The fourfold way in real analysis: an alternative to the metaplectic representation
The fourfold way starts with the consideration of entire functions of one variable satisfying specific estimates at infinity, both on the real line and the pure imaginary line. A major part of classical analysis, mainly that which deals with Fourier analysis and related concepts, can then be given a...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Basel [u.a.]
Birkhäuser
2006
|
Schriftenreihe: | Progress in mathematics
250 |
Schlagworte: | |
Zusammenfassung: | The fourfold way starts with the consideration of entire functions of one variable satisfying specific estimates at infinity, both on the real line and the pure imaginary line. A major part of classical analysis, mainly that which deals with Fourier analysis and related concepts, can then be given a parameter-dependent analogue. The parameter is some real number modulo 2, the classical case being obtained when it is an integer. The space L2(R) has to give way to a pseudo-Hilbert space, on which a new translation-invariant integral still exists. All this extends to the n-dimensional case, and in the alternative to the metaplectic representation so obtained, it is the space of Lagrangian subspaces of R2n that plays the usual role of the complex Siegel domain. In fourfold analysis, the spectrum of the harmonic oscillator can be an arbitrary class modulo the integers. Even though the whole development touches upon notions of representation theory, pseudodifferential operator theory, and algebraic geometry, it remains completely elementary in all these aspects. The book should be of interest to researchers working in analysis in general, in harmonic analysis, or in mathematical physics. |
Beschreibung: | X, 220 S. |
ISBN: | 3764375442 9783764375447 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021294931 | ||
003 | DE-604 | ||
005 | 20060426 | ||
007 | t | ||
008 | 060117s2006 |||| 00||| eng d | ||
020 | |a 3764375442 |9 3-7643-7544-2 | ||
020 | |a 9783764375447 |9 978-3-7643-7544-7 | ||
035 | |a (OCoLC)64592222 | ||
035 | |a (DE-599)BVBBV021294931 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-29T |a DE-11 | ||
050 | 0 | |a QA403.5 | |
082 | 0 | |a 515/.2433 |2 22 | |
084 | |a SK 430 |0 (DE-625)143239: |2 rvk | ||
084 | |a SK 450 |0 (DE-625)143240: |2 rvk | ||
100 | 1 | |a Unterberger, André |d 1940- |e Verfasser |0 (DE-588)122184882 |4 aut | |
245 | 1 | 0 | |a The fourfold way in real analysis |b an alternative to the metaplectic representation |c André Unterberger |
264 | 1 | |a Basel [u.a.] |b Birkhäuser |c 2006 | |
300 | |a X, 220 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 250 | |
520 | 3 | |a The fourfold way starts with the consideration of entire functions of one variable satisfying specific estimates at infinity, both on the real line and the pure imaginary line. A major part of classical analysis, mainly that which deals with Fourier analysis and related concepts, can then be given a parameter-dependent analogue. The parameter is some real number modulo 2, the classical case being obtained when it is an integer. The space L2(R) has to give way to a pseudo-Hilbert space, on which a new translation-invariant integral still exists. All this extends to the n-dimensional case, and in the alternative to the metaplectic representation so obtained, it is the space of Lagrangian subspaces of R2n that plays the usual role of the complex Siegel domain. In fourfold analysis, the spectrum of the harmonic oscillator can be an arbitrary class modulo the integers. Even though the whole development touches upon notions of representation theory, pseudodifferential operator theory, and algebraic geometry, it remains completely elementary in all these aspects. The book should be of interest to researchers working in analysis in general, in harmonic analysis, or in mathematical physics. | |
650 | 4 | |a Analyse harmonique | |
650 | 4 | |a Espace des phases (Physique statistique) | |
650 | 4 | |a Espaces à produit scalaire | |
650 | 4 | |a Fourier, Analyse de | |
650 | 4 | |a Lie, Groupes de | |
650 | 4 | |a Fourier analysis | |
650 | 4 | |a Harmonic analysis | |
650 | 4 | |a Inner product spaces | |
650 | 4 | |a Lie groups | |
650 | 4 | |a Phase space (Statistical physics) | |
650 | 0 | 7 | |a Harmonische Analyse |0 (DE-588)4023453-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Metaplektische Darstellung |0 (DE-588)4204500-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reelle Analysis |0 (DE-588)4627581-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Harmonische Analyse |0 (DE-588)4023453-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Reelle Analysis |0 (DE-588)4627581-2 |D s |
689 | 1 | 1 | |a Metaplektische Darstellung |0 (DE-588)4204500-9 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
830 | 0 | |a Progress in mathematics |v 250 |w (DE-604)BV000004120 |9 250 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-014615711 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804135089271996416 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Unterberger, André 1940- |
author_GND | (DE-588)122184882 |
author_facet | Unterberger, André 1940- |
author_role | aut |
author_sort | Unterberger, André 1940- |
author_variant | a u au |
building | Verbundindex |
bvnumber | BV021294931 |
callnumber-first | Q - Science |
callnumber-label | QA403 |
callnumber-raw | QA403.5 |
callnumber-search | QA403.5 |
callnumber-sort | QA 3403.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 430 SK 450 |
ctrlnum | (OCoLC)64592222 (DE-599)BVBBV021294931 |
dewey-full | 515/.2433 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515/.2433 |
dewey-search | 515/.2433 |
dewey-sort | 3515 42433 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03229nam a2200577 cb4500</leader><controlfield tag="001">BV021294931</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20060426 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">060117s2006 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3764375442</subfield><subfield code="9">3-7643-7544-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764375447</subfield><subfield code="9">978-3-7643-7544-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)64592222</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021294931</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA403.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.2433</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 430</subfield><subfield code="0">(DE-625)143239:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 450</subfield><subfield code="0">(DE-625)143240:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Unterberger, André</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122184882</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The fourfold way in real analysis</subfield><subfield code="b">an alternative to the metaplectic representation</subfield><subfield code="c">André Unterberger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 220 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">250</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">The fourfold way starts with the consideration of entire functions of one variable satisfying specific estimates at infinity, both on the real line and the pure imaginary line. A major part of classical analysis, mainly that which deals with Fourier analysis and related concepts, can then be given a parameter-dependent analogue. The parameter is some real number modulo 2, the classical case being obtained when it is an integer. The space L2(R) has to give way to a pseudo-Hilbert space, on which a new translation-invariant integral still exists. All this extends to the n-dimensional case, and in the alternative to the metaplectic representation so obtained, it is the space of Lagrangian subspaces of R2n that plays the usual role of the complex Siegel domain. In fourfold analysis, the spectrum of the harmonic oscillator can be an arbitrary class modulo the integers. Even though the whole development touches upon notions of representation theory, pseudodifferential operator theory, and algebraic geometry, it remains completely elementary in all these aspects. The book should be of interest to researchers working in analysis in general, in harmonic analysis, or in mathematical physics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analyse harmonique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espace des phases (Physique statistique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces à produit scalaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier, Analyse de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Groupes de</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fourier analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inner product spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Phase space (Statistical physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metaplektische Darstellung</subfield><subfield code="0">(DE-588)4204500-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Harmonische Analyse</subfield><subfield code="0">(DE-588)4023453-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Reelle Analysis</subfield><subfield code="0">(DE-588)4627581-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Metaplektische Darstellung</subfield><subfield code="0">(DE-588)4204500-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">250</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">250</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014615711</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV021294931 |
illustrated | Not Illustrated |
index_date | 2024-07-02T13:50:56Z |
indexdate | 2024-07-09T20:34:57Z |
institution | BVB |
isbn | 3764375442 9783764375447 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014615711 |
oclc_num | 64592222 |
open_access_boolean | |
owner | DE-824 DE-29T DE-11 |
owner_facet | DE-824 DE-29T DE-11 |
physical | X, 220 S. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Unterberger, André 1940- Verfasser (DE-588)122184882 aut The fourfold way in real analysis an alternative to the metaplectic representation André Unterberger Basel [u.a.] Birkhäuser 2006 X, 220 S. txt rdacontent n rdamedia nc rdacarrier Progress in mathematics 250 The fourfold way starts with the consideration of entire functions of one variable satisfying specific estimates at infinity, both on the real line and the pure imaginary line. A major part of classical analysis, mainly that which deals with Fourier analysis and related concepts, can then be given a parameter-dependent analogue. The parameter is some real number modulo 2, the classical case being obtained when it is an integer. The space L2(R) has to give way to a pseudo-Hilbert space, on which a new translation-invariant integral still exists. All this extends to the n-dimensional case, and in the alternative to the metaplectic representation so obtained, it is the space of Lagrangian subspaces of R2n that plays the usual role of the complex Siegel domain. In fourfold analysis, the spectrum of the harmonic oscillator can be an arbitrary class modulo the integers. Even though the whole development touches upon notions of representation theory, pseudodifferential operator theory, and algebraic geometry, it remains completely elementary in all these aspects. The book should be of interest to researchers working in analysis in general, in harmonic analysis, or in mathematical physics. Analyse harmonique Espace des phases (Physique statistique) Espaces à produit scalaire Fourier, Analyse de Lie, Groupes de Fourier analysis Harmonic analysis Inner product spaces Lie groups Phase space (Statistical physics) Harmonische Analyse (DE-588)4023453-8 gnd rswk-swf Metaplektische Darstellung (DE-588)4204500-9 gnd rswk-swf Reelle Analysis (DE-588)4627581-2 gnd rswk-swf Harmonische Analyse (DE-588)4023453-8 s DE-604 Reelle Analysis (DE-588)4627581-2 s Metaplektische Darstellung (DE-588)4204500-9 s 1\p DE-604 Progress in mathematics 250 (DE-604)BV000004120 250 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Unterberger, André 1940- The fourfold way in real analysis an alternative to the metaplectic representation Progress in mathematics Analyse harmonique Espace des phases (Physique statistique) Espaces à produit scalaire Fourier, Analyse de Lie, Groupes de Fourier analysis Harmonic analysis Inner product spaces Lie groups Phase space (Statistical physics) Harmonische Analyse (DE-588)4023453-8 gnd Metaplektische Darstellung (DE-588)4204500-9 gnd Reelle Analysis (DE-588)4627581-2 gnd |
subject_GND | (DE-588)4023453-8 (DE-588)4204500-9 (DE-588)4627581-2 |
title | The fourfold way in real analysis an alternative to the metaplectic representation |
title_auth | The fourfold way in real analysis an alternative to the metaplectic representation |
title_exact_search | The fourfold way in real analysis an alternative to the metaplectic representation |
title_exact_search_txtP | The fourfold way in real analysis an alternative to the metaplectic representation |
title_full | The fourfold way in real analysis an alternative to the metaplectic representation André Unterberger |
title_fullStr | The fourfold way in real analysis an alternative to the metaplectic representation André Unterberger |
title_full_unstemmed | The fourfold way in real analysis an alternative to the metaplectic representation André Unterberger |
title_short | The fourfold way in real analysis |
title_sort | the fourfold way in real analysis an alternative to the metaplectic representation |
title_sub | an alternative to the metaplectic representation |
topic | Analyse harmonique Espace des phases (Physique statistique) Espaces à produit scalaire Fourier, Analyse de Lie, Groupes de Fourier analysis Harmonic analysis Inner product spaces Lie groups Phase space (Statistical physics) Harmonische Analyse (DE-588)4023453-8 gnd Metaplektische Darstellung (DE-588)4204500-9 gnd Reelle Analysis (DE-588)4627581-2 gnd |
topic_facet | Analyse harmonique Espace des phases (Physique statistique) Espaces à produit scalaire Fourier, Analyse de Lie, Groupes de Fourier analysis Harmonic analysis Inner product spaces Lie groups Phase space (Statistical physics) Harmonische Analyse Metaplektische Darstellung Reelle Analysis |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT unterbergerandre thefourfoldwayinrealanalysisanalternativetothemetaplecticrepresentation |