
FUNCTIONS AND CONJUGATES 52 3.4 A CONJUGATE APPETIZER*THE DELICATE BUT
SURPRISINGLY NON-SPECIAL, SPECIAL CASE 58 3.5 THE MAIN DISH*SERVING UP A
SPAGHETTI OF SYMMETRY 62 3.6 ALGEBRAIC INDEPENDENCE*FREEING OURSELVES OF
UNHEALTHY DEPENDENCIES 70 NUMBER 4. 23.140692632779269005729086367.
THE ANALYTIC ADVENTURES OF E Z : SIEGEL'S LEMMA AND THE TRANSCENDENCE OF
E 71 77 4.1 GIVING E Z A COMPLEX BY TAKING AWAY ITS POWER SERIES 77 4.2
THROWING IN OUR TWO BITS AS A WARM-UP TO THE IRRATIONALITY OF E N 78 4.3
OUR FIRST ILL-FATED ATTEMPT AT A PROOF*A STAR-CROSSED RELATIONSHIP
BETWEEN THE ORDER OF VANISHING AND THE DEGREE 83 4.4 POLYNOMIALS IN TWO
VARIABLES AND THE POWER OF I 87 4.5 THE EVER-POPULAR POLYNOMIAL
CONSTRUCTION 88 ALGEBRAIC EXCURSION: SOLVING A SYSTEM OF LINEAR
EQUATIONS IN INTEGERS 92 4.6 AT LONG LAST, A PROOF THAT E 71 IS
IRRATIONAL 96 CONTENTS VII 4.7 A FIRST GLANCE AT THE TRANSCENDENCE OF E
N *SOME ALGEBRAIC OBSTACLES 101 ALGEBRAIC EXCURSION: RE-EXPRESSING THE
POWERS OF AN ALGEBRAIC NUMBER 102 4.8 THE TRANSCENDENCE OF E N 104
NUMBER 5. 2.6651441426902251886502972498. DEBUNKING CONSPIRACY
THEORIES FOR INDEPENDENT FUNCTIONS: THE GELFOND-SCHNEIDER THEOREM AND
THE TRANSCENDENCE OF 2^ 113 5.1 ALGEBRAIC EXPONENTS AND BASES*MOVING
BEYOND E BY FOCUSING ONE 113 5.2 SOME SKETCHY THOUGHTS ON THE PROOF OF
THEOREM 5.2 115 5.3 DISTILLING THREE ALGEBRAIC NUMBERS DOWN TO ONE
PRIMITIVE ELEMENT 118 ALGEBRAIC EXCURSION: NUMBER FIELDS AND PRIMITIVE
ELEMENTS 119 5.4 BEATING THE (LINEAR) SYSTEM*CONSTRUCTING A POLYNOMIAL
VIA LINEAR EQUATIONS 122 5.5 THE PROOF OF A REAL SPECIAL CASE 127 5.6
MOVING OUT TO THE VAST COMPLEX PLANE 133 5.7 WIDENING OUR PERSPECTIVE
AND EXTENDING OUR RESULTS 136 5.8 ALGEBRAIC VALUES OF ALGEBRAICALLY
INDEPENDENT FUNCTIONS 140 NUMBER 6. 2.718281828459. + 0.11000100000.
CLASS DISTINCTIONS AMONG COMPLEX NUMBERS: MAHLER'S CLASSIFICATION AND
THE TRANSCENDENCE OF E+ J2^LI 10~ N! 147 6.1 THE POWER OF MAKING
POLYNOMIALS NEARLY VANISH 147 6.2 A RATIONAL APPROACH TO IRRATIONALITY
149 6.3 AN ALGEBRAIC APPROACH TO TRANSCENDENCE 152 6.4 DETECTING SUBTLE
DISTINCTIONS AMONG THE TRANSCENDENT 158 6.5 A CRITICAL CONSEQUENCE OF
THE CLASSIFICATION 163 6.6 WHICH IS THE MOST POPULAR CLASS? GRANTING
"MOST FAVORED NUMBER STATUS" 167 6.7 THE PROOFS OF LEMMAS 6.14 AND 6.15
174 ALGEBRAIC EXCURSION: ALGEBRAIC APPROXIMATIONS AND POLYNOMIALS WITH
SMALL MODULI 175 6.8 DECLASSIFIED QUANTITIES: E, N, AND THE ELUSIVE
T-NUMBERS 181 NUMBER 7. 7.4162987092054876737354013887. EXTENDING OUR
REACH THROUGH PERIODIC FUNCTIONS: THE WEIERSTRASS P-FUNCTION AND THE
TRANSCENDENCE OF R(1 ^ 183 7.1 TRANSCENDING OUR BELOVED E Z AND
CHALLENGING ITS CENTRALITY 183 7.2 A CIRCLE OF IDEAS BEHIND ELLIPTIC
CURVES 184 7.3 ENTIRE PERIODIC FUNCTIONS 191 7.4 PINNING DOWN P (Z) AND
UNCOVERING A GROUP HOMOMORPHISM 194 I CONTENTS 7.5 A NEW TRANSCENDENCE
RESULT 200 7.6 EXPLORING THE GAMMA FUNCTION AND INFINITE PRODUCTS 203
7.7 THE PROOF OF THEOREM 7.3 208 7.8 THE TRANSCENDENCE OF GAMMA VALUES
AND THE SCHNEIDER-LANG THEOREM REVISITED 216 ALGEBRAIC EXCURSION: AN
INTRODUCTION TO THE THEORY OF COMPLEX MULTIPLICATION 21 6 O. 1 + JTZF (T
4 *T)(T 2 *T) 2 (T%*T)(T 4 *T) 2 (T 2 *T) 4 ' ' ' TRANSCENDING NUMBERS
AND DISCOVERING A MORE FORMAL E: FUNCTION FIELDS AND THE TRANSCENDENCE
OF EC (1) 223 8.1 MOVING BEYOND NUMBERS 223 8.2 AN INTIMATE
INTERLUDE*HOW TO GET CLOSE IN FUNCTION FIELDS 225 8.3 A FORMAL SEARCH
FOR E 228 8.4 FINDING THE FACTORIAL IN F Q [T] 229 ALGEBRAIC EXCURSION:
IRREDUCIBLE POLYNOMIALS OVER F Q 232 8.5 THE TRANSCENDENCE OF EC(L) 234
8.6 A REPEATED LOOK AT ECIZ) THROUGH PERIODICITY 240 8.7 THE
TRANSCENDENCE OF TZQ 249 8.8 REVISITING P(Z) AND MOVING BEYOND CARLITZ
250 APPENDIX: SELECTED HIGHLIGHTS FROM COMPLEX ANALYSIS 255 A. 1
ANALYTIC AND ENTIRE FUNCTIONS 255 A.2 CONTOUR INTEGRALS 256 A.3 CAUCHY'S
INTEGRAL FORMULA 256 A.4 THE MAXIMUM MODULUS PRINCIPLE 257
ACKNOWLEDGMENTS 259 INDEX 261 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Burger, Edward B. 1963- Tubbs, Robert |
author_GND | (DE-588)129091081 |
author_facet | Burger, Edward B. 1963- Tubbs, Robert |
author_role | aut aut |
author_sort | Burger, Edward B. 1963- |
author_variant | e b b eb ebb r t rt |
building | Verbundindex |
bvnumber | BV021568975 |
callnumber-first | Q - Science |
callnumber-label | QA247 |
callnumber-raw | QA247.5 |
callnumber-search | QA247.5 |
callnumber-sort | QA 3247.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)265562428 (DE-599)BVBBV021568975 |
dewey-full | 512.7/3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/3 |
dewey-search | 512.7/3 |
dewey-sort | 3512.7 13 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01646nam a2200433 c 4500</leader><controlfield tag="001">BV021568975</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20061020 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060504s2004 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N29,0675</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">971595070</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387214445</subfield><subfield code="9">0-387-21444-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387214443</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)265562428</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021568975</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA247.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burger, Edward B.</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)129091081</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Making transcendence transparent</subfield><subfield code="b">an intuitive approach to classical transcendental number theory</subfield><subfield code="c">Edward B. Burger ; Robert Tubbs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">VIII, 263 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transzendente Zahl</subfield><subfield code="0">(DE-588)4225034-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Transzendente Zahl</subfield><subfield code="0">(DE-588)4225034-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tubbs, Robert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014784815&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014784815</subfield></datafield></record></collection> |
id | DE-604.BV021568975 |
illustrated | Illustrated |
index_date | 2024-07-02T14:37:40Z |
indexdate | 2024-07-09T20:38:51Z |
institution | BVB |
isbn | 0387214445 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014784815 |
oclc_num | 265562428 |
open_access_boolean | |
owner | DE-20 DE-384 DE-11 DE-188 |
owner_facet | DE-20 DE-384 DE-11 DE-188 |
physical | VIII, 263 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
spelling | Burger, Edward B. 1963- Verfasser (DE-588)129091081 aut Making transcendence transparent an intuitive approach to classical transcendental number theory Edward B. Burger ; Robert Tubbs New York, NY Springer 2004 VIII, 263 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Transzendente Zahl (DE-588)4225034-1 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 s DE-604 Transzendente Zahl (DE-588)4225034-1 s Tubbs, Robert Verfasser aut HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014784815&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Burger, Edward B. 1963- Tubbs, Robert Making transcendence transparent an intuitive approach to classical transcendental number theory Transzendente Zahl (DE-588)4225034-1 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4225034-1 (DE-588)4067277-3 |
title | Making transcendence transparent an intuitive approach to classical transcendental number theory |
title_auth | Making transcendence transparent an intuitive approach to classical transcendental number theory |
title_exact_search | Making transcendence transparent an intuitive approach to classical transcendental number theory |
title_exact_search_txtP | Making transcendence transparent an intuitive approach to classical transcendental number theory |
title_full | Making transcendence transparent an intuitive approach to classical transcendental number theory Edward B. Burger ; Robert Tubbs |
title_fullStr | Making transcendence transparent an intuitive approach to classical transcendental number theory Edward B. Burger ; Robert Tubbs |
title_full_unstemmed | Making transcendence transparent an intuitive approach to classical transcendental number theory Edward B. Burger ; Robert Tubbs |
title_short | Making transcendence transparent |
title_sort | making transcendence transparent an intuitive approach to classical transcendental number theory |
title_sub | an intuitive approach to classical transcendental number theory |
topic | Transzendente Zahl (DE-588)4225034-1 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Transzendente Zahl Zahlentheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014784815&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT burgeredwardb makingtranscendencetransparentanintuitiveapproachtoclassicaltranscendentalnumbertheory AT tubbsrobert makingtranscendencetransparentanintuitiveapproachtoclassicaltranscendentalnumbertheory |