Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats: with ... 19 tables
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Schriftenreihe: | Advances in anatomy, embryology and cell biology
180 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Klappentext |
Beschreibung: | 130 S. Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 3540256547 9783540256540 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV021236733 | ||
003 | DE-604 | ||
005 | 20070327 | ||
007 | t | ||
008 | 051123s2005 gw ad|| |||| 00||| eng d | ||
015 | |a 05,N15,0803 |2 dnb | ||
020 | |a 3540256547 |9 3-540-25654-7 | ||
020 | |a 9783540256540 |9 978-3-540-25654-0 | ||
024 | 3 | |a 9783540256540 | |
028 | 5 | 2 | |a 11330813 |
035 | |a (OCoLC)633990548 | ||
035 | |a (DE-599)BVBBV021236733 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 | ||
084 | |a 610 |2 sdnb | ||
245 | 1 | 0 | |a Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats |b with ... 19 tables |c D. N. Angelov ... |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a 130 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advances in anatomy, embryology and cell biology |v 180 | |
650 | 0 | 7 | |a Verletzung |0 (DE-588)4124397-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ratte |0 (DE-588)4177011-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Trauma |0 (DE-588)4060748-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nervus facialis |0 (DE-588)4075284-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Axon |0 (DE-588)4200576-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regeneration |0 (DE-588)4048983-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tiermodell |0 (DE-588)4140660-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nervenregeneration |0 (DE-588)4041641-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nervus facialis |0 (DE-588)4075284-7 |D s |
689 | 0 | 1 | |a Verletzung |0 (DE-588)4124397-3 |D s |
689 | 0 | 2 | |a Axon |0 (DE-588)4200576-0 |D s |
689 | 0 | 3 | |a Nervenregeneration |0 (DE-588)4041641-0 |D s |
689 | 0 | 4 | |a Tiermodell |0 (DE-588)4140660-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Ratte |0 (DE-588)4177011-0 |D s |
689 | 1 | 1 | |a Nervus facialis |0 (DE-588)4075284-7 |D s |
689 | 1 | 2 | |a Trauma |0 (DE-588)4060748-3 |D s |
689 | 1 | 3 | |a Regeneration |0 (DE-588)4048983-8 |D s |
689 | 1 | |C b |5 DE-604 | |
700 | 1 | |a Angelov, Dojčin N. |d 1953- |e Sonstige |0 (DE-588)120165112 |4 oth | |
830 | 0 | |a Advances in anatomy, embryology and cell biology |v 180 |w (DE-604)BV002528506 |9 180 | |
856 | 4 | 2 | |m Digitalisierung UBRegensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |3 Klappentext |
999 | |a oai:aleph.bib-bvb.de:BVB01-014279484 |
Datensatz im Suchindex
_version_ | 1804134681880297472 |
---|---|
adam_text | List of Contents
1 Outline of the General Neurobiological Problem.................... 1
1.1 The Perikarya Supporting Axonal Regrowth Are Hyperexcitable......... 1
1.1.1 Increase in Biosynthetic Activity................................ 1
1.1.2 Hyperexcitability of the Axotomized Perikarya...................... 2
1.2 Axonal Regrowth Is Compromised by Ephaptic Cross-Talk
Between the Branches....................................... 3
1.2.1 The Endoneural Micro-Environment Permits
a Rapid and Extensive Axonal Growth............................ 3
1.2.2 Excessive Firing by the Transected Axons.......................... 3
1.3 Biological Significance of Axonal Branching........................ 3
1.4 Role of the Cytoskeleton Reorganization During Axonal Regrowth........ 5
1.4.1 The Role of Cytoskeletal Proteins in Axonal Elongation................ 5
1.4.2 Role of Cytoskeletal Proteins in Axonal Branching at the Growth Cone..... 8
1.4.3 Role of Cytoskeletal Proteins in Collateral Axonal Branching
at the Axon Shaft........................................... 8
1.5 The Individual Guidance Cues Promoting Reinnervation
of Original Targets Are Still Unknown............................ 9
1.5.1 ECM Glycoproteins, Axonal Regrowth, and Pathfmding ............... 9
1.5.2 Increased Production of Trophic Factors.......................... 10
1.6 Conclusion............................................... 12
1.7 Outline of the Clinical Problem................................. 13
1.8 Question Still Open......................................... 14
1.9 Methodological Approach.................................... 14
2 Materials and Methods: Experimental Sets........................ 14
2.1 First Set of Experiments: Attempts to Reduce Collateral Axonal Branching
by Alterations of the Trigeminal Input to the Facial Perikarya........... 15
2.1.1 Effect of Altered Trigeminal Input to Facial Perikarya
on Axonal Branching as Estimated by Application of Crystalline Tracers
to Transected Superior and Inferior Buccolabial Nerves ............... 16
2.1.2 Effect of Altered Trigeminal Input on the Rate of Axonal Elongation....... 20
2.1.3 Effect of Altered Trigeminal Input to Axotomized Facial Perikarya
on the Accuracy of Reinnervation............................... 21
2.1.4 Effect of Altered Trigeminal Input to Axotomized Facial Perikarya
on the Compound Muscle Action Potential (CMAP) of the Vibrissal Muscles . 22
2.1.5 Effect of Altered Trigeminal Input on the Recovery
of Vibrissae Motor Performance Estimated by Video-Based Motion Analysis . 24
2.1.6 Effect of Putatively Enlarged Cortical Representation
of the Vibrissae in Blind Rats on the Quality of Target Reinnervation...... 27
2.2 Second Set of Experiments:
Attempts to Reduce Collateral Axonal Branching at the Lesion Site........ 30
2.2.1 Effect of Extracellular Matrix Proteins Known to Foster Neurite Elongation
on Axonal Branching........................................ 30
2.2.2 Time Course of Trophic Factor Expression at the Lesion Site............ 32
2.2.3 Effect of Neutralization of Trophic Factors at the Site of Lesion
on Axonal Branching........................................ 33
2.2.4 Effect of Cell Transplantation on Axonal Branching .................. 34
2.2.5 Effect of Transplanted Autologous Olfactory Mucosa on Axonal Branching . . 36
3 Results.................................................. 37
3.1 Influence of the Altered Input to Axotomized Facial Perikarya
on the Quality of Reinnervation................................ 37
3.1.1 Altered Trigeminal Input to Axotomized Facial Perikarya
Reduces Axonal Branching.................................... 37
3.1.1.1 Behavioral Observations..................................... 37
3.1.1.2 Lesion to the Contralateral Trigeminal Ganglion Cells Reduced
the Branching of Transected Facial Axons......................... 38
3.1.2 No Evidence for an Increased Rate of Facial Axon Elongation
After Combined Facial-Trigeminal Injury......................... 42
3.1.3 Altered Trigeminal Input Slightly Improves the Accuracy
of Target Muscle Reinnervation by Regenerating Facial Axons........... 43
3.1.4 Electrophysiological Evidence that the Excision of the Contralateral ION
Provided the Best Recovery of Synchronized Vibrissal Motor Performance . . 48
3.1.5 Altered Trigeminal Input Improves Motor Performance
of the Vibrissal Muscles After Facial Nerve Transection and Suture (FFA) ... 50
3.1.5.1 Biometric Analysis of Whisking Behavior......................... 50
3.1.6 Effect of Putatively Enlarged Cortical Representation of the Vibrissae
in Blind Rats on the Quality of Target Reinnervation.................. 55
3.1.6.1 Pre- and Postoperative Retrograde Neuronal Labeling:
Despite Neurotization, the Accuracy of Reinnervation Remains Insufficient
in Both Visually Normal SD Rats and in Blind SD/RCS Rats............. 57
3.1.6.2 Postoperative Triple Labeling:
Identical Amount of Supernumerary Axonal Branches
in Visually Normal SD Rats and Blind SD/RCS Rats................... 59
3.1.6.3 Functional Analysis of Vibrissae Movement:
Poor Motor Performance in Visually Normal SD Rats,
but Perfect Recovery of Whisking Behavior in Blind SD/RCS Rats......... 59
3.2 Attempts to Reduce Collateral Axonal Branching at the Lesion Site........ 62
3.2.1 Application of Extracellular Matrix Proteins
Does Not Alter Axonal Branching............................... 62
3.2.1.1 Behavioral Observations ..................................... 62
3.2.1.2 Determination of Axonal Branching............................. 65
3.2.2 NGF, BDNF, FGF-2, IGF-I, and GDNF Are Differentially Expressed
in the Proximal and Distal Stumps of the Transected Buccal Branch
of the Facial Nerve ......................................... 67
3.2.3 Focal Application of Neutralizing Antibodies to Soluble Neurotrophic Factors
Reduces Collateral Axonal Branching After Peripheral Nerve Lesion....... 71
List of Contents VII
3.2.3.1 Unoperated Rats........................................... 71
3.2.3.2 General Features of the Facial Nucleus After Transection of the Facial Nerve . 71
3.2.3.3 Varying Effects of the Neutralizing Antibodies
on the Increased Number of Axons and Neurons
in the Three Main Branches (Rami) of the Regenerating Facial Nerve...... 79
3.2.3.4 Effects of Neutralizing Antibodies on Axonal Branching as Estimated
by the Portions of Double- and Single-Labeled Motoneuronal Perikarya .... 80
3.2.4 Transplantation of Olfactory Ensheathing Cells, Schwann Cells,
and Bone Marrow Stromal Cells Does Not Alter Axonal Branching
of Regenerating Facial Motoneurons............................. 82
3.2.4.1 Determination of the Degree of Axonal Branching................... 82
3.2.4.2 Biometric Analysis of Whisking Behavior......................... 82
3.2.5 Transplantation of Autologous Olfactory Mucosa Does Not Increase
the Accuracy of Reinnervation but Promotes Functional Recovery
of Vibrissal Motor Performance................................ 82
3.2.5.1 Transplantation of Olfactory Mucosa
Reduces the Collateral Axonal Branching.......................... 82
3.2.5.2 Transplantation of Olfactory Mucosa
Does Not Increase the Accuracy of Reinnervation.................... 86
3.2.5.3 Transplantation of Olfactory Mucosa
Promotes Functional Recovery of Vibrissal Motor Performance.......... 88
4 Discussion............................................... 91
4.1 The Combined Approach to Evaluate the Quality
of Peripheral Nerve Regeneration............................... 91
4.2 Sensory-Motor Integrity as a Factor in Motor Regeneration ............ 92
4.2.1 Rationale for Using the Combined Trigemino-Facial Lesion Model
to Study Neuronal Regeneration................................ 93
4.2.2 Axonal Branching as a Component of Misdirected Target Reinnervation .... 94
4.2.3 Lesion of the Contralateral Trigeminal Nerve Attenuates the Branching
of Transected Facial Axons and Improves the Accuracy
of Target Reinnervation...................................... 94
4.2.4 Nature of the Beneficial Effect of the Accompanying Lesion............. 95
4.2.5 Clinical Implications........................................ 97
4.2.6 Recovery of Whisker Movement in Blind Rats Is Probably Due to
an Extraordinary Plasticity of the Facial Motoneurons Induced
by Putative Behavioral Demand and Early Forced Overutilization........ 98
4.3 Manipulations of the Conditions at the Lesion Site Cause Changes
in the Quality of Axonal Regeneration and Recovery of Function......... 98
4.3.1 The Use of Extracellular Matrix Proteins to Improve Reinnervation....... 98
4.3.2 Role(s) of Trophic Factors in Axonal Regrowth and Effect
of Their Neutralization ...................................... 101
4.3.3 The Use of Cell Transplantation for Improving Reinnervation........... 104
4.3.4 The Beneficial Effect of Transplanted Olfactory Mucosa May Involve
a Moderate but Long-Lasting Secretion
of Trophic Molecules at the Lesion Site............................ 105
4.4 Collateral Branching Versus Terminal Sprouting of Axons.............. 106
4.5 Prospects for the Future: Role of the Cytoskeleton.................... 107
5 Summary................................................ 108
VIII List of Contents
References..................................................... 109
Subjectlndex................................................... 131
Angelov et al.
Axonal Branching and Recovery of Coordinated Muscle Activity
Peripheral nerve injury is always followed by attempted regeneration of
the injured axons. In everyday clinical practice, however, functional re¬
covery is the exception rather than the rule. Especially after reconstruc¬
tive surgery on the facial nerve, there inevitably occur partial pareses,
abnormally associated movements and pathologically altered reflexes.
The main reason for this post-paralytic syndrome is the misdirected
axonal guidance, which consists of two major components. First, due
to malfunctioning pathfinding, a muscle gets reinnervated by a foreign
axon, that has been misrouted along a wrong fascicle. Second, the
supernumerary collateral branches emerging from all transected axons
simultaneously innervate antagonistic muscles and cause severe im¬
pairment of their coordinated activity. Since it is hardly possible to im¬
prove the pathfinding of several thousands axons, we concentrated on
the second major component and tried to reduce the collateral axonal
branching. In this monography we evaluated the efficiency of various
treatments in rats by determining (i) the degree of post-operative axonal
branching applying different fluorescent dyes to the zygomatic, buccal,
and marginal mandibular branches of the facial nerve; (ii) the accuracy
of reinnervation as estimated by the number of double-labeled peri-
karya innervating the whisker-pad muscles before and after surgery;
(iii) the recovery of vibrissal motor performance, estimated by a video
based motion analysis. The results described in this review reflect our
efforts to reduce collateral axonal branching by (i) alterations of the af¬
ferent trigeminal input to the axotomized facial motoneurons and by ap¬
plication to the nerve suture site of (ii) neurite outgrowth fostering ECM
proteins, (iii) neutralizing antibodies to trophic factors, (iv) suspensions
of olfactory ensheathing cells, Schwann cells and bone marrow stroma
cells and (v) pieces of autologous olfactory mucosa. All manipulations
influenced various parameters of peripheral nerve regeneration. How¬
ever, only the application of autologous olfactory mucosa yielded an
improved recovery of vibrissae motor per¬
formance.
|
adam_txt |
List of Contents
1 Outline of the General Neurobiological Problem. 1
1.1 The Perikarya Supporting Axonal Regrowth Are Hyperexcitable. 1
1.1.1 Increase in Biosynthetic Activity. 1
1.1.2 Hyperexcitability of the Axotomized Perikarya. 2
1.2 Axonal Regrowth Is Compromised by Ephaptic Cross-Talk
Between the Branches. 3
1.2.1 The Endoneural Micro-Environment Permits
a Rapid and Extensive Axonal Growth. 3
1.2.2 Excessive Firing by the Transected Axons. 3
1.3 Biological Significance of Axonal Branching. 3
1.4 Role of the Cytoskeleton Reorganization During Axonal Regrowth. 5
1.4.1 The Role of Cytoskeletal Proteins in Axonal Elongation. 5
1.4.2 Role of Cytoskeletal Proteins in Axonal Branching at the Growth Cone. 8
1.4.3 Role of Cytoskeletal Proteins in Collateral Axonal Branching
at the Axon Shaft. 8
1.5 The Individual Guidance Cues Promoting Reinnervation
of Original Targets Are Still Unknown. 9
1.5.1 ECM Glycoproteins, Axonal Regrowth, and Pathfmding . 9
1.5.2 Increased Production of Trophic Factors. 10
1.6 Conclusion. 12
1.7 Outline of the Clinical Problem. 13
1.8 Question Still Open. 14
1.9 Methodological Approach. 14
2 Materials and Methods: Experimental Sets. 14
2.1 First Set of Experiments: Attempts to Reduce Collateral Axonal Branching
by Alterations of the Trigeminal Input to the Facial Perikarya. 15
2.1.1 Effect of Altered Trigeminal Input to Facial Perikarya
on Axonal Branching as Estimated by Application of Crystalline Tracers
to Transected Superior and Inferior Buccolabial Nerves . 16
2.1.2 Effect of Altered Trigeminal Input on the Rate of Axonal Elongation. 20
2.1.3 Effect of Altered Trigeminal Input to Axotomized Facial Perikarya
on the Accuracy of Reinnervation. 21
2.1.4 Effect of Altered Trigeminal Input to Axotomized Facial Perikarya
on the Compound Muscle Action Potential (CMAP) of the Vibrissal Muscles . 22
2.1.5 Effect of Altered Trigeminal Input on the Recovery
of Vibrissae Motor Performance Estimated by Video-Based Motion Analysis . 24
2.1.6 Effect of Putatively Enlarged Cortical Representation
of the Vibrissae in Blind Rats on the Quality of Target Reinnervation. 27
2.2 Second Set of Experiments:
Attempts to Reduce Collateral Axonal Branching at the Lesion Site. 30
2.2.1 Effect of Extracellular Matrix Proteins Known to Foster Neurite Elongation
on Axonal Branching. 30
2.2.2 Time Course of Trophic Factor Expression at the Lesion Site. 32
2.2.3 Effect of Neutralization of Trophic Factors at the Site of Lesion
on Axonal Branching. 33
2.2.4 Effect of Cell Transplantation on Axonal Branching . 34
2.2.5 Effect of Transplanted Autologous Olfactory Mucosa on Axonal Branching . . 36
3 Results. 37
3.1 Influence of the Altered Input to Axotomized Facial Perikarya
on the Quality of Reinnervation. 37
3.1.1 Altered Trigeminal Input to Axotomized Facial Perikarya
Reduces Axonal Branching. 37
3.1.1.1 Behavioral Observations. 37
3.1.1.2 Lesion to the Contralateral Trigeminal Ganglion Cells Reduced
the Branching of Transected Facial Axons. 38
3.1.2 No Evidence for an Increased Rate of Facial Axon Elongation
After Combined Facial-Trigeminal Injury. 42
3.1.3 Altered Trigeminal Input Slightly Improves the Accuracy
of Target Muscle Reinnervation by Regenerating Facial Axons. 43
3.1.4 Electrophysiological Evidence that the Excision of the Contralateral ION
Provided the Best Recovery of Synchronized Vibrissal Motor Performance . . 48
3.1.5 Altered Trigeminal Input Improves Motor Performance
of the Vibrissal Muscles After Facial Nerve Transection and Suture (FFA) . 50
3.1.5.1 Biometric Analysis of Whisking Behavior. 50
3.1.6 Effect of Putatively Enlarged Cortical Representation of the Vibrissae
in Blind Rats on the Quality of Target Reinnervation. 55
3.1.6.1 Pre- and Postoperative Retrograde Neuronal Labeling:
Despite Neurotization, the Accuracy of Reinnervation Remains Insufficient
in Both Visually Normal SD Rats and in Blind SD/RCS Rats. 57
3.1.6.2 Postoperative Triple Labeling:
Identical Amount of Supernumerary Axonal Branches
in Visually Normal SD Rats and Blind SD/RCS Rats. 59
3.1.6.3 Functional Analysis of Vibrissae Movement:
Poor Motor Performance in Visually Normal SD Rats,
but Perfect Recovery of Whisking Behavior in Blind SD/RCS Rats. 59
3.2 Attempts to Reduce Collateral Axonal Branching at the Lesion Site. 62
3.2.1 Application of Extracellular Matrix Proteins
Does Not Alter Axonal Branching. 62
3.2.1.1 Behavioral Observations . 62
3.2.1.2 Determination of Axonal Branching. 65
3.2.2 NGF, BDNF, FGF-2, IGF-I, and GDNF Are Differentially Expressed
in the Proximal and Distal Stumps of the Transected Buccal Branch
of the Facial Nerve . 67
3.2.3 Focal Application of Neutralizing Antibodies to Soluble Neurotrophic Factors
Reduces Collateral Axonal Branching After Peripheral Nerve Lesion. 71
List of Contents VII
3.2.3.1 Unoperated Rats. 71
3.2.3.2 General Features of the Facial Nucleus After Transection of the Facial Nerve . 71
3.2.3.3 Varying Effects of the Neutralizing Antibodies
on the Increased Number of Axons and Neurons
in the Three Main Branches (Rami) of the Regenerating Facial Nerve. 79
3.2.3.4 Effects of Neutralizing Antibodies on Axonal Branching as Estimated
by the Portions of Double- and Single-Labeled Motoneuronal Perikarya . 80
3.2.4 Transplantation of Olfactory Ensheathing Cells, Schwann Cells,
and Bone Marrow Stromal Cells Does Not Alter Axonal Branching
of Regenerating Facial Motoneurons. 82
3.2.4.1 Determination of the Degree of Axonal Branching. 82
3.2.4.2 Biometric Analysis of Whisking Behavior. 82
3.2.5 Transplantation of Autologous Olfactory Mucosa Does Not Increase
the Accuracy of Reinnervation but Promotes Functional Recovery
of Vibrissal Motor Performance. 82
3.2.5.1 Transplantation of Olfactory Mucosa
Reduces the Collateral Axonal Branching. 82
3.2.5.2 Transplantation of Olfactory Mucosa
Does Not Increase the Accuracy of Reinnervation. 86
3.2.5.3 Transplantation of Olfactory Mucosa
Promotes Functional Recovery of Vibrissal Motor Performance. 88
4 Discussion. 91
4.1 The Combined Approach to Evaluate the Quality
of Peripheral Nerve Regeneration. 91
4.2 Sensory-Motor Integrity as a Factor in Motor Regeneration . 92
4.2.1 Rationale for Using the Combined Trigemino-Facial Lesion Model
to Study Neuronal Regeneration. 93
4.2.2 Axonal Branching as a Component of Misdirected Target Reinnervation . 94
4.2.3 Lesion of the Contralateral Trigeminal Nerve Attenuates the Branching
of Transected Facial Axons and Improves the Accuracy
of Target Reinnervation. 94
4.2.4 Nature of the Beneficial Effect of the Accompanying Lesion. 95
4.2.5 Clinical Implications. 97
4.2.6 Recovery of Whisker Movement in Blind Rats Is Probably Due to
an Extraordinary Plasticity of the Facial Motoneurons Induced
by Putative Behavioral Demand and Early Forced Overutilization. 98
4.3 Manipulations of the Conditions at the Lesion Site Cause Changes
in the Quality of Axonal Regeneration and Recovery of Function. 98
4.3.1 The Use of Extracellular Matrix Proteins to Improve Reinnervation. 98
4.3.2 Role(s) of Trophic Factors in Axonal Regrowth and Effect
of Their Neutralization . 101
4.3.3 The Use of Cell Transplantation for Improving Reinnervation. 104
4.3.4 The Beneficial Effect of Transplanted Olfactory Mucosa May Involve
a Moderate but Long-Lasting Secretion
of Trophic Molecules at the Lesion Site. 105
4.4 Collateral Branching Versus Terminal Sprouting of Axons. 106
4.5 Prospects for the Future: Role of the Cytoskeleton. 107
5 Summary. 108
VIII List of Contents
References. 109
Subjectlndex. 131
Angelov et al.
Axonal Branching and Recovery of Coordinated Muscle Activity
Peripheral nerve injury is always followed by attempted regeneration of
the injured axons. In everyday clinical practice, however, functional re¬
covery is the exception rather than the rule. Especially after reconstruc¬
tive surgery on the facial nerve, there inevitably occur partial pareses,
abnormally associated movements and pathologically altered reflexes.
The main reason for this "post-paralytic syndrome" is the misdirected
axonal guidance, which consists of two major components. First, due
to malfunctioning pathfinding, a muscle gets reinnervated by a "foreign"
axon, that has been misrouted along a "wrong" fascicle. Second, the
supernumerary collateral branches emerging from all transected axons
simultaneously innervate antagonistic muscles and cause severe im¬
pairment of their coordinated activity. Since it is hardly possible to im¬
prove the pathfinding of several thousands axons, we concentrated on
the second major component and tried to reduce the collateral axonal
branching. In this monography we evaluated the efficiency of various
treatments in rats by determining (i) the degree of post-operative axonal
branching applying different fluorescent dyes to the zygomatic, buccal,
and marginal mandibular branches of the facial nerve; (ii) the accuracy
of reinnervation as estimated by the number of double-labeled peri-
karya innervating the whisker-pad muscles before and after surgery;
(iii) the recovery of vibrissal motor performance, estimated by a video
based motion analysis. The results described in this review reflect our
efforts to reduce collateral axonal branching by (i) alterations of the af¬
ferent trigeminal input to the axotomized facial motoneurons and by ap¬
plication to the nerve suture site of (ii) neurite outgrowth fostering ECM
proteins, (iii) neutralizing antibodies to trophic factors, (iv) suspensions
of olfactory ensheathing cells, Schwann cells and bone marrow stroma
cells and (v) pieces of autologous olfactory mucosa. All manipulations
influenced various parameters of peripheral nerve regeneration. How¬
ever, only the application of autologous olfactory mucosa yielded an
improved recovery of vibrissae motor per¬
formance. |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)120165112 |
building | Verbundindex |
bvnumber | BV021236733 |
ctrlnum | (OCoLC)633990548 (DE-599)BVBBV021236733 |
discipline | Medizin |
discipline_str_mv | Medizin |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02700nam a2200601 cb4500</leader><controlfield tag="001">BV021236733</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070327 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">051123s2005 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">05,N15,0803</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540256547</subfield><subfield code="9">3-540-25654-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540256540</subfield><subfield code="9">978-3-540-25654-0</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540256540</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11330813</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)633990548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV021236733</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats</subfield><subfield code="b">with ... 19 tables</subfield><subfield code="c">D. N. Angelov ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">130 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in anatomy, embryology and cell biology</subfield><subfield code="v">180</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verletzung</subfield><subfield code="0">(DE-588)4124397-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ratte</subfield><subfield code="0">(DE-588)4177011-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Trauma</subfield><subfield code="0">(DE-588)4060748-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervus facialis</subfield><subfield code="0">(DE-588)4075284-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Axon</subfield><subfield code="0">(DE-588)4200576-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regeneration</subfield><subfield code="0">(DE-588)4048983-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tiermodell</subfield><subfield code="0">(DE-588)4140660-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervenregeneration</subfield><subfield code="0">(DE-588)4041641-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nervus facialis</subfield><subfield code="0">(DE-588)4075284-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verletzung</subfield><subfield code="0">(DE-588)4124397-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Axon</subfield><subfield code="0">(DE-588)4200576-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Nervenregeneration</subfield><subfield code="0">(DE-588)4041641-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Tiermodell</subfield><subfield code="0">(DE-588)4140660-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ratte</subfield><subfield code="0">(DE-588)4177011-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nervus facialis</subfield><subfield code="0">(DE-588)4075284-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Trauma</subfield><subfield code="0">(DE-588)4060748-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Regeneration</subfield><subfield code="0">(DE-588)4048983-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Angelov, Dojčin N.</subfield><subfield code="d">1953-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)120165112</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in anatomy, embryology and cell biology</subfield><subfield code="v">180</subfield><subfield code="w">(DE-604)BV002528506</subfield><subfield code="9">180</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UBRegensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Klappentext</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-014279484</subfield></datafield></record></collection> |
id | DE-604.BV021236733 |
illustrated | Illustrated |
index_date | 2024-07-02T13:29:56Z |
indexdate | 2024-07-09T20:28:29Z |
institution | BVB |
isbn | 3540256547 9783540256540 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-014279484 |
oclc_num | 633990548 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 130 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series | Advances in anatomy, embryology and cell biology |
series2 | Advances in anatomy, embryology and cell biology |
spelling | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables D. N. Angelov ... Berlin [u.a.] Springer 2005 130 S. Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Advances in anatomy, embryology and cell biology 180 Verletzung (DE-588)4124397-3 gnd rswk-swf Ratte (DE-588)4177011-0 gnd rswk-swf Trauma (DE-588)4060748-3 gnd rswk-swf Nervus facialis (DE-588)4075284-7 gnd rswk-swf Axon (DE-588)4200576-0 gnd rswk-swf Regeneration (DE-588)4048983-8 gnd rswk-swf Tiermodell (DE-588)4140660-6 gnd rswk-swf Nervenregeneration (DE-588)4041641-0 gnd rswk-swf Nervus facialis (DE-588)4075284-7 s Verletzung (DE-588)4124397-3 s Axon (DE-588)4200576-0 s Nervenregeneration (DE-588)4041641-0 s Tiermodell (DE-588)4140660-6 s DE-604 Ratte (DE-588)4177011-0 s Trauma (DE-588)4060748-3 s Regeneration (DE-588)4048983-8 s b DE-604 Angelov, Dojčin N. 1953- Sonstige (DE-588)120165112 oth Advances in anatomy, embryology and cell biology 180 (DE-604)BV002528506 180 Digitalisierung UBRegensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA Klappentext |
spellingShingle | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables Advances in anatomy, embryology and cell biology Verletzung (DE-588)4124397-3 gnd Ratte (DE-588)4177011-0 gnd Trauma (DE-588)4060748-3 gnd Nervus facialis (DE-588)4075284-7 gnd Axon (DE-588)4200576-0 gnd Regeneration (DE-588)4048983-8 gnd Tiermodell (DE-588)4140660-6 gnd Nervenregeneration (DE-588)4041641-0 gnd |
subject_GND | (DE-588)4124397-3 (DE-588)4177011-0 (DE-588)4060748-3 (DE-588)4075284-7 (DE-588)4200576-0 (DE-588)4048983-8 (DE-588)4140660-6 (DE-588)4041641-0 |
title | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables |
title_auth | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables |
title_exact_search | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables |
title_exact_search_txtP | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables |
title_full | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables D. N. Angelov ... |
title_fullStr | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables D. N. Angelov ... |
title_full_unstemmed | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with ... 19 tables D. N. Angelov ... |
title_short | Axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats |
title_sort | axonal branching and recovery of coordinated muscle activity after transsection of the facial nerve in adult rats with 19 tables |
title_sub | with ... 19 tables |
topic | Verletzung (DE-588)4124397-3 gnd Ratte (DE-588)4177011-0 gnd Trauma (DE-588)4060748-3 gnd Nervus facialis (DE-588)4075284-7 gnd Axon (DE-588)4200576-0 gnd Regeneration (DE-588)4048983-8 gnd Tiermodell (DE-588)4140660-6 gnd Nervenregeneration (DE-588)4041641-0 gnd |
topic_facet | Verletzung Ratte Trauma Nervus facialis Axon Regeneration Tiermodell Nervenregeneration |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=014279484&sequence=000002&line_number=0002&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV002528506 |
work_keys_str_mv | AT angelovdojcinn axonalbranchingandrecoveryofcoordinatedmuscleactivityaftertranssectionofthefacialnerveinadultratswith19tables |