Self-organized nanoscale materials:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York
Springer
2006
|
Schriftenreihe: | Nanostructure science and technology
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XV, 317 S. 200 schw.-w. Ill., 112 schw.-w. Fotos, 88 schw.-w. graph. Darst. |
ISBN: | 038727975X 9780387279756 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV021327622 | ||
003 | DE-604 | ||
005 | 20060821 | ||
007 | t | ||
008 | 060208s2006 gw ado| |||| 00||| eng d | ||
015 | |a 05,N43,0461 |2 dnb | ||
016 | 7 | |a 976544873 |2 DE-101 | |
020 | |a 038727975X |c Gb. : ca. EUR 80.20 (freier Pr.), ca. sfr 127.00 (freier Pr.) |9 0-387-27975-X | ||
020 | |a 9780387279756 |9 978-0-387-27975-6 | ||
024 | 3 | |a 9780387279756 | |
028 | 5 | 2 | |a 11498278 |
035 | |a (OCoLC)255038099 | ||
035 | |a (DE-599)BVBBV021327622 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-19 |a DE-20 |a DE-11 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 620.5 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a CHE 380f |2 stub | ||
084 | |a 530 |2 sdnb | ||
084 | |a WER 035f |2 stub | ||
245 | 1 | 0 | |a Self-organized nanoscale materials |c Motonari Adachi ... (Eds.) |
264 | 1 | |a New York |b Springer |c 2006 | |
300 | |a XV, 317 S. |b 200 schw.-w. Ill., 112 schw.-w. Fotos, 88 schw.-w. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Nanostructure science and technology | |
650 | 4 | |a Nanostructured materials | |
650 | 4 | |a Self-organizing systems | |
650 | 0 | 7 | |a Aggregat |g Chemie |0 (DE-588)4333754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostruktur |0 (DE-588)4204530-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Selbstorganisation |0 (DE-588)4126830-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostruktur |0 (DE-588)4204530-7 |D s |
689 | 0 | 1 | |a Selbstorganisation |0 (DE-588)4126830-1 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanostruktur |0 (DE-588)4204530-7 |D s |
689 | 1 | 1 | |a Aggregat |g Chemie |0 (DE-588)4333754-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Adachi, Motonari |e Sonstige |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2684584&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014647944&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-014647944 |
Datensatz im Suchindex
_version_ | 1804135139349889024 |
---|---|
adam_text | Contents
Preface v
1 Self Assembled Si i _* Gex Dots and Islands 1
Jean Marc Baribeau, Nelson L. Rowell, and David J. Lockwood
1.1 Introduction 1
1.2 Si!_xGev IslandGrowth 2
1.2.1 Growth Modes in Heteroepitaxy 2
1.2.2 Si i x Gtx Island Growth and Shape Evolution 4
1.2.3 Sii_jGev Island Composition and Strain Distribution 7
1.3 Stacked Sii ^Ge^ Islands 8
1.3.1 Development of Morphological Instabilities in
Heteroepitaxy 9
1.3.2 Synthesis, Structure, and Vertical Correlation 9
1.3.3 Vibrational Properties 16
1.3.4 Optical Properties 25
1.4 Engineering of Sii_^Gev Islands 41
1.4.1 Influence of Surface Morphology 42
1.4.2 Influence of Adsorbed Species 44
1.5 Applications of Sii_.rGeA Islands and Dots 46
1.5.1 Photodetectors 46
1.5.2 Other Applications 50
1.6 Summary and Future Prospects 51
References 52
2 Synthesis of Titania Nanocrystals: Application for Dye Sensitized
Solar Cells 71
Motonari Adachi, Yusuke Murata, Fumin Wang, and Jinting Jiu
2.1 Formation of Titania Nanocrystals by
Surfactant Assisted Methods 71
2.1.1 Introduction: How to Control Morphology
and Functionalize Ceramic Materials 71
xi
xii Contents
2.1.2 Formation of Network Structure of Single Crystalline
TiO2 Nanowires by the
Oriented Attachment Mechanism 73
2.1.3 Morphological Control of Anatase Nanocrystals Using
Dodecanediamine as a Surfactant 79
2.2 Application of T1O2 Network of Single Crystalline Nanowires
for Dye Sensitized Solar Cells 87
2.2.1 Introduction 87
2.2.2 How to Make the Dye Sensitized Solar Cells 88
2.2.3 Characterization of the Solar Cells Made of Network of
Single Crystalline Anatase Exposing Mainly
the {101} Plane 89
2.3 Summary 94
References 95
3 Soft Synthesis of Inorganic Nanorods, Nanowires,
and Nanotubes 101
Shu Hong Yu and Yi Tai Qian
3.1 Introduction 101
3.2 An Overview: Emerging Synthetic Routes for the Synthesis of
Low Dimensional Nanocrystals 102
3.2.1 Hard Approaches 102
3.2.2 Soft Approaches 103
3.3 Soft Synthesis of Low Dimensional Nanocrystals 109
3.3.1 Hydrothermal/Solvothermal Processes 109
3.3.2 Synthesis of Semiconductor Nanorods/Nanowires by
Solution Liquid Solid Mechanism 125
3.3.3 Capping Agents/Surfactant Assisted Soft Synthesis 126
3.3.4 Bio Inspired Approach for Complex Superstructures 134
3.3.5 Oriented Attachment Growth Mechanism 140
3.4 Summary and Outlook 142
References 143
4 Assembly of Zeolites and Crystalline Molecular Sieves 159
Jennifer L. Anthony and Mark E. Davis
4.1 Introduction 159
4.2 Thermodynamics of Synthesis Processes 160
4.3 Kinetics of Synthesis Processes 162
4.4 Assembly Processes 164
4.4.1 Proposed Mechanisms for Zeolite Assembly 165
4.4.2 Metal Ion Assisted Assembly Processes 168
4.5 Components of Synthesis 169
4.5.1 Organic Components 169
4.5.2 Inorganic Components 170
Contents xiii
4.6 Chirality: Can a Designer Zeolite Be Synthesized? 176
4.7 Summary 178
References 178
5 Molecular Imprinting by the Surface Sol Gel Process:
Templated Nanoporous Metal Oxide Thin Films for
Molecular Recognition 186
Seung Woo Lee and Toyoki Kunitake
5.1 Introduction 186
5.2 Surface Sol Gel Process 189
5.2.1 Preparation of Amorphous Metal Oxide Thin
Films 189
5.2.2 Rich Variety of Organic Components in
Nanohybrid Layers 190
5.3 Molecular Imprinting in Amorphous Metal Oxide Films 194
5.3.1 Incorporation and Removal of Templates 194
5.3.2 Stability and Selectivity of Imprinted Sites 198
5.3.3 Nature of Imprinted Sites for Guest Binding 200
5.3.4 Multifunctional Nature of Imprinted Cavity 202
5.3.5 Varied Molecular Selectivity 205
5.4 Practical Potentials 206
5.4.1 Recognition of Biological Molecules 206
5.4.2 Contrivance for High Sensitivity 209
5.4.3 Recognition of Coordination Geometry 210
5.4.4 Nanoporous Thin Films with Ion Exchange Sites 210
5.4.5 Direct Observation of Imprinted Cavity Physical Cavity
Versus Topological Cavity 212
5.5 Unsolved Problems and Future Prospects 215
References 217
6 Fabrication, Characterization, and Applications of
Template Synthesized Nanotubes and Nanotube Membranes 221
Punit Kohli and Charles R. Martin
6.1 Introduction 221
6.2 Nomenclature 223
6.3 Template Synthesis of Nanotubes 223
6.4 Silica Nanotubes 224
6.4.1 Attaching Different Functional Groups to the Inside
Versus Outside Surfaces 224
6.4.2 Nanotubes for Chemical and Bioextraction and
Biocatalysis: Demonstration of Potential Drug
Detoxification Using Nanotubes 226
6.5 Template Synthesis of Nano Test Tubes 229
6.6 Nanotube Membranes for Bioseparations 234
xiv Contents
6.6.1 Antibody Functionalized Nanotube Membranes for
Selective Enantiomeric Separations 234
6.6.2 Functionalized Nanotube Membranes with
Hairpin DNA Transporter with Single Base
Mismatch Selectivity 236
6.7 Conical Nanotubes: Mimicking Artificial Ion Channel 241
6.8 Conclusions 245
References 246
7 Synthesis and Characterization of Core Shell
Structured Metals 251
Tetsu Yonezawa
7.1 Introduction 251
7.2 Preparation of Core Shell Bimetallic Nanoparticles 252
7.2.1 Preparation Procedures 252
7.2.2 Successive Reduction of the Corresponding Two
Metal Ions 252
7.2.3 Simultaneous Reduction of the Corresponding Two
Metal Ions 256
7.2.4 Other Systems 259
7.3 Characterization of Core Shell Bimetallic Nanoparticles 260
7.3.1 X ray Characterization 260
7.3.2 Electron Microscopic Observations 263
7.3.3 UV vis Spectroscopy 264
7.3.4 IR Spectroscopy of Chemical Probes 265
7.4 Summary 266
References 267
8 Cobalt Nanocrystals Organized in Mesoscopic Scale 270
Marie Paule Pileni
8.1 Introduction 270
8.2 Self Organization of Cobalt Nanocrystals 271
8.3 Collective Magnetic Properties of Mesostructures Made of
Magnetic Nanocrystals 283
8.4 Conclusion 291
References 291
9 Synthesis and Applications of Highly Ordered Anodic
Porous Alumina 296
Hideki Masuda and Kazuyuki Nishio
9.1 Introduction 296
9.2 Synthesis of Highly Ordered Anodic Porous Alumina 296
9.2.1 Growth of Anodic Porous Alumina on Al 296
9.2.2 Synthesis of Highly Ordered Anodic Porous Alumina.... 297
Contents xv
9.2.3 Ideally Ordered Anodic Porous Alumina by the
Pretexturing Process Using Molds 299
9.3 Ordered Nanostructures Based on Highly Ordered Anodic
Porous Alumina 300
9.3.1 Nanocomposite Structures Using Highly Ordered
Anodic Porous Alumina 300
9.3.2 Nanofabrication Using Anodic Porous Alumina Masks... 304
9.3.3 Two Step Replication Process for Functional
Nanohole Arrays 307
9.3.4 Ordered Array of Biomolecules Using Highly Ordered
Anodic Porous Alumina 308
9.4 Conclusions 310
References 311
Index 313
|
adam_txt |
Contents
Preface v
1 Self Assembled Si i _* Gex Dots and Islands 1
Jean Marc Baribeau, Nelson L. Rowell, and David J. Lockwood
1.1 Introduction 1
1.2 Si!_xGev IslandGrowth 2
1.2.1 Growth Modes in Heteroepitaxy 2
1.2.2 Si i x Gtx Island Growth and Shape Evolution 4
1.2.3 Sii_jGev Island Composition and Strain Distribution 7
1.3 Stacked Sii ^Ge^ Islands 8
1.3.1 Development of Morphological Instabilities in
Heteroepitaxy 9
1.3.2 Synthesis, Structure, and Vertical Correlation 9
1.3.3 Vibrational Properties 16
1.3.4 Optical Properties 25
1.4 Engineering of Sii_^Gev Islands 41
1.4.1 Influence of Surface Morphology 42
1.4.2 Influence of Adsorbed Species 44
1.5 Applications of Sii_.rGeA Islands and Dots 46
1.5.1 Photodetectors 46
1.5.2 Other Applications 50
1.6 Summary and Future Prospects 51
References 52
2 Synthesis of Titania Nanocrystals: Application for Dye Sensitized
Solar Cells 71
Motonari Adachi, Yusuke Murata, Fumin Wang, and Jinting Jiu
2.1 Formation of Titania Nanocrystals by
Surfactant Assisted Methods 71
2.1.1 Introduction: How to Control Morphology
and Functionalize Ceramic Materials 71
xi
xii Contents
2.1.2 Formation of Network Structure of Single Crystalline
TiO2 Nanowires by the
"Oriented Attachment" Mechanism 73
2.1.3 Morphological Control of Anatase Nanocrystals Using
Dodecanediamine as a Surfactant 79
2.2 Application of T1O2 Network of Single Crystalline Nanowires
for Dye Sensitized Solar Cells 87
2.2.1 Introduction 87
2.2.2 How to Make the Dye Sensitized Solar Cells 88
2.2.3 Characterization of the Solar Cells Made of Network of
Single Crystalline Anatase Exposing Mainly
the {101} Plane 89
2.3 Summary 94
References 95
3 Soft Synthesis of Inorganic Nanorods, Nanowires,
and Nanotubes 101
Shu Hong Yu and Yi Tai Qian
3.1 Introduction 101
3.2 An Overview: Emerging Synthetic Routes for the Synthesis of
Low Dimensional Nanocrystals 102
3.2.1 "Hard" Approaches 102
3.2.2 "Soft" Approaches 103
3.3 Soft Synthesis of Low Dimensional Nanocrystals 109
3.3.1 Hydrothermal/Solvothermal Processes 109
3.3.2 Synthesis of Semiconductor Nanorods/Nanowires by
Solution Liquid Solid Mechanism 125
3.3.3 Capping Agents/Surfactant Assisted Soft Synthesis 126
3.3.4 Bio Inspired Approach for Complex Superstructures 134
3.3.5 Oriented Attachment Growth Mechanism 140
3.4 Summary and Outlook 142
References 143
4 Assembly of Zeolites and Crystalline Molecular Sieves 159
Jennifer L. Anthony and Mark E. Davis
4.1 Introduction 159
4.2 Thermodynamics of Synthesis Processes 160
4.3 Kinetics of Synthesis Processes 162
4.4 Assembly Processes 164
4.4.1 Proposed Mechanisms for Zeolite Assembly 165
4.4.2 Metal Ion Assisted Assembly Processes 168
4.5 Components of Synthesis 169
4.5.1 Organic Components 169
4.5.2 Inorganic Components 170
Contents xiii
4.6 Chirality: Can a "Designer" Zeolite Be Synthesized? 176
4.7 Summary 178
References 178
5 Molecular Imprinting by the Surface Sol Gel Process:
Templated Nanoporous Metal Oxide Thin Films for
Molecular Recognition 186
Seung Woo Lee and Toyoki Kunitake
5.1 Introduction 186
5.2 Surface Sol Gel Process 189
5.2.1 Preparation of Amorphous Metal Oxide Thin
Films 189
5.2.2 Rich Variety of Organic Components in
Nanohybrid Layers 190
5.3 Molecular Imprinting in Amorphous Metal Oxide Films 194
5.3.1 Incorporation and Removal of Templates 194
5.3.2 Stability and Selectivity of Imprinted Sites 198
5.3.3 Nature of Imprinted Sites for Guest Binding 200
5.3.4 Multifunctional Nature of Imprinted Cavity 202
5.3.5 Varied Molecular Selectivity 205
5.4 Practical Potentials 206
5.4.1 Recognition of Biological Molecules 206
5.4.2 Contrivance for High Sensitivity 209
5.4.3 Recognition of Coordination Geometry 210
5.4.4 Nanoporous Thin Films with Ion Exchange Sites 210
5.4.5 Direct Observation of Imprinted Cavity Physical Cavity
Versus Topological Cavity 212
5.5 Unsolved Problems and Future Prospects 215
References 217
6 Fabrication, Characterization, and Applications of
Template Synthesized Nanotubes and Nanotube Membranes 221
Punit Kohli and Charles R. Martin
6.1 Introduction 221
6.2 Nomenclature 223
6.3 Template Synthesis of Nanotubes 223
6.4 Silica Nanotubes 224
6.4.1 Attaching Different Functional Groups to the Inside
Versus Outside Surfaces 224
6.4.2 Nanotubes for Chemical and Bioextraction and
Biocatalysis: Demonstration of Potential Drug
Detoxification Using Nanotubes 226
6.5 Template Synthesis of Nano Test Tubes 229
6.6 Nanotube Membranes for Bioseparations 234
xiv Contents
6.6.1 Antibody Functionalized Nanotube Membranes for
Selective Enantiomeric Separations 234
6.6.2 Functionalized Nanotube Membranes with
"Hairpin" DNA Transporter with Single Base
Mismatch Selectivity 236
6.7 Conical Nanotubes: Mimicking Artificial Ion Channel 241
6.8 Conclusions 245
References 246
7 Synthesis and Characterization of Core Shell
Structured Metals 251
Tetsu Yonezawa
7.1 Introduction 251
7.2 Preparation of Core Shell Bimetallic Nanoparticles 252
7.2.1 Preparation Procedures 252
7.2.2 Successive Reduction of the Corresponding Two
Metal Ions 252
7.2.3 Simultaneous Reduction of the Corresponding Two
Metal Ions 256
7.2.4 Other Systems 259
7.3 Characterization of Core Shell Bimetallic Nanoparticles 260
7.3.1 X ray Characterization 260
7.3.2 Electron Microscopic Observations 263
7.3.3 UV vis Spectroscopy 264
7.3.4 IR Spectroscopy of Chemical Probes 265
7.4 Summary 266
References 267
8 Cobalt Nanocrystals Organized in Mesoscopic Scale 270
Marie Paule Pileni
8.1 Introduction 270
8.2 Self Organization of Cobalt Nanocrystals 271
8.3 Collective Magnetic Properties of Mesostructures Made of
Magnetic Nanocrystals 283
8.4 Conclusion 291
References 291
9 Synthesis and Applications of Highly Ordered Anodic
Porous Alumina 296
Hideki Masuda and Kazuyuki Nishio
9.1 Introduction 296
9.2 Synthesis of Highly Ordered Anodic Porous Alumina 296
9.2.1 Growth of Anodic Porous Alumina on Al 296
9.2.2 Synthesis of Highly Ordered Anodic Porous Alumina. 297
Contents xv
9.2.3 Ideally Ordered Anodic Porous Alumina by the
Pretexturing Process Using Molds 299
9.3 Ordered Nanostructures Based on Highly Ordered Anodic
Porous Alumina 300
9.3.1 Nanocomposite Structures Using Highly Ordered
Anodic Porous Alumina 300
9.3.2 Nanofabrication Using Anodic Porous Alumina Masks. 304
9.3.3 Two Step Replication Process for Functional
Nanohole Arrays 307
9.3.4 Ordered Array of Biomolecules Using Highly Ordered
Anodic Porous Alumina 308
9.4 Conclusions 310
References 311
Index 313 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV021327622 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | VE 9850 |
classification_tum | CHE 380f WER 035f |
ctrlnum | (OCoLC)255038099 (DE-599)BVBBV021327622 |
dewey-full | 620.5 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.5 |
dewey-search | 620.5 |
dewey-sort | 3620.5 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Chemie Werkstoffwissenschaften |
discipline_str_mv | Chemie / Pharmazie Physik Chemie Werkstoffwissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02190nam a2200565 c 4500</leader><controlfield tag="001">BV021327622</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060821 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060208s2006 gw ado| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N43,0461</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">976544873</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">038727975X</subfield><subfield code="c">Gb. : ca. EUR 80.20 (freier Pr.), ca. sfr 127.00 (freier Pr.)</subfield><subfield code="9">0-387-27975-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387279756</subfield><subfield code="9">978-0-387-27975-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387279756</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11498278</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255038099</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021327622</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.5</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 035f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Self-organized nanoscale materials</subfield><subfield code="c">Motonari Adachi ... (Eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 317 S.</subfield><subfield code="b">200 schw.-w. Ill., 112 schw.-w. Fotos, 88 schw.-w. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Nanostructure science and technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Self-organizing systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Aggregat</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4333754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstorganisation</subfield><subfield code="0">(DE-588)4126830-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Selbstorganisation</subfield><subfield code="0">(DE-588)4126830-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Aggregat</subfield><subfield code="g">Chemie</subfield><subfield code="0">(DE-588)4333754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adachi, Motonari</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2684584&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014647944&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014647944</subfield></datafield></record></collection> |
id | DE-604.BV021327622 |
illustrated | Illustrated |
index_date | 2024-07-02T14:00:44Z |
indexdate | 2024-07-09T20:35:45Z |
institution | BVB |
isbn | 038727975X 9780387279756 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014647944 |
oclc_num | 255038099 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-20 DE-11 |
physical | XV, 317 S. 200 schw.-w. Ill., 112 schw.-w. Fotos, 88 schw.-w. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series2 | Nanostructure science and technology |
spelling | Self-organized nanoscale materials Motonari Adachi ... (Eds.) New York Springer 2006 XV, 317 S. 200 schw.-w. Ill., 112 schw.-w. Fotos, 88 schw.-w. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Nanostructure science and technology Nanostructured materials Self-organizing systems Aggregat Chemie (DE-588)4333754-5 gnd rswk-swf Nanostruktur (DE-588)4204530-7 gnd rswk-swf Selbstorganisation (DE-588)4126830-1 gnd rswk-swf Nanostruktur (DE-588)4204530-7 s Selbstorganisation (DE-588)4126830-1 s DE-604 Aggregat Chemie (DE-588)4333754-5 s Adachi, Motonari Sonstige oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2684584&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014647944&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Self-organized nanoscale materials Nanostructured materials Self-organizing systems Aggregat Chemie (DE-588)4333754-5 gnd Nanostruktur (DE-588)4204530-7 gnd Selbstorganisation (DE-588)4126830-1 gnd |
subject_GND | (DE-588)4333754-5 (DE-588)4204530-7 (DE-588)4126830-1 |
title | Self-organized nanoscale materials |
title_auth | Self-organized nanoscale materials |
title_exact_search | Self-organized nanoscale materials |
title_exact_search_txtP | Self-organized nanoscale materials |
title_full | Self-organized nanoscale materials Motonari Adachi ... (Eds.) |
title_fullStr | Self-organized nanoscale materials Motonari Adachi ... (Eds.) |
title_full_unstemmed | Self-organized nanoscale materials Motonari Adachi ... (Eds.) |
title_short | Self-organized nanoscale materials |
title_sort | self organized nanoscale materials |
topic | Nanostructured materials Self-organizing systems Aggregat Chemie (DE-588)4333754-5 gnd Nanostruktur (DE-588)4204530-7 gnd Selbstorganisation (DE-588)4126830-1 gnd |
topic_facet | Nanostructured materials Self-organizing systems Aggregat Chemie Nanostruktur Selbstorganisation |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2684584&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014647944&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT adachimotonari selforganizednanoscalematerials |